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The CKM matrix element |Vcb| can be extracted by combining experimentally determined branch-
ing fractions for B̄→ D(∗)`ν̄ decays with form factors from the lattice. While successful, the
precision of this approach has been limited by heavy-quark discretization effects. An improved
version of the Fermilab action, the Oktay-Kronfeld action, can be used to reduce heavy-quark
discretization effects in calculations performed at the physical bottom and charm quark masses.
Treating charm and bottom quarks as massive, we are carrying out improvement of the flavor-
changing currents through third order in the momentum (HQET) expansion.
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1. Introduction

The CKM matrix element |Vcb| enters searches for new physics in the quark flavor sector of
the Standard Model (SM). Parametric uncertainties from |Vcb| dominate uncertainties in SM calcu-
lations of the branching ratios for the rare decays KL→ π0νν̄ and B0

(s)→ µ+µ−, prime candidates
for new physics, as well as SM calculations of the indirect CP violation parameter |εK |, which
provides an input to the global unitarity triangle analysis.

The exclusive semileptonic decays B̄→ D(∗)`ν̄ proceed at rates proportional to |Vcb|2 [1, 2, 3,
4, 5].

dΓ

dω
(B̄→ D`ν̄) =

G2
F |Vcb|2M5

B
48π3 (ω2−1)3/2r3(1+ r)2F2

D(ω) , (1.1)

dΓ

dω
(B̄→ D∗`ν̄) =

G2
F |Vcb|2M5

B
4π3 |ηEW |2(1+πα)(ω2−1)1/2r∗3(1− r∗)2

χ(ω)F2
D∗(ω) , (1.2)

where ω = vB · vD(∗) is the velocity transfer (proportional to the D(∗) recoil energy, in the B rest
frame), and r(∗) = MD(∗)/MB is the ratio of the parent to the daughter meson mass. πα and ηEW

are higher order electroweak corrections. πα is present only for the charged D∗ and accounts for
Coulomb attraction in the final state [3, 4, 5]. ηEW arises from NLO box diagrams in which a
photon or Z is exchanged together with the W [2]. The kinematic factor χ(ω) may be written

χ(ω) =
ω +1

12

(
5ω +1− 8ω(ω−1)r∗

(1− r∗)2

)
. (1.3)

The form factors FD(∗)(ω) are related to hadronic matrix elements of the flavor-changing currents.
Compared to uncertainties in the form factors, uncertainties in the other quantities on the right-
hand sides of Eqs. (1.1), (1.2) are small. At zero-recoil, FD∗(1) = hA1(1), and only the axial
current matrix element contributes to the decay rate for B̄→ D∗`ν̄ ; heavy quark symmetry implies
hA1(1)≈ 1.

Given lattice QCD calculations of the form factors, experimental measurements of the decay
rates yield determinations of |Vcb|. The value of exclusive |Vcb| obtained in this way differs from
the value obtained from the inclusive decays B̄→ Xc`ν̄ and B̄→ Xsγ by 3.0σ . This difference is
correlated with a 3.3σ tension between |εK | in the SM and experiment [6]. This tension vanishes
when inclusive |Vcb| is used to calculate |εK |.

The form factors for the B̄→ D(∗) transition matrix elements are required for calculations,
in and beyond the SM, of the ratios R(D(∗)) ≡B(B̄→ D(∗)τν̄)/B(B̄→ D(∗)`ν̄), where ` = e,µ .
The BaBar Collaboration reported a 3.4σ tension between its measurement of (R(D),R(D∗)) and
the SM value [7]. This tension is only partially relieved by a lattice QCD calculation of R(D) [8].
A lattice QCD calculation of the form factors for B̄→ D∗ at non-zero recoil, required for lattice
calculations of R(D∗), does not (yet) exist.

