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We show that, in addition to specific science goals, there is a strong case for conducting an all-sky
(i.e. the visible 3π steradians) SKA continuum survey which does not fit neatly into conventional
science cases. History shows that the greatest scientific impact of most major telescopes (e.g.,
HST, VLA) lies beyond the original goals used to justify the telescope. The design of the tele-
scope therefore needs to maximise the ultimate scientific productivity, in addition to achieving
the specific science goals. In this chapter, we show that an all-sky continuum survey is likely to
achieve transformational science in two specific respects:

• Discovering the unexpected

• Transforming radio-astronomy from niche to mainstream
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1. Introduction

Experience shows that when telescopes enter unexplored areas of observational phase space,
they make unexpected discoveries, and these discoveries often outshine the specific goals for which
the telescope was built. For example, only one of the top ten discoveries with the Hubble Space
Telescope (HST) was listed amongst the key goals used to justify its funding. So while specific
science goals are useful to focus SKA design, they are unlikely to appear amongst its greatest
scientific achievements. So in addition to achieving known science goals, SKA must be designed
to maximise its ability to discover the (potentially more important) unknown science goals. An
all-sky survey maximises the chance of detecting rare unknown objects and phenomena.

An additional motivation for an all-sky survey is that radio-astronomy is currently something
of a niche science, and major radio-astronomical surveys typically have about 10% of the impact
of major optical and infrared surveys. This is set to change as next-generation radio surveys cross
a threshold beyond which they are dominated by normal star-forming galaxies, as opposed to the
much rarer radio-loud AGN which have dominated previous radio surveys.

Both these general goals, and other specific science goals, are best addressed by an all-sky
radio continuum survey. For convenience in this paper, we abbreviate this proposed SKA1 All-Sky
continuum Survey to SASS1, and designate as SASS2 the potential counterpart with SKA2.

White (2014) points out that large survey telescopes (e.g. WISE, GALEX, Pan-STARRS, LSST)
go to extraordinary lengths to achieve near-all-sky coverage. The 2MASS project even went to the
trouble of building observatories in both hemispheres to achieve true all-sky coverage. SASS1 will
open up the radio sky just as other large all-sky surveys are opening up the optical, infrared, and
X-ray skies. SASS1 is an opportunity for SKA to join the multiwavelength all-sky astronomical
renaissance which will occur in the next decade.

Here we show that SASS1 is likely to achieve transformational science in two specific respects:
• Discovering the unexpected
• Transforming radio-astronomy from niche to mainstream

In addition, we list the supporting science cases for which an all-sky survey is critical for achieving
specific science goals:

• Cosmology (Dipole/low-l multipoles, low-l Planck anomalies, fNL, etc.)
• Galaxy Clusters and Large-scale Structure
• Evolution of Galaxies
• The Magnetic Sky
• Nearby Galaxies

This paper is organised as follows: §2 describes the Science Background, §3 discusses the
transformational science cases, and §4 discusses the supporting science cases. §§2 to 4 are written
in the context of the SKA1 baseline design. This is summarised in §5, and then §§6 and 7 discuss
the science in two alternative scenarios: a 50% SKA1, and SKA2.
2. Science Background

2.1 Radio Continuum Surveys

Radio continuum surveys have a rich and productive history, generating some of the most
cited papers in radio-astronomy. Previous radio surveys have been dominated by AGN (Active
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Figure 1: Comparison of existing and planned deep 20 cm radio continuum surveys. The horizontal axis
shows the 5-σ sensitivity, and the vertical axis shows the sky coverage. The right-hand diagonal dashed
line shows the approximate envelope of existing surveys, which is largely determined by the availability of
telescope time. The squares in the top-left represent the new radio surveys discussed in this paper.

Galactic Nuclei) but radio surveys are now crossing a threshold where normal star-forming galaxies
dominate the number counts. For example, the EMU (Evolutionary Map of the Universe) survey on
the Australian SKA Pathfinder (ASKAP) is expected to detect about 70 million galaxies (compared
to the current total of ∼ 2.5 million known radio sources), for most of which the radio emission is
dominated by star formation rather than AGN.

