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1. Introduction

In the Standard Model of particle physics flavor-changing weak decays are parametrized by
the 3× 3, unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. The elements of the CKM
matrix, Vi j, parametrize decays of a quark with flavor i to a quark with flavor j. Accurate de-
terminations of the CKM matrix elements are necessary to fix four of the free parameters of the
Standard Model, as well as to understand CP violation in weak decays and to test unitarity1. Pre-
cision measurements of the K → πlν (Kl3) decay rate, together with lattice QCD calculations of
the non-perturbative Kl3 form factor f Kπ

+ (0), give the most precise constraint on |Vus| to date. In
this talk we report on the RBC/UKQCD collaboration’s most recent calculation of f Kπ

+ (0), which
incorporates two new physical pion mass Möbius domain wall fermion ensembles, as well as its
implications for the value of |Vus| and Standard Model unitarity.

2. Measurement Strategy

Experimental measurements of the K0→ π− decay rate constrain the product
|Vus| f Kπ

+ (0) = 0.2163(5) [3]. To extract |Vus| we compute the QCD matrix element

〈π(pπ)|Vµ |K(pK)〉= f Kπ
+ (q2)(pK + pπ)µ

+ f Kπ
− (q2)(pK− pπ)µ

, (2.1)

where Vµ = uγµs is the flavor-changing vector current, and q = pK− pπ is the momentum transfer
between the kaon and pion. One can also relate the form factor to a similar matrix element of the
scalar density S = us using a Ward identity for the vector current. At the kinematical point q2 = 0
the analogue of eqn. (2.1) for the scalar density is

〈π(pπ)|S|K(pK)〉|q2=0 =
m2

K−m2
π

ms−ml
f Kπ
+ (0), (2.2)

where mu = md ≡ ml is the (degenerate) light quark mass. In all of our calculations we consider
a kaon at rest and a pion with momentum ~pπ , where twisted boundary conditions [10] are used
to tune ~pπ such that q2 = 0. We also make use of the all-mode averaging (AMA) technique as
described in [5, 14].

2.1 Simulation Parameters

We simulate N f = 2 + 1 domain wall QCD using a series of ensembles with unitary pion
masses ranging from 693 MeV down to the physical value of 139 MeV. Our older, unphysical
ensemble sets A and C were generated using the Shamir kernel [6, 7] and were analyzed in [4]. We
have generated two new physical pion mass Möbius domain wall fermion [8] ensembles, denoted
Aphys and Cphys, with large volumes, which are the focus of this analysis, and are discussed in detail
in [5]. All ensembles use the Iwasaki gauge action [9]. The full set of ensembles is summarized in
table 1.

1In particular, tension between the experimentally determined values of the CKM matrix elements and unitarity
may prove to be an important indicator of new physics.
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Ensemble Action β a (fm) L/a T/a aml amsea
s amval

s mπ (MeV) mπL

A3 DWF+I 2.13 0.11 24 64 0.03 0.04 0.04 693 9.3
A2 DWF+I 2.13 0.11 24 64 0.02 0.04 0.04 575 7.7
A1 DWF+I 2.13 0.11 24 64 0.01 0.04 0.04 431 5.8
A4

5 DWF+I 2.13 0.11 24 64 0.005 0.04 0.04 341 4.6
A3

5 DWF+I 2.13 0.11 24 64 0.005 0.04 0.03 341 4.6
C8 DWF+I 2.25 0.08 32 64 0.008 0.03 0.025 431 5.5
C6 DWF+I 2.25 0.08 32 64 0.006 0.03 0.025 360 4.8
C4 DWF+I 2.25 0.08 32 64 0.004 0.03 0.025 304 4.1

Aphys MDWF+I 2.13 0.11 48 96 0.00078 0.0362 0.0362 139 3.8
Cphys MDWF+I 2.25 0.08 64 128 0.000678 0.02661 0.02661 139 3.9

Table 1: Summary of ensembles used in this analysis. DWF and MDWF denote domain wall fermions with
the Shamir and Möbius kernels, respectively, and I denotes the Iwasaki gauge action. L and T are the size of
the lattice in the spatial and temporal directions, respectively. mπ is the unitary pion mass.

3. Data Analysis

For additional detail regarding the data analysis we refer the reader to our accompanying pub-
lication [14]. In this talk we will merely paraphrase the final results.