The most precise determination of |Vcb| to date was obtained with the form factor for B̄→D∗`ν̄
at zero recoil [9]. Charm-quark discretization effects dominate the uncertainty in the result. One
way to reduce this systematic error is to generate data on finer lattices. An attractive alternative
is to use a highly improved action. Two actions are of sufficient accuracy: the highly improved
staggered quark (HISQ) action and the improved Fermilab action of Oktay and Kronfeld [10, 11].
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The Oktay-Kronfeld (OK) action possesses the advantages of the Sheikholeslami-Wohlert
(SW) action with the Fermilab interpretation, including control of discretization effects of fermions
with arbitrary mass [12]. As a→ 0 or mQ→ ∞, the discretization effects vanish, while discretiza-
tion effects of bottom quarks are smaller than for charm quarks. These features enable direct
validation of bottom sector calculations with calculations for the charm sector.

To reduce (heavy-quark) discretization effects in the axial and vector current matrix elements,
one must improve not only the action, but also the currents. Following the work of Refs. [12, 13,
14, 15, 11], we introduce an improved field and are calculating quark-level matrix elements to fix
the coefficients of the higher order operators, as functions of the bare quark masses. In Sec. 2 we
briefly describe improvement for the current and write down a complete set of operators that can
appear in the improved field, through third order in heavy quark effective theory (HQET). Section
3 contains a description of our matching calculations. In Sec. 4 we summarize completed and
remaining work.

2. Improved field

The improvement program for fermions of arbitrary mass, in lattice units, begins with the ob-
servation that time-space axis interchange symmetry, a corollary of hypercubic rotation symmetry,
is neither necessary nor convenient for constructing actions closer to the renormalized trajectory.
Lifting time-space axis interchange symmetry in the SW action, including only higher-dimension
operators that do not alter Wilson’s time derivative, and appropriately specifying the coefficients in
the action as functions of the fermion masses, one can systematically approach the renormalized
trajectory even though the fermion masses are large compared to the lattice cutoff [12].

Improvement of other operators, including the flavor-changing currents, proceeds in much the
same way. In Ref. [12], an improved field, coinciding with the canonical Dirac field at tree-level and
through O(ppp), was introduced and shown to yield the desired continuum matrix elements (at tree-
level and through O(ppp)). Working at tree-level and to higher order in the momentum expansion,
an improved field again suffices.

The OK action is improved through O(ppp3) in HQET power counting [11]. Accordingly, we
begin with an ansatz for the improved field through O(ppp3),

ΨI(x) = eM1/2
[

1+d1γγγ ·DDD+ 1
2 d24(3)+ 1

2 idBΣΣΣ ·BBB+ 1
2 dEααα ·EEE

+ 1
4 drE{γγγ ·DDD,ααα ·EEE}+ 1

4 dzEγ4(DDD ·EEE−EEE ·DDD)+ 1
6 d3γiDi4i +

1
2 d4{γγγ ·DDD,4(3)}

+ 1
4 d5{γγγ ·DDD, iΣΣΣ ·BBB}+ 1

4 dEE{γ4D4,ααα ·EEE}+ 1
4 dz3γγγ · (DDD×BBB+BBB×DDD)

]
ψ(x) , (2.1)

where the rest mass M1 is related to the bare quark mass, DDD is the symmetric lattice covariant
derivative, 4i is a covariant lattice second derivative, 4(3) is the three-dimensional lattice Lapla-
cian, ΣΣΣ and ααα are 4× 4 matrices in spinor space, BBB and EEE are defined in terms of the clover field
strength tensor, γµ are Euclidean gamma matrices, ψ(x) is the unimproved field, and the coeffi-
cients di depend on the mass of the fermion ψ and other couplings in the action [12, 11]. The
operators in this ansatz correspond to those in the OK action (bilinears) through mass dimension 6,
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Figure 1: Diagram for quark-quark current matrix element for tree-level matching of the improved
field. The matching yields the parameters di for i = 1,2,3,4.

including operators whose coefficients vanish at tree-level or are redundant. Hence, all operators
allowed by the lattice symmetries are included.