Not only will next-generation radio surveys measure intensities to unprecedented levels, but
they will also have better resolution, better sensitivity to extended emission, and will measure
spectral index and polarisation for the strongest sources. For example, the ASKAP surveys will
measure polarisation and spectral index for about 3 million sources, giving a 100-fold increase in
the number of known polarised radio sources.

The predicted sensitivities and areas for the main 1.4 GHz surveys are shown in Figure 1.
The largest existing radio survey, shown in the top right, is the wide but shallow NRAO VLA Sky
Survey (NVSS: Condon et al., 1998). The most sensitive existing radio survey is the deep but
narrow JVLA-SWIRE (Lockman hole) observation in the lower left (Condon et al., 2012). Current
surveys are bounded by a diagonal line that roughly marks the limit of available telescope time of
current-generation radio telescopes. The region to the left of this line is currently unexplored, and
this area of observational phase space presumably contains as many potential new discoveries as
the region to the right.

Wide-field survey radio astronomy in the next few years is likely to be dominated by ASKAP
surveys, for which planning, funding, and construction is well advanced. For example, EMU
(Norris et al., 2011) will survey 75% of the sky to a sensitivity of 10 µJy/beam rms. Only a total
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Figure 2: The Euclidean normalised differential radio source counts at 1.4 GHz (taken from Norris et al.,
2013; Hopkins et al., 2003). The curves are alternative polynomial fits. The horizontal dot-dashed line
represents a non-evolving population in a Euclidean universe. The shaded region shows the prediction based
on fluctuations due to weak confusing sources (P(D) analysis: Condon et al., 1974; Mitchell & Condon,
1985).

of about 10 deg2 of the sky has been surveyed at 1.4 GHz to this sensitivity, in fields such as the
Hubble, Chandra, ATLAS, COSMOS and Phoenix deep fields.

From the early 2020’s, SASS1 and other SKA1 radio surveys will advance well beyond the
limits reached by current telescopes. SASS1 will survey the sky to an rms of 2 µJy/beam with
a resolution of 2 arcsec. SASS1 will take 2 years with SKA1-SUR, or would take 6 years with
SKA1-MID, or 50 years with ASKAP, or 600 years with the JVLA. We consider it unlikely that
SKA1-MID would be scheduled for 6 years integration time for an all-sky survey, so for the rest of
this document we use the SKA1-SUR specifications, for which we consider a 2-year time allocation
to be realistic, especially if commensal with HI and polarisation surveys.

2.2 The radio sky at µJy levels

Most extragalactic radio continuum surveys (e.g. Prandoni &Seymour, 2014) aim to under-
stand the formation and evolution of galaxies over cosmic time, and the cosmological parameters
and large-scale structures that drive it. Four generations of all-sky surveys are shown in Table 1.

At high flux densities, the source counts (Figure 2) are dominated by AGN. Below 1 mJy/beam,
the normalised source counts flatten, suggesting an additional population consisting of a mixture
of both SF galaxies and radio-quiet AGN. It is difficult to distinguish AGN from SF galaxies and
techniques include radio morphology, spectral index, polarisation, variability, radio–infrared ratio,
optical and IR colours and spectral energy distributions (SED’s), optical line ratios, X-ray power
and hardness ratio, and radio brightness on VLBI scales. None of these techniques is foolproof,
and a combination of techniques is necessary to provide unambiguous classification.

Furthermore, there is growing recognition that high-luminosity galaxies, particularly at high
redshift, are not simply “star-forming” or “AGN” but include a significant contribution from both
(e.g. Norris et al., 2012). Such galaxies are sometimes labelled “composite” galaxies.
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Table 1: Four generations of all-sky (i.e. ∼ 3π steradian) continuum surveys. Counts for EMU are based
on source counts from ATLAS (Franzen et al., 2015; Banfield et al., 2015) and COSMOS (Schinnerer et al.,
2007), and deeper counts are based on the P(D) analysis by Vernstrom et al. (2014). SKA1 specifications
are taken from the baseline design (i.e. FOV 18 sq deg.). SKA2 specifications assume FOV=360 sq deg, and
ten times the SKA1 sensitivity.

