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We present a lattice QCD determination of the vector form factor of the kaon semileptonic decay
K→ π`ν which is relevant for the extraction of the CKM matrix element |Vus| from experimental
data. Our result is based on the gauge configurations produced by the European Twisted Mass
Collaboration with N f = 2+1+1 dynamical fermions. We simulated at three different values of
the lattice spacing and with pion masses as small as 210 MeV. Our preliminary estimate for the
vector form factor at zero momentum transfer is f+(0) = 0.9683(65), where the uncertainty is
both statistical and systematic. By combining our result with the experimental value of f+(0)|Vus|
we obtain |Vus|= 0.2234(16), which satisfies the unitarity constraint of the Standard Model at the
permille level.
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1. Introduction and simulation details

In the Standard Model (SM) the relative strenght of the flavor-changing weak currents is para-
metrized by the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. An accurate determination
of the CKM matrix elements is therefore crucial both for testing the SM and for searching new
physics (NP).

In this letter we present the determination of the matrix element |Vus| from the study of
semileptonic kaon (Kl3) decays on the lattice. This determination is obtained combining lattice
results for the K→ π`ν form factor f+(0) with the experimental measure of f+(0)|Vus| extracted
from the decay rate of the process. Another possible approach for the determination of |Vus| con-
sists in combining the experimental measurement of pion and kaon leptonic decays with the lattice
results for the ratio of decay constants fK/ fπ . This calculation has been also performed by our
collaboration and the results are presented in [1].

In this contribution we used the ensembles of gauge configurations produced by the European
Twisted Mass (ETM) Collaboration with four flavors of dynamical quarks (N f = 2+1+1), which
include in the sea, besides two light mass degenerate quarks, also the strange and the charm quarks.
The simulations were carried out at three different values of the lattice spacing a to allow a con-
trolled extrapolation to the continuum limit, the smallest being approximately 0.06 f m, and at dif-
ferent lattice volumes. The simulated pion masses used in this analysis range from 210MeV to
approximately 450MeV. For each ensemble we used a number of gauge configurations corres-
ponding to a separation of 20 trajectories to avoid autocorrelations. The gauge fields were sim-
ulated using the Iwasaki gluon action [2], while sea quarks were implemented with the Wilson
Twisted Mass Action [3], which at maximal twist allows for an automatic O(a)-improvement [4].
To avoid mixing in the strange and charm sectors we adopted a non-unitary setup in which valence
quarks are simulated for each flavor using the Osterwalder-Seiler action [5]. At each lattice spacing
different values of light and strange quark masses have been considered to study the dependence of
the form factor f+(0) on m` and to allow for a small interpolation in ms. In our final result for the
form factor f+(0) we used for the physical values of m` and ms the values obtained in [6]. Valence
quarks were simulated at different values of the spatial momenta using Twisted Boundary condi-
tions [7, 8, 9], allowing us to cover both the spacelike and the timelike region of the 4−momentum
transfer. For more details on the simulation the reader can consult [6].

In the present work we studied a combination of three-points correlation functions in order to
extract the form factors f+ and f0 as functions of the squared 4−momentum transfer q2, the light
quark mass m` and the lattice spacing a. The small interpolation in the strange quark mass, which
has been simulated at three different values close to the physical one, is addressed with a simple
quadratic spline.

Our result is f+(0) = 0.9683(65) where the uncertainty is both statistical and systematic. This
allows us to extract the value of the CKM matrix element |Vus|= 0.2234(16), which is compatible
with the unitarity constraint of the Standard Model.

2. Extraction of the form factors at q2 = 0

The matrix element of the vector current between two pseudoscalar mesons decomposes into
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two form factors, f+ and f−,〈
π(p′)|Vµ |K(p)

〉
= (pµ + p′µ) f+(q2)+(pµ − p′µ) f−(q2), (2.1)

which depend on the square of the 4−momentum transfer qµ = pµ − p′µ . The scalar form factor f0

is defined as

f0(q2) = f+(q2)+
q2

M2
K−M2

π

f−(q2), (2.2)

and therefore satisfies the relation f+(0) = f0(0). The matrix element in Eq. (2.1) can be derived
from the time dependence of a convenient combination of Euclidean three-point correlation func-
tions in lattice QCD. As it is well known at large time distances the three-point functions can be
written as