The authors of Refs. [14, 15] showed explicitly that the currents constructed with the improved
field through O(ppp), including only the d1 term introduced in Ref. [12], coincides with that required
to match through O(ΛQCD/mQ) in HQET. To execute HQET matching, one enumerates operators
in the lattice current that correspond to those of the effective continuum HQET. We have begun the
task of extending this enumeration to third order in HQET.

3. Matching

Here we consider matching conditions to determine the coefficients in Eq. (2.1). The authors
of Ref. [12] considered the quark-quark current matrix elements, Fig. 1, with the flavor-changing
current inserted between external quarks. They noted that at tree-level the difference between
lattice and continuum matrix elements is due to the difference between the lattice and continuum
spinors and spinor normalization factors. Expanding the normalized continuum and lattice spinors
through O(ppp) and comparing the lattice and continuum matrix elements yield d1 (after equating
the physical quark mass with the kinetic quark mass). Expanding the normalized continuum and
lattice spinors through O(ppp3), we find√

mq

E
u(ξ , ppp) =

[
1− iγγγ · ppp

2mq
− ppp2

8m2
q
+

3i(γγγ · ppp)ppp2

16m3
q

]
u(ξ ,000)+O(ppp4) , (3.1)

N (ppp)ulat(ξ , ppp) = e−M1/2

[
1− iζ γγγ · ppp

2sinh M1
− ppp2

8M2
X
+ 1

6 iw3

3

∑
k=1

γk p3
k +

3i(γγγ · ppp)ppp2

16M3
Y

]
u(ξ ,000)+O(ppp4) ,

(3.2)

where ξ labels the linearly independent solutions, E =
√

m2
q + ppp2, the index k is summed over the

spatial directions,

1
M2

X
=

ζ 2

sinh2 M1
+

2rsζ

eM1
, w3 =

3c1 +ζ/2
sinh M1

, (3.3)

1
M3

Y
=

8
3sinh M1

{
2c2 +

1
4

e−M1

[
ζ

2rs(2coth M1 +1)

+
ζ 3

sinh M1

(
e−M1

2sinh M1
−1

)]
+

ζ 3

4sinh2 M1

}
, (3.4)

rs is the coefficient of the spacelike Wilson term in the action, ζ = κs/κt , c1,2 are coefficients in the
mass-dimension 6 terms of the OK action, which modify the lattice spinors and mass shell via

Ki = ζ sin pi −→ Ki = sin pi

[
ζ −2c2

3

∑
j=1

(2sin p j/2)2− c1(2sin pi/2)2

]
, (3.5)
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and the lattice spinor normalization factor for the OK action is

N (ppp) =

√
µ− cosh E

µ sinh E
where cosh E =

1+µ2 +KKK2

2µ
, and KKK2 = ∑

i
K2

i (3.6)

µ = 1+m0 +
1
2 rsζ

3

∑
i=1

(2sin pi/2)2 , (3.7)

where m0 is the bare heavy quark mass. As the lattice spacing tends to zero, the masses MX ,Y tend
to the rest mass M1. With the OK action (matched at tree-level), the rotation breaking parameter
w3 = cB = rs. The mismatch between the lattice and continuum normalized spinors is compensated
by the rotation parameters di in the current constructed from the improved field.