Survey Resolution 5σ Flux number number of Integration reference
(arcsec) density limit of sources pol. sources time

( µJy/beam) (millions) (millions) years
NVSS 45 2250 1.8 0 0.31 Condon et al.(1998)
EMU 10 50 70 3 1.5 Norris et al.(2011)
SASS1 2 10 500 10 2 this paper
SASS2 0.1 0.5 3500 70 0.5 this paper
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Figure 3: Expected redshift distribution of sources with S1.4 > 50 µJy/beam (the EMU 5−σ sensitivity),
based on the SKADS simulations (Wilman et al., 2008). The five lines show the distributions for star-forming
galaxies (SFG), starburst galaxies (SB), radio-quiet quasars (RQQ), and radio-loud galaxies of Fanaroff-
Riley types I and II (Fanaroff & Riley, 1974).

2.3 Cross-Identification

Most science goals require cross-identification between radio sources and optical/infrared sur-
veys. Surveys such as EMU have relatively large synthesised beamwidths (∼ 10 arcsec) which
make this challenging, but this is mitigated by the following factors:

• most radio sources at 50 µJy/beam have a 3.6 µm infrared counterpart, and so cross-identification
between the radio and IR, and then cross-identification between IR and optical, produces a
much better reliability than matching between radio and optical directly, and

• the accuracy of a radio source position is ∼ beamwidth/(2×SNR), where SNR is the signal-
to-noise ratio of the detection. So a 5-σ detection has a positional accuracy of ∼ 1 arcsec,
and stronger sources even better accuracy, and

• using sophisticated Bayesian algorithms (e.g. Fan et al., 2014; Weston et al., 2014) which
make full use of available photometric and morphological information, rather than using a
simple nearest-neighbour or likelihood ratio algorithm.

As a result, cross-identifications with EMU are expected to achieve a high reliability.
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For SASS1, the increased radio sensitivity implies that detected galaxies will be (a) optically
fainter and (b) much more numerous. A higher spatial resolution is therefore needed, and the
2-arcsec synthesised beamwidth of SASS1 provides a 0.2 arcsec positional accuracy for a 5-σ
detection, ensuring a high reliability of cross-identification.

2.4 Redshifts

Spectroscopic redshifts are currently known for about 100,000 extragalactic radio sources, and
this will increase to about 1 million within the next five years. Thus most known radio sources do
not have spectroscopic redshifts. However, many more non-radio galaxies (currently over 2 million,
and expanding to tens of millions within a decade) have spectroscopic redshifts. As the sensitivity
of radio surveys increases, the fraction of radio sources that have measured spectroscopic redshifts
will increase, but will continue to be a small fraction.

About half the SASS1 sources will have good optical/IR identifications with multiwavelength
data (e.g. SDSS, VHS, SkyMapper), enabling a photometric redshift to be determined. In some
cases, with good data, photometric redshifts can be extremely reliable, whereas those obtained
from poor data are less reliable.

The large numbers (hundreds of millions) of sources enable new approaches to be used, such
as statistical redshifts, in which the redshift of an individual galaxy is poorly known, but the redshift
distribution of a sample of galaxies can be used within a statistical framework.

Different science goals have different needs for redshifts. The cosmological tests described
below yield significant constraints on cosmological parameters with no redshift knowledge what-
soever (Raccanelli et al., 2015), although even incomplete redshift information significantly im-
proves the constraint (Camera et al., 2012; Rees et al., 2014). For goals such as measuring the
evolution of cosmic star formation rate, photometric or statistical redshifts are adequate, provided
the incompleteness and uncertainties are well-determined.

3. Transformational Science Cases

3.1 Discovering the unexpected

Ekers (2009) has shown that of 18 major astronomical discoveries in the last 60 years, only
seven were planned. The remaining 11 were unexpected discoveries resulting from new technology
or from observing the sky in an innovative way, exploring uncharted parameter space. In particular,
the greatest science impact of new astronomical facilities often come not from the science goals
listed in the proposal to build the telescope, but from unexpected discoveries; unexpected discov-
eries by a new instrument often outshine its original science goals. For example, Table 2 shows
that only one of the top ten discoveries made with the HST was listed in the key science goals
used to justify the project. While specific SKA science goals are necessary to focus the design of a
scientifically productive facility, we must also recognise that the most significant discoveries from
the SKA are unlikely to come from these science goals.