CKπ
µ

(
tx, ty,~p,~p

′
)
−−−−−−−−−−−−−→
tx� a (ty− tx)� a

ZV

√
ZKZπ

4EKEπ

〈
π
(

p′
)∣∣ Vµ |K (p)〉e−EKtx−Eπ (ty−tx), (2.3)

and therefore they can be combined in the ratio Rµ

Rµ (t,~p,~p′) =
CKπ

µ (t, T
2 ,~p,~p

′)CπK
µ (t, T

2 ,
~p′,~p)

Cππ
µ (t, T

2 ,
~p′,~p′)CKK

µ (t, T
2 ,~p,~p)

, (2.4)

Rµ −−−→t� a

〈
π(p′)|Vµ |K(p)

〉〈
K(p)|Vµ |π(p′)

〉〈
π(p′)|Vµ |π(p′)

〉〈
K(p)|Vµ |K(p)

〉 , (2.5)

which is independent of the vector renormalization constant ZV and on the matrix elements Zπ =

|〈π|uγ5d|0〉|2 and ZK = |〈π|sγ5u|0〉|2. So the matrix elements 〈V0〉 and 〈Vi〉 can be extracted from
the Rµ(t,~p,~p′) plateaux as 〈

π(p′)|V0|K(p)
〉
= 〈V0〉= 2

√
R0
√

EE ′, (2.6)〈
π(p′)|Vi|K(p)

〉
= 〈Vi〉= 2

√
Ri
√

pp′, (2.7)

and used to extract the form factors trough the relations

f+(q2) =
(E−E ′)〈Vi〉− (pi− p′i)〈V0〉

2E p′i−2E ′pi
,

f−(q2) =
(pi + p′i)〈V0〉− (E +E ′)〈Vi〉

2E p′i−2E ′pi
. (2.8)

The energies appearing in Eqs. (2.8) are extracted from the dispersion relation with the masses
obtained fitting the two-points correlation function of pseudoscalar mesons at rest. Finally f0(q2)

can be calculated from Eq. (2.2). An example of the extraction of the matrix elements can be seen
in Fig. 1.

The next step was the study of the form factors f+ and f0 as a function of the 4−momentum
transfer to interpolate the data at q2 = 0. This was done by fitting simultaneously f+ and f0 using
the z−expansion (Eq. (2.9)) as parametrized in [10], and by imposing the condition f+(0) = f0(0).

f+(q2) =
a0 +a1

(
z+ 1

2 z2
)

1− q2

M2
V

,

f0(q2) =
b0 +b1

(
z+ 1

2 z2
)

1− q2

M2
S

. (2.9)
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Figure 1: Example of the matrix elements 〈V0〉 and 〈Vi〉 extracted from the quantity Rµ corresponding to an
ensemble with β = 1.90, L/a = 24, aµl = 0.0080, aµs = 0.0225, |~p|= |~p′| ' 87MeV.

In Eq. (2.9) MS and MV are the scalar and the vector pole mass respectively, and z is defined as

z =

√
t+−q2−

√
t+− t0√

t+−q2 +
√

t+− t0
(2.10)

where t+ and t0 are

t+ = (MK +Mπ)
2

t0 = (MK +Mπ)
(√

MK−
√

Mπ

)2
. (2.11)

We also tried to fit the q2 dependence using other fit ansatz (e.g. polynomial expression in q2)
and including in the fit also the data corresponding to large negative transferred momenta, obtaining
nearly identical results as it can be seen in Fig 2.
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Figure 2: Left panel: interpolation of the form factors to q2 = 0 using the z expansion (continuum line)
compared to the one obtained with a polynomial fit (dashed line). Right panel: interpolation of the form
factors to q2 = 0 using only the data around q2 = 0, for this ensemble a2q2 < 0.01 (continuum line), or a
larger range in q2 (dashed line). Both plots corresponds to β = 1.90, L/a= 32, aµl = 0.0040, aµs = 0.0225.

3. Extrapolation of f+(0)

In order to compute the physical value of the vector form factor f+(0), we first performed a
small interpolation of our lattice data to the physical value of the strange quark mass ms determined
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in [6]. Then we analyzed the dependence of f+(0) as a function of the (renormalized) light-quark
mass m` and of the lattice spacing and extrapolated it to the physical point using both an SU(2) and
an SU(3) ChPT prediction. Notice however that also the SU(3) fit was performed at fixed physical
value of the strange quark mass.
The SU(2) ChPT prediction at the next-to-leading order (NLO) for f+(0) [11], reads as follows:

f+(0) = F+
0

(
1− 3

4
ξ logξ +P2ξ +P3a2

)
(3.1)

where ξ` = 2Bm`/16π2 f 2 with B and f being the SU(2) low-energy constants (LECs) entering
the LO chiral Lagrangian determined in [6]. F+

0 , P2 and P3, on the other hand, are left as free fit
parameters.

In SU(3) ChPT the expression for the vector form factor f+(0) is the following:

f+(0) = 1+ f2 +∆ f , (3.2)

where f2 can be written in full QCD [12, 13] as:

f fullQCD
2 =

3
2

HπK +
3
2

HηK , (3.3)

with

HPQ =− 1
64π2 f 2

π

[
M2

P +M2
Q +

2M2
PM2

Q

M2
P−M2

Q
log

M2
Q

M2
P

]
. (3.4)

The quantity ∆ f represents next-to-next-to-leading order (NNLO) contributions and beyond, which
in our fit is parametrised as:

∆ f = (ms−m`)
2 [∆0 +∆1m`]+∆2a2, (3.5)

so that Eq. (3.2) verifies the Ademollo Gatto theorem [14] in the continuum limit i.e. deviations
from unity are proportional to (ms−m`)

2.
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Figure 3: Chiral and continuum extrapolation of f+(0) based on the NLO SU(2) ChPT fit given in Eq. (3.1)
(left) and on the NNLO SU(3) ChPT fit given in Eq. (3.2) (right).

The chiral and continuum extrapolations of f+(0) are shown in Fig. 3 for both the SU(2) and
the SU(3) fit. Combining the two analysis we get our final result for the vector form factor f+(0):

f+(0) = 0.9683(50)stat+ f it(42)Chir = 0.9683(65), (3.6)
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where ()stat+ f it indicates the statistical uncertainty which includes the one induced by the fitting
procedure and the uncertainties in the determination of all the input parameters needed for the
analysis, namely the values of the light quark mass m`, the lattice spacing a and the SU(2) ChPT low
energy constants f and B, which were determined in [6]. The systematic uncertainty in the chiral
extrapolation, namely ()Chir, has been evaluated from the difference in the results corresponding
to the two chiral extrapolations we performed. It should be noticed also that the two lattice points
calculated at the same lattice spacing and light quark mass but different volumes, as it can be seen
in Fig. 3, are well compatible within uncertainties, allowing us to state that finite size effects can be
neglected in our analysis. Combining the present result with the experimental value of |Vus| f+(0)
from [15] we can estimate |Vus| obtaining:

|Vus|= 0.2234(16). (3.7)

This value can also be compared with the determination of |Vus| from the ratio of leptonic PS decay
constants fK+/ fπ+ that we obtained in [1] wich reads |Vus| = 0.2271(29) As a phenemenological
application we can use our results to test the unitarity of the first row of the CKM matrix taking
the value of |Vud | from the β−decay [16] and ignoring |Vub|2, which is negligible given the present
uncertainties, finding:

|Vud |2 + |Vus|2 + |Vub|2 = 0.9991(8) from K`3 [this work]

|Vud |2 + |Vus|2 + |Vub|2 = 1.0008(14) from K`2 [1] (3.8)

As it can be seen in Eq. (3.8) both determinations confirm the first row unitarity at the permille
level.

4. An outlook on a possible extension

As a possible extension of our analysis we provided an estimate of the vector form factors f+
and f0 not only at q2 = 0, but on the entire q2 region accessible to experiments, i.e from q2 = 0
to q2 = q2

max = (MK −Mπ)
2. To do so we performed a multi-combined fit of the q2, m` and a
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Figure 4: Fit results for the quantities f+(q2)/ f+(0) and f0(q2)/ f+(0) as functions of q2 at the physical
point. The red dot (square) corresponds to q2

max (q2
CT ). The dashed lines represent the uncertainty of above

quantities at one standard deviation.
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dependencies of the form factors following the strategy presented in [17]. In particular the fit
formulas were derived by expanding in powers of x = M2

π/M2
K the NLO SU(3) ChPT predictions

for the form factors [12, 13]. Moreover we included in the analysis the constraint from the Callan-
Treiman theorem [18], which relates the scalar form factor calculated at the unphysical q2

CT =

M2
K −M2

π to the ratio of the decay constants fK/ fπ . Preliminary result of the form factors in the
physical region of q2 are presented in fig. (4).
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