At tree-level the terms in Eq. (2.1) with chromoelectric and chromomagnetic fields do not
contribute to the matrix elements of Fig. 1; only the terms with coefficients d1,2,3,4 contribute.
Setting the gauge links to one in the covariant derivatives, we note the additional factors entering
contractions between differentiated fields and external quark states,

ψ →4(3)
ψ leads to ulat→−∑

i
(2sin pi/2)2ulat , (3.8)

ψ → Di4iψ leads to ulat→−isin pi(2sin pi/2)2ulat , (3.9)

ψ → Di4(3)
ψ leads to ulat→−isin pi ∑

j
(2sin p j/2)2ulat . (3.10)

Then calculating the continuum and lattice matrix elements and demanding equality through O(ppp3),√
mc

Ec
ūc(ξc, pppc)Γ

√
mb

Eb
ub(ξb, pppb) = Nc(pppc)ū

lat
c (ξc, pppc)R̄(pppc)ΓNb(pppb)R(pppb)u

lat
b (ξb, pppb) , (3.11)

where R(ppp) represents contributions from the improvement terms in Eq. (2.1) and depends on the
parameters di. We find matching the O(ppp) terms yields d1, matching the O(ppp2) terms yields d2,
matching the rotation breaking terms yields d3, and matching the rotation invariant terms of O(ppp3)

yields d4. We have

d1 =
ζ

2sinh M1
− 1

2mq
, (3.12)

d2 = d2
1 −

rsζ

2eM1
, (3.13)

d3 =−d1 +w3 , (3.14)

d4 =−
d1

8M2
X
+

d2ζ

4sinh M1
+

3
16

(
1

M3
Y
− 1

m3
q

)
, (3.15)

where mq is to be taken equal to the kinetic mass M2. The results for d1,2 are contained already in
Ref. [12].

To specify the remaining coefficients in Eq. (2.1), we are considering four-quark current matrix
elements. For example,

〈q f (ξ2, ppp2)c(ξc, pppc)|Jcb
Γ |b(ξb, pppb)q

g(ξ1, ppp1)〉 , (3.16)
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(a) (b)

(c) (d)

Figure 2: Diagrams for four-quark current matrix elements for tree-level matching of the improved
field. The large circles are electroweak current insertions, and the small circles represent the field
improvement terms.

where f ,g are flavor indices and Jcb
Γ

is the bottom (b) to charm (c) flavor-changing current. Tree-
level diagrams contributing to this matrix element are shown in Fig. 2. The large filled circle is
the current, and the small circles are the improvement terms. Gluon exchange can occur with the
external bottom or charm quark or with the higher order operators in the improved bottom or charm
field.

The OK action coefficients are specified (in part) through matching the quark-gluon ver-
tex [11]. Turning to the current-gluon vertices and exchange with the external bottom and charm
quarks, we expand in the external momenta. From the spatial component of the gluon vertex at low-
est order, we recover the result for d1, and we expect results for d2,B in agreement with Ref. [12].
From the time component and higher order terms in the momentum expansion, we anticipate infor-
mation about the parameters dE , drE , dzE , d5, dEE , and dz3.

The rotation parameters d1,d2,dB, and dE can also be obtained from the Foldy-Wouthuysen-
Tani transformed field by including operators of O(ppp2) and matching the Hamiltonian [12]. We
note that dE cannot be altered by the higher order terms of O(ppp3) appearing in the OK action.

4. Summary

To reduce the discretization effects of heavy quarks, the OK action is improved through third
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order in HQET power counting [11]. Systematic improvement of the hadronic B̄→ D(∗) matrix
elements needed to extract |Vcb| from the branching fractions of B̄→ D(∗)`ν̄ decays requires im-
provement of the (axial and vector) b→ c currents through the same order in HQET.

The authors of Ref. [12, 14, 15] showed that currents constructed from an improved quark field
suffice for improvement of the hadronic matrix elements through O(ppp), or first order in HQET. The
field improvement operators shown in Eq. (2.1) suffice for improvement of quark-quark current
matrix elements, cf. Eq. (3.11). Matching to the continuum matrix elements yields the parameters
d1,2,3,4, Eqs. (3.12), (3.13), (3.14), and (3.15).

To specify the coefficients of the remaining operators, we are matching four-quark current
matrix elements. To demonstrate improvement through third order in HQET, we are enumerating
operators in the lattice currents and the (effective continuum) currents of HQET [14, 15].
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