On the other hand, discovering the unexpected need not be a random or passive process.
Recognising the importance of unexpected discoveries, the SKA should be designed to optimise the
survey strategy and data-mining software, to maximise the probability of such discoveries. This is
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Table 2: Major discoveries made by the Hubble Space Telescope (HST). Of the HST’s “top ten” discoveries
(as ranked by National Geographic magazine), only one was a key project used in the HST funding proposal
(Lallo, 2012). A further four projects were planned in advance by individual scientists but not listed as key
projects in the HST proposal. Half the “top ten” HST discoveries were unplanned, including two of the three
most cited discoveries, and including the only HST discovery (Dark Energy) to win a Nobel prize.

Project Key Planned? Nat Geo Highly Nobel
Project? top ten? cited? Prize?

Use cepheids to improve value of H0 X X X X
UV spectroscopy of ig medium X X
Medium-deep survey X X
Image quasar host galaxies X X
Measure SMBH masses X X
Exoplanet atmospheres X X
Planetary Nebulae X X
Discover Dark Energy X X X
Comet Shoemaker-Levy X
Deep fields (HDF, HDFS, GOODS, FF, etc) X X
Proplyds in Orion X
GRB Hosts X

achieved by maximising the volume of virgin observational phase space, and developing software
to mine the data for the unexpected. SKA1 will open up new swathes of observational phase space,
with a high likelihood of making significant unexpected discoveries. Searching for the unexpected,
and developing software to mine for the unexpected, must be a high priority of SKA1.

Figure 1 shows that SASS1 will open up a large area of virgin parameter space, to the left of
the the dotted line, and should therefore plan for unexpected discoveries. We cannot rely on blind
serendipity, because of the large data volumes, and the complexity of the instrument, but should
plan to mine the data systematically for the unexpected. To maximise the scientific productivity,
the SKA design process should:

• start by designing the telescope to address known science goals
• choose design parameters, observational parameters, and survey parameters to maximise the

volume of new observational phase space
• ensure that processing techniques are not limited to answering known questions
• design software specifically to mine the data for unexpected discoveries.

Discoveries are thinly distributed through the observational phase space. We cannot predict where
they lie, and it is difficult to quantify the volume of phase space being explored. Key elements to
maximising the expected number of unexpected discoveries will include

• making an all-sky survey to discover rare objects,
• making a deep survey to discover faint objects,
• maximise the use of relatively unexplored parameters such as circular polarisation, time vari-

ability, sensitivity to diffuse emission, etc.
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The last three items are already well addressed in other chapters. Here we emphasise the need for
an all-sky survey to discover rare objects.

3.2 Transforming radio-astronomy from niche to mainstream

It is not widely appreciated by radio-astronomers that radio-astronomy is seen as a niche area
of astronomy by the majority of non-radio astronomers, because existing radio measurements are
not as intrinsically deep as existing optical data, and so ∼ 90% of objects studied by a typical as-
tronomer have no radio data. As a result, astronomers modelling the SED of a galaxy, or fitting a
photometric redshift, will typically use optical and infrared data, but will rarely use radio data, be-
cause previous all-sky radio surveys were insufficiently sensitive to detect most galaxies. Similarly,
developers of algorithms and templates don’t bother including radio data in their code, making it
even harder to use radio data. As a result, the most-cited radio surveys have only about 10% of the
citations (and presumably only 10% of the impact) of the most-cited optical surveys (Table 3).

Next-generation radio continuum surveys with the SKA and its pathfinders are crossing a sen-
sitivity threshold below which most galaxies detected in radio surveys are normal star-forming
galaxies. For a star-forming galaxy in the SKADS simulation (Wilman et al., 2008), the 10
µJy/beam detection limit of SASS1 corresponds to a median I-band magnitude of ∼ 21.5. Assum-
ing typical R-I values of 0.5-1 (e.g. Smail et al., 1995), this corresponds to an R limit of 22.5-23,
which is approaching the sensitivity limit of sky surveys such as SDSS and SkyMapper. The all-sky
continuum survey with SKA2 will go several magnitudes deeper, approaching the survey limit of
LSST. As a result, almost every galaxy found in optical/IR surveys will have radio photometry (and
in many cases, polarisation and spectral index information). The high spatial resolution of SASS1
also ensures reliable cross-identifications with optical/IR hosts (see §2.3).