3.1 Fits on the Physical Point Ensembles

We extract the Kl3 form factor from suitably constructed ratios of Euclidean three-point func-
tions [10]:

R(µ)
V (∆Kπ , t) = 2

√
EπmK

[
C

(µ)
Kπ

(t,∆Kπ ,~pπ )C
(µ)
πK (t,∆Kπ ,~pπ )

C̃π (∆Kπ )C̃K(∆Kπ )

]1/2

' 1
ZV

(
(pK + pπ)

µ f Kπ
+ (0)+(pK− pπ)

µ f Kπ
− (0)

)
(3.1)

for the vector current, and

RS(∆Kπ , t) = 2
√

EπmK

(
ms−ml

m2
K−m2

π

)[
C

(S)
Kπ

(t,∆Kπ ,~pπ)C
(S)
πK (t,∆Kπ ,~pπ)

C̃π(∆Kπ)C̃K(∆Kπ)

]1/2

' f Kπ
+ (0) (3.2)

for the scalar density. These ratios are equal to the right hand side up to noise and excited state
contamination for large K−π separations ∆Kπ � 1 and t far from the source and sink. Here C

(µ)
Kπ

and C
(S)
Kπ

are the vector and scalar three-point functions defined by the matrix elements 2.1 and 2.2,
respectively, where t denotes the time of the operator insertion, ∆Kπ ≡ |tK− tπ | is the K−π separa-
tion, and ZV is the vector current renormalization factor. C

(µ)
πK and C

(S)
πK are the corresponding three-

point functions for the time-reversed process π→K. C̃π,K(t)≡Cπ,K(t)− 1
2Cπ,K (T/2)e−Eπ,K(T/2−t)

denotes the pion/kaon two-point function with the backward propagating around-the-world mode
analytically removed using the fitted pion/kaon energy Eπ,K . The vector current renormalization
factor ZV is extracted from a similar analysis: we compute the analogue of 2.1 for the electromag-
netic current and two pions or two kaons at rest, and fit to the ratios

Rπ
Z(∆ππ , t) =

C̃π(∆ππ)

C
(0)
ππ (t,∆ππ ,~0)

' Zπ
V , RK

Z (∆KK , t) =
C̃K(∆KK)

C
(0)
KK (t,∆KK ,~0)

' ZK
V . (3.3)
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In this case the form factors are trivial — current conservation implies f ππ
+ (0) = f KK

+ (0) = 1 and
f ππ
− (0) = f KK

− (0) = 0 — allowing us to extract ZV .
For the fit to the scalar ratio 3.2 we observe a non-negligible sensitivity to the choice of fit

range, presumably due to contamination from excited states. This is most pronounced on the Cphys

ensemble, for which the plateau exhibits a small but clear upward slope. To account for this, we fit
a model with includes an exponentially decaying excited state

f Kπ
+ (0,∆Kπ) = f Kπ

+ (0)+Ce−m∆Kπ . (3.4)

We find that this works well in practice: the value of f Kπ
+ (0) from this exponential fit is consistent

with the value we get from fitting a constant, but is stable under variations of the fit range. Example
fits from the Cphys ensemble are shown in figure 1.
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Figure 1: Fits to extract f Kπ
+ (0) through the scalar density (left), and through the temporal component of

the vector current (right) on the Cphys ensemble. Here ∆t is the K−π separation: for even values of ∆t we
evaluate the ratio R at the midpoint ∆t/2, and for odd values of ∆t we average the two values of R straddling
the midpoint, which does not lie on the lattice.

3.2 Corrections to the Physical Point

The values for the twist angles and input quark masses of the physical point ensembles were
based on estimates of the spectrum computed from a small number of configurations early in the
data generation run. As a result, there is a small discrepancy between the simulated q2 and spec-
trum and the true physical point. We emphasize, however, that this discrepancy is small and the
corrections described here are smaller than the statistical errors we quote. In this section we dis-
cuss our method for performing this correction independently on the two ensemble sets A and C,
resulting in two values of f Kπ

+ (0) at different (finite) lattice spacings. We then perform a continuum
extrapolation, which is described in the following section.

To correct the momentum transfer to q2 = 0 we fit a pole ansatz f Kπ
+ (q2) = f Kπ

+ (0)/(1 +

q2/M2) to f Kπ
+ (q2) computed at two different kinematical points: the value of q2 corresponding

to our choice of twist angle, and q2
max = (mK −mπ)

2. We then determine f Kπ
+ (0) from the fit, and

use this corrected value for the form factor in all subsequent steps of the analysis. We have also
checked that if we instead use a linear ansatz the change in the result is negligible.

Likewise, we must make a small correction to f Kπ
+ (0) from the simulated values of mπ and

mK to the physical values mπ− = 139.6MeV and mK0 = 497.6MeV [12]. We have considered a

4
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number of ansätze for performing this correction, which we divide into families A , B, E , and F :

fit A : f Kπ
+ (q2 = 0,m2

π ,m
2
K) = 1+ f2( f ,m2

π ,m
2
K)

fit B : f Kπ
+ (q2 = 0,m2

π ,m
2
K) = 1+ f2( f ,m2

π ,m
2
K)+A1

(
m2

K +m2
π

)(
m2

K−m2
π

)2

fit E : f Kπ
+ (q2 = 0,m2

π ,m
2
K) = A+A0∆M2

fit F : f Kπ
+ (q2 = 0,m2

π ,m
2
K) = A+A0∆M2 +A1

(
m2

K +m2
π

)
∆M2

. (3.5)

Here ∆M2 ≡
(
m2

K−m2
π

)2
/m2

K , and f2 is the NLO term from SU(3) chiral perturbation theory
(χPT). The full expression for f2 can be found in [4], where we have previously studied these
ansätze. We have also explored several different cuts for the heaviest simulated mπ included in the
fits. Here we will only paraphrase the results: the details of all of the fits we have performed can be
found in [14]. We find that even with a mass cut the fits using NLO χPT are of poor quality, and
thus we discard fits A and B from the final analysis, in favor of fits E and F , where f2 has been
replaced by its Taylor expansion2 in m2

K −m2
π . Fits E and F are both of good quality, however,

we lack sufficient data to constrain fit F for f Kπ
+ (0) computed through the scalar density, so we

choose fit E for our final result. We again emphasize that this interpolation should be thought of as
a small correction to mistuning in Aphys and Cphys, as one can see from figure 2.
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Figure 2: Examples of the interpolation to physical mass.

3.3 Continuum Extrapolation

After performing the corrections described in section 3.2 we are left with three values of
f Kπ
+ (0) — two independent normalizations of the vector current matrix element 3.1 using Zπ

V and
ZK

V , as well as the scalar matrix element 3.2 — at each of the two lattice spacings considered in
our analysis. While we could perform three independent linear extrapolations to the continuum,
we instead chose to impose universality, and extrapolate all three calculations of the form factor to
a common continuum limit. This is depicted in figure 3. Repeating the full analysis with different
choices of the mass cut does not change the result within the statistical error: we choose mπ ≤

2Another possibility is to fit to NNLO χPT, however, we have too little data to constrain such a fit.
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450MeV as a reasonable mass cut to quote a final result, for which we obtain f Kπ
+ (0) = 0.9685(34)

in the continuum, where the error is purely statistical, and includes the uncertainty in the lattice
spacings for the A and C ensembles.
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Figure 3: Joint extrapolation to a common continuum limit.

3.4 Final Result and Error Budget

After interpolating in q2, mπ , and mK to the physical point, and extrapolating to the continuum,
we are left with the following systematic errors:

• Finite Volume (FV): Since the K → π matrix element contains only single particle initial and
final states, we expected finite volume effects to be exponentially suppressed in mπL. We naively
estimate these effects to be of order (1− f Kπ

+ (0))e−mπ L = 0.0007. ChPT [13] estimates an error
approximately twice as large for the Aphys and Cphys ensembles. Thus, we quote twice our naive
error — 0.0014 — as our value for the FV systematic.

• Partial Quenching: The calculations on ensemble A3
5 and the full C ensemble set were performed

with a partially quenched strange quark. We expect any associated systematic errors to be small
compared to the other errors we quote, and we have explicitly checked that excluding ensemble
A3

5 from the analysis does not change the result.

• Isospin Breaking: The unitary light quarks in our study are isospin symmetric, unlike the physical
up and down quarks. We again expect this to be negligible compared to statistical and FV errors.

Taking these into account, we obtain our final result

f Kπ
+ (0) = 0.9685(34)stat(14)FV, (3.6)

leading to the prediction
|Vus|= 0.2233(5)experiment(9)lattice. (3.7)

Together with |Vud | = 0.97425(22) from super-allowed nuclear β -decay measurements [12], and
neglecting |Vub| ≈ 10−3, we observe a ∼ 1.5σ tension with first-row CKM unitarity

1−|Vud |2−|Vus|2 = 0.0010(4)Vud (2)V exp
us

(4)V lat
us
= 0.0010(6). (3.8)
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4. Conclusion

In this talk we have presented a first-principles calculation of the kaon semileptonic form
factor with vanishing momentum transfer and physical light quark masses in domain wall QCD.
We have also demonstrated how to utilize our older, heavy pion mass ensembles to correct for
slight mistunings and extrapolate to the continuum. We find that finite volume errors are now the
dominant source of systematic error. In the future we hope to explicitly include electromagnetic
and isospin breaking effects in our calculations.
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