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KL - KS mass difference computed with a 171 MeV
pion mass
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In this work, I used a 323× 64× 32, 2+1 flavor domain wall lattice with Iwasaki+DSDR gauge
action. The pion mass is 171 MeV and the kaon mass is 492 MeV. We implement the Glashow-
Iliopoulos-Maiani (GIM) cancellation using charm quark masses of 750 MeV and 592 MeV. This
is an intermediate calculation, in that we are using both a coarse lattice spacing (1/a = 1.37GeV)
so we expect significant discretization error coming from charm quark mass and we are also
using unphysical kinematics for the pion. The main purpose of this calculation is to study the
contribution from the two-pion intermediate state when the energy of a two-pion state is lower
than that of the kaon, as well as the corresponding finite volume correction to the ∆MK .
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1. Introduction

The KL−KS mass difference ∆MK , with an experimental value of 3.483(6)×1012 MeV is an
important quantity in particle physics, for the reason that it leads to the prediction of charm quark
mass scale, and it’s small size provides an important test for the Standard Model. Perturbation
theory calculation fails to make a convincing prediction of ∆MK . As pointed out in [3], the size of
NNLO is about 0.36 of the size of LO contribution, and the purely non-perturbative, long distance
part, is estimated to be about 30% of the total contribution. Therefore, lattice QCD is the only
reliable way to calculate ∆MK in the Standard Model, with all systematic error controlled.

Previous attempts to calculate ∆MK[5][1] are encouraging. These are done using an unphysi-
cally large 329 MeV pion mass. If we go to physical or near physical pion mass, two issues might
arise: the treatment of the two-pion intermediate state which gives an exponential growing contri-
bution to our integrated correlator, as well as the corresponding finite volume correction. This work
is done primarily to address these issues. This is an intermediate calculation, in that we are using
both a coarse lattice spacing(1/a = 1.37GeV) so we expect significant discretization error coming
from the charm quark mass and that we are also using unphysical kinematics for the pion.

2. Evaluation of ∆MK on the Lattice

The K0− K̄0 mixing is represented in Figure 1. We have the ∆S = 1 weak Hamiltonian HW :

HW =
GF

2 ∑
q,q′=u,c

VqdV ∗q′s(C1Qqq′
1 +C2Qqq′

2 ) (2.1)

Qqq′
1 = (s̄idi)V−A(q̄ jq′j)V−A (2.2)

Qqq′
2 = (s̄id j)V−A(q̄ jq′i)V−A . (2.3)
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Figure 1: Example diagram for K0− K̄0 mixing. The two weak Hamiltonians are integrated over the time
interval [ta, tb].

By integrating the time-ordered product of the two ∆S = 1 operator, we can obtain the inte-
grated correlator for this ∆S = 2 process. The integrated correlator is defined as:

A =
1
2

tb

∑
t2=ta

tb

∑
t1=ta
〈0|T

{
K0

(t f )HW (t2)HW (t1)K
0
(ti)
}
|0〉 . (2.4)

If we insert a complete set of intermediate states, we can find:

A = N2
Ke−MK(t f−ti)

{
∑
n

〈K̄0|Hw|n〉〈n|Hw|K0〉
MK−Mn

(
−T +

e(MK−Mn)T −1
MK−Mn

)}
. (2.5)
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The term proportional to T can be related to ∆MK :

∆Mk = 2∑
n

〈K̄0|Hw|n〉〈n|Hw|K0〉
MK−Mn

. (2.6)

In order to extract the linear term with T from the integrated correlator A , we have to deal
with the second term which involves an exponential contribution. Our choice for T is enough to
make most of the intermediate state with energy higher than the kaon highly suppressed (except
for the η). For intermediate states that have lower energy than the kaon, we must subtract their
exponentially growing contribution to our integrated correlator. We have two ways of doing this:
we can either directly calculate the matrix element and determine their exponential contribution:

N2
Ke−MK(t f−ti) 〈K̄0|Hw|n〉〈n|Hw|K0〉

(MK−Mn)2 e(MK−Mn)T , (2.7)

and subtracted it. Or, we can add a scalar operator s̄d, or a pseudoscalar operator s̄γ5d, to our weak
Hamiltonian, chosen to make their contribution disappear. We have this freedom because these two
operators can be written as a total divergence of a vector or axial current, and therefore they will
not affect the physical linear term in our integrated correlator.

In this calculation, the states lighter than the kaon are single pion state and two-pion state with
either isospin 0 or 2. The η meson is slightly heavier than the kaon, but it’s energy difference
is not enough to make it highly suppressed, so we also have to subtract the η state. Because we
have disconnected diagrams, we must also subtract vacuum state, which might be a major source
of statistical noise.

3. Details of simulation

We work on a 2+1 flavor, 323×64×32 DWF lattice, with the Iwasaki + DSDR gauge action,
and an inverse lattice spacing 1/a = 1.37 GeV. The pion mass is 171 MeV and the kaon is 492
MeV. We implement GIM cancellation by including a quenched charm quark. We use two choices
of charm quark mass, 0.38 and 0.3 in lattice units, which correspond to 750 MeV and 592 MeV.
One might think that 0.38 is too high because it can produce an unphysical state that propagates on
the 5th dimension. However, because we are only interested in the physics on the domain wall of
5th dimension, which couples weakly to this unphysical state, having a charm mass of 0.38 will not
give rise to much systematic error. In order to accelerate the inversion, we used low-mode deflation
with 580 eigenvectors obtained using the Lanczos algorithm. Also, we use Mobius fermions with
b+ c = 2.667, Ls = 12, which leaves our residual mass unchanged from its unitary value. We are
using 405 configurations, about twice the number presented in the talk.

We calculate all the four point diagrams corresponding to the K0− K̄0 mixing process, as
shown in Figure 2. In order to subtract the two-pion intermediate state, we must also calculate the
kaon to two-pion matrix element 〈ππ|HW |K〉, as shown in Figure 3. We use Coulomb gauge fixed
wall source for the kaon, and a point source propagator at each time slice for the internal quark lines
coming from one of the weak vertex in type 1/2 four point diagrams. For the self-loop in type 3/4
four point diagrams and type 3/4 kaon to two-pion diagrams, we use a random space-time volume
source with 80 hits. This can significantly reduce the number of inversions required compared to
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the random wall source with 5 hits that we used in [1], while leaving the statistical error the same
size. To suppress vacuum noise in the computation of 〈ππ|HW |K〉, we separate the two-pion in the
sink by 4 units in time direction.

u, c

u, c

d

s d

s

type 1

d

s d

s

c, u

c, u

type 2
d

s

s d

c, u
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u, c u, c
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Figure 2: Four types of four point diagrams in the calculation of integrated correlator
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Figure 3: Four types of diagrams in the calculation of 〈ππ|HW |K〉

4. Results and finite volume correction

Before we do the linear fitting to obtain ∆MK , we have to first subtract all the intermediate
states with energy lower than or close to the kaon mass. Firstly, because the vacuum intermediate
state has the largest matrix element 〈0|HW |K〉, if we directly subtract the vacuum state, then the
statistical error is too large in our final integrated correlator, making fitting impossible. Therefore,
we must use our freedom of adding a pseudoscalar operator s̄γ5d to eliminate the vacuum contri-
bution. Because 〈η |HW |K〉 has the largest statistical error coming from the disconnected diagrams,
we use a scalar operator s̄d to eliminate the η contribution. We tune the coefficient cs and cp in our
modified Hamiltonian H ′W = HW + cps̄γ5d + css̄d, so that

〈0|HW + cps̄γ5d|K〉 = 0 , (4.1)

〈η |HW + css̄d|K〉 = 0 . (4.2)

The subtraction coefficients cs, cp are shown in Table 1. With the modified Hamiltonian, we
calculate the kaon to two-pion matrix element 〈ππ|H ′W |K〉, with both isospin 0 and 2, the results
are given in Table 2.

After we have subtracted all the exponentially growing intermediate state contributions, we
can fit our integrated correlator as a linear function of T . This is shown in Figure 4, as well as the
corresponding effective slope. We show the individual contributions to ∆MK , in Table 3. All of
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mc c1s c2s c1p c2p

750 MeV 6.4(14)×10−4 −8.2(10)×10−4 −4.356(14)×10−4 7.567(15)×10−4

592 MeV 5.7(15)×10−4 −7.2(12)×10−4 −4.052(18)×10−4 6.626(18)×10−4

Table 1: The subtraction coefficient cs, cp, for Q1 and Q2 separately. mc = 0.38,0.30 respectively on lattice

mc 〈ππI=2|Q1|K〉 〈ππI=2|Q2|K〉 〈ππI=0|Q1|K〉 〈ππI=0|Q2|K〉
750 MeV 1.291(8)×10−4 1.291(8)×10−4 −5.2(35)×10−4 7.2(31)×10−4

592 MeV 1.284(10)×10−4 1.284(10)×10−4 −4.4(34)×10−4 8.7(28)×10−4

Table 2: Kaon to two-pion matrix elements. The fact that the two I = 2 matrix element are exactly the same
is not surprising because they result from the same diagrams.

these numbers have been multiplied by the Wilson coefficient at the energy scale 3 GeV, which can
be found in Table 4.
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Figure 4: Integrated correlator using mc = 0.38, starting fitting range Tmin = 7, and the corresponding
effective slope plot.

We calculated the Wilson coefficient at 3 GeV to reduce error in the perturbative calculation,
but it might be too high for our coarse lattice with 1/a = 1.37 GeV. Therefore, we first match our
lattice operator non-perturbatively to a regularization independent, Rome-Southampton scheme
[8, 2] with non-exceptional momentum under 1.5 GeV. We used both the RI/SMOM(γµ ,6q) and
RI/SMOM(γµ ,γµ ) schemes [7]. Then we perform step scaling, i.e. by matching to higher energy
scale using a finer intermediate lattice, and finally we match to 3 GeV in the RI/SMOM scheme.
The matching factors from RI/SMOM to MS is given by 1+∆r 1 , and the ∆r in four-flavor theory
can also be found in Table 4. The MS Wilson coefficient at 3 GeV can be calculated using equations
in [4].

We have about a 5% discrepancy between out lattice Wilson coefficient from the two different
intermediate schemes, and this will introduce about a 10% of systematic error in our final results
for ∆MK . We can potentially overcome this by working on a finer lattice which minimize lattice

1C.Lehner and C. Sturm, private communications
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mc Tmin Q1Q1 Q1Q2 Q1Q2 ∆MK

0.30 6 0.59(5) 1.32(17) 2.58(36) 4.50(49)
0.30 7 0.56(6) 1.20(23) 2.72(56) 4.50(75)
0.30 8 0.67(9) 1.77(31) 3.39(59) 5.83(85)
0.38 6 0.73(4) 1.37(20) 3.07(32) 5.17(47)
0.38 7 0.70(6) 1.22(27) 3.04(50) 4.96(73)
0.38 8 0.79(8) 1.70(34) 3.72(65) 6.22(94)

Table 3: ∆MK and the individual contribution from different operator combinations, in the units of 10−12

MeV. We have varied the starting point of our fitting range. All numbers are multiplied by the appropriate
Wilson coefficient computed in the (γµ ,γµ) scheme.

CMS
1 CMS

2 ∆r11 = ∆r22 ∆r12 = ∆r21 Z11 = Z22 Z12 = Z21 Clat
1 Clat

2

-0.2394 1.1068 -0.0566 0.0065 0.5589 -0.0918 -0.2179 0.6027
-0.2394 1.1068 -0.0022 0.0065 0.5008 -0.0819 -0.2064 0.5713

Table 4: The MS Wilson Coefficients, RI/SMOM→MS matching matrix ∆r, lat→ RI matching matrix Z
obtained using Zq calculated in different schemes, and finally the lattice Wilson Coefficient at scale 3.0GeV.
1st row: (γµ ,/q) scheme, 2nd row: (γµ ,γµ). We didn’t include statistical error because all less than 1%.

artifact and using step scaling to match at a higher scale to minimize the errors in perturbation
theory.

In this calculation, we have considered the two-pion intermediate state contribution to ∆MK ,
which actually depend on the volume of the lattice. The finite volume and infinite volume result
for ∆MK are related by [6]:

2∑
n

f (En)

mk−En
= 2P

∫
dEρV (E)

f (E)
mk−E

+2
(

f (mK)cot(h)
dh
dE

)
mK

(4.3)

f (mK) = V 〈K̄0|HW |ππE=mK 〉V V 〈ππE=mK |HW |K0〉V (4.4)

The two-pion contribution to the ∆MK with I = 2 are highly suppressed compared to the I = 0
contribution, due to the ∆I = 1/2 rule. We can apply 2.6 to calculate their individual contribution
to ∆MK , with results in Table 5. Therefore, we only consider the I = 0 intermediate state here, with
the terms relevant for the finite volume correction in Table 6.

EππI=0 EππI=2 ∆MK(ππI=0) ∆MK(ππI=2)

336.5(15) 346.5(9) −0.074(63) −6.70(7)×10−4

Table 5: Two-pion energy (in MeV) and their contribution to ∆MK (in 10−12 MeV). mc = 750 MeV
.

We can see that two-pion intermediate state only contribute a small fraction of the total ∆MK ,
and the corresponding finite volume correction is even smaller (less than 1%). Therefore, being un-
able to measure precisely the kaon to two-pion matrix element does not give rise to much statistical
error in ∆MK .
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∆MK(ππI=0) h = δ +φ coth dh/dE coth×dh/dE ∆MK(FV )

0.084(70) 1.71(6) -0.144(64) 15.3(3) -2.2(10) 0.019(19)

Table 6: ππI=0 contribution to ∆MK , relevant terms for finite volume correction, and the finite volume
correction term to mass difference ∆MK(FV ), in unit of 10−12MeV .

5. Conclusion and outlook

We have shown that having a two-pion intermediate state to subtract does not make the cal-
culation much harder, and the finite volume corrections are controllable. The results are listed in
Table 3. A smaller charm mass gives rise to smaller ∆MK , because in all the 4-point diagrams, the
charm quark enters as u− c. The smaller charm quark mass is more closer to up quark mass mak-
ing the GIM cancellation more significant. Although ∆MK for different Tmin agree within errors, a
noticeable difference appears if we go to Tmin = 8. We expect this to be improved with better statis-
tics. The largest part of systematic error comes from the lattice discretization error, and an rough
estimate gives about (mca)2 ≈ 30%. We also have a systematic error in our Wilson Coefficient
which is about 10%.

In future calculation, we can have more reliable results by going to physical kinematics, with
2+1+1 flavor finer lattice and unquenched charm quark. The RBC collaboration is now working
to generate a 802× 96× 192 lattice with 1/a = 3 GeV [9]. This work was supported in part by
US DOE grant DE-SC0011941, and we thank the RIKEN BNL Research Center for the use of the
IBM BG/Q supercomputers on which this calculation was performed.
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