In 10 years time radio photometry is likely to be as commonplace in galaxy SED and photo-z
estimation as IR photometry is now, leading to (a) better photometric redshifts and (b) a better
distinction between star-forming and AGN components of the SED. This in turn will help address
many other science goals such as the evolution of the cosmic star formation, assembly of galaxies,
and the role of AGN in regulating galaxy formation.

The radio data will add information orthogonal to that currently available, since radio is unaf-
fected by dust and is a sensitive tracer of both star formation and AGNs even in so-called radio-quiet
AGNs. Surveying the entire sky ensures that most objects of interest in next generation surveys
such as LSST have measured radio photometry.

In addition, polarisation and spectral index can be measured for tens of millions of stronger
sources, to determine galaxy properties. For example, the detection of significant polarisation
in anything but a very nearby galaxy demonstrates the presence of an AGN (and can be used to
probe its properties) while spectral index can be used as an indicator of age in both star-forming
galaxies (measuring the ratio of synchrotron to free-free emission) and in an AGN (by measuring
the turnover frequency and energy loss by high-energy electrons).

Radio-astronomy is therefore set to take its place alongside optical and infrared as another tool
in every astronomer’s toolkit, and an indispensable part of every fitted spectral energy distribution
or photometric redshift measurement. Next-generation radio surveys are expected to have as many
citations (and as much scientific impact) as next-generation optical surveys. SASS1 will not only
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Table 3: The six most highly cited optical/infrared extragalactic surveys and the six most highly cited radio
extragalactic surveys, showing the number of refereed journal papers based on the survey, and the number
of papers that cite the survey. These numbers were measured by searching ADS for refereed papers which
contained (“galaxy" or “galaxies") and (“long survey name” or “short survey name”) in the abstract or title.
Numbers for 3CR, and 4C are probably overestimates because they include papers which mention a source
name starting with 4C etc. FIRST is not included because the name “FIRST" produced an unmanageable
number of spurious results, and the long name of the FIRST survey does not make it into the top six.

Survey # publications # citations | Survey # publications # citations
Optical/IR | Radio

SDSS 4487 198454 | 4C 458 13831
HDF 601 52486 | NVSS 355 11891
2MASS 1167 38129 | 3CR 323 15231
GOODS 608 36100 | HIPASS 92 3441
2dFGRS 210 27364 | PMN 90 2603
CfA 343 20929 | WENSS 64 1580

Table 4: The four cosmological probes for which SASS1 is competitive. A high-z ISW detection would be
inconsistent with standard ΛCDM but consistent with massive neutrinos.

Technique Physical effect
1. Auto-correlations of radio data spatial power spectrum
2. Cross-correlation between (z ≤ 0.5) optical cosmic magnification at low z

foreground galaxies and (<z> ∼ 1.5) sources
3. Cross-correlation between sources cosmic magnification at high z

and CMB (θ ≤ 1◦; no z needed)
4. Cross-correlation between source density Integrated Sachs-Wolfe effect

and CMB (θ ∼ 10◦) in 2-3 z bins

increase the number of known radio sources by nearly an order of magnitude, but will dominate
international surveys, and move radioastronomy from niche science to mainstream.

4. Supporting Science Cases

In this Section we briefly discuss the specific science goals for which an all-sky survey delivers
well-defined advantages over a smaller area survey.

4.1 Cosmology

SASS1 will make sensitive measurements of dark energy evolution, modified gravity and pri-
mordial non-Gaussianity, using a combination of probes listed in Table 4., placing significant con-
straints on cosmological (e.g. Dark Energy equation of state) and fundamental physical parameters
(e.g. departures from General Relativity, and non-Gaussian inflation), even when redshifts for in-
dividual radio sources are unknown (e.g. Raccanelli et al., 2010; Camera et al., 2012; Raccanelli et
al., 2015; Rees et al., 2014).
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Figure 4: The uncertainty of the measurement of the non-Gaussianity parameter fNL using the Integrated
Sachs-Wolf effect on EMU, SASS1, and SASS2 data, compared to Planck and Euclid. Adapted from Rac-
canelli et al. (2015).

In such studies, an all-sky survey is essential to minimise cosmic variance and measure low-
order spherical harmonics. For example, radio source counts have already been shown (Blake et al.,
2002) to have a dipole signature, and SKA surveys will provide a measurement of that dipole signa-
ture that is independent of the dominant signal in WMAP/Planck. Furthermore, the Planck survey
has shown a possible large-scale (low-l multipole) deviation from the standard ΛCDM model which
can be tested with radio source counts over a survey covering a large fraction of the sky. The large
sky area of the survey and the huge number of galaxies that will be detected, combined with their
high mean redshift, will test parts of parameter space that are not accessible to other wavelengths.

While some of these cosmological tests require no redshifts, even limited redshift information
can dramatically improve them (e.g. Raccanelli et al., 2010; Camera et al., 2012; Raccanelli et
al., 2015; Rees et al., 2014). While obtaining individual redshifts for millions of radio sources is
impossible in the next decade, dividing the radio source population into redshift bins is achievable
with existing data. For example, selecting polarised radio sources without an optical identification
in SDSS or Skymapper (i.e. R > 23) yields a population of AGNs at z >∼1. This high redshift tail
of the radio galaxy population can provide exquisite constraints on the evolution of dark energy.
Separating the radio galaxy populations and measuring the bias on ultra-large scales will give
unprecedented constraints on primordial non-Gaussianity.

4.2 Galaxy Clusters and Large-Scale Structure

Galaxy clusters are extremely sensitive probes of the growth rate of cosmic structures, but
finding and characterising them is limited by selection bias. Traditionally, clusters have been found
through optical galaxy counts, X-ray emission or the thermal Sunyaev-Zel’dovich (SZ) effect, re-
sulting in several thousand detections.

The radio emission from clusters consists of (a) the halos, which are large (up to ∼ 1 Mpc)

10
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diffuse regions of synchrotron emission found in galaxy cluster centres, (b) radio relics, which are
diffuse areas of shock-excited synchrotron emission, (c) mini halos, found around the central AGN
in some cluster cores, and (d) tailed galaxies, which are FRI sources whose jets and lobes are blown
by ram pressure from the intra-cluster medium. Diffuse emission from halos and relics has so far
been identified in only a few tens of clusters.

The radio halo power scales roughly as the third power of cluster mass (e.g. Sommer & Basu,
2014) so current surveys have been able to detect only the few most massive objects at relatively low
redshifts. Radio halo luminosity is also strongly bimodal (Cassano et al., 2012) with radio haloes
being detected almost exclusively in disturbed or merging clusters. The SKA’s short baselines
make SASS1 very sensitive to diffuse emission. SASS1 will therefore be able to detect even a
2×1014 solar mass cluster at z = 0.5, where its total flux density is ∼ 30 µJy/beam, and will detect
about 100,000 radio halos out to redshift z = 0.5. This mass limit will be comparable to numbers
expected from the future X-ray (eROSITA) and optical (Euclid) missions. Such unprecedented
numbers of radio selected clusters will enable the measurement of the dark matter halo merger rate
with redshift, a key but untested component of the hierarchical structure formation model.

Other clusters will be detected from their peripheral relics or tailed radio galaxies. Based on
ATLAS data, Dehghan et al. (2014) suggest SASS1 will detect ∼1 million tailed galaxies, perhaps
making them the most widespread cluster diagnostic in the SASS1 era. Similarly, the number
of high-redshift (z > 1) clusters is expected to grow to tens of thousands, Cross-identifying these
objects with other probes (e.g. eROSITA) will provide a precise constraint on the dark energy
equation of state.

Clusters of galaxies are not isolated regions, but are located at the intersection of filaments
and sheets in the large-scale structure (LSS, or the “cosmic web”). The filaments themselves are
expected to radiate radio synchrotron emission, powered by the infall shocks of baryons. The
sensitivity and field-of-view of SASS1 will enable it to image this diffuse emission, thus mapping
the cosmic web. An all sky survey will accurately map the energy distribution of the relativistic
electrons in the warm hot intergalactic material (WHIM), and cross-correlate it with other LSS
probes.

4.3 Evolution of Galaxies

Extragalactic radio astronomy tackles the origin, assembly, and evolution of galaxies, includ-
ing regulation by feedback mechanisms, and the origin, growth, and evolution of supermassive
black holes. Largely unstudied populations of starburst galaxies and low-power active galactic
nuclei (AGN) are also being explored

Source counts at flux densities above 1 mJy/beam are dominated by radio-loud AGN, while
below 1 mJy/beam they include significant contributions from radio-quiet AGN and star-forming
galaxies. SASS1 will not only detect the underlying populations and dissect the lifecycles of AGN
(Hopkins et al., 2003), but will also answer some of most debated questions in modern astrophysics
such as the importance of AGN feedback in galaxy formation and evolution across cosmic time
(Best et al., 2012). Radio-loud AGN also provide an obscuration-independent method of selecting
the highest redshift AGN, which trace proto-clusters in the early Universe (Miley et al., 2008).

Some classes of radio AGN are rare, requiring an all-sky survey to obtain statistically signifi-
cant sample sizes across a range of luminosities and redshifts. For example, CSS and GPS sources
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(Fanti et al., 1990; Randall et al., 2011) represent an early stage of radio-loud AGN that are com-
pletely embedded in their host galaxies, and hence particularly important for investigations of the
AGN feedback and AGN lifecycles (Kapinska, 2015). Even rarer are the radio-loud AGN in the
brief phase as they cease jet activity, and their luminosity rapidly drops. The expected number den-
sity of dying radio sources is hard to estimate as few are known (Parma et al., 2007; Dwarakanath
et al., 2009) and a high survey sensitivity to diffuse emission is required. Rarer still, at least in
the local Universe, are the sources in which an FRII-luminosity jet has turned on inside a starburst
galaxy, but has not yet bored its way through the dense molecular gas and dust to quench the star
formation: only one has so far been found (Mao et al., 2014). Detection of a representative number
of such rare radio sources will determine AGN duty cycles and large scale (cluster scale) feedback
processes; only all-sky surveys will provide enough data to compile such samples.

4.4 The Magnetic Sky

Magnetic fields are important at all scales in the Universe, from small scales in the interstellar
medium, to the vast scale of cosmic filaments. Yet, at all scales, we fail to understand the effect
and magnitude of the magnetic contribution to the energy balance and evolution. High quality
polarisation observations address diverse science goals, including the effect on the formation and
evolution of galaxies and clusters, the magnitude of fields in the intra-cluster medium and their role
in the cosmic web, and the question of the origin of cosmic magnetism. The key tool for analysing
polarisation data from broadband radio surveys is Rotation Measure (RM) Synthesis (Brentjens &
de Bruyn, 2005), which can detect faint polarised emission.

SASS1 will produce a detailed total intensity and polarization image of the entire sky, deliver-
ing an all-sky RM grid 300-1000 times denser than those currently available (Taylor et al., 2009),
and 3-10 times denser than those produced in the ASKAP-POSSUM survey (Gaensler et al., 2010),
and probing 10-100 times deeper than current polarisation surveys (see Fig. 5). RM Synthesis of
SASS1 data will recover the polarised signal affected by internal depolarisation. These data will
track the evolution of magnetic fields in the interstellar medium, in Active Galactic Nuclei, in the
intracluster medium, at the boundary of galaxy clusters, in the bridges that join clusters, and in
the filamentary cosmic web. There are even indications that the evolution of magnetic fields in
normal galaxies at high redshifts can be traced by their Faraday effects when they are seen as MgII
absorbers in front of polarized background quasars (Farnes et al., 2014).

A significant step forward would be the measurement of the redshift evolution of the Faraday
rotation measure in clusters, as SASS1 will detect ∼ 105 clusters with at least one background
source in each (Krause et al., 2009). Compared to the few RMs known for a few nearby clusters
today, this will revolutionize our understanding of the cosmic magnetic fields and their impact on
the growth of large-scale structure.

4.5 Nearby Galaxies

SASS1 will measure star formation rates and AGN activity in thousands (∼50000 galaxies at
z<0.01) of nearby galaxies, each of which will have generous multiwavelength data. Hundreds
of galaxies will have ground-based drift-scan/IFU spectroscopy, along with WISE mid-infrared
images, enabling detailed spatial comparison of the radio star formation rate with H-alpha star
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Figure 5: Recent determinations of polarised number counts, taken from (Rudnick & Owen, 2014; Hales et
al., 2014; Stil et al., 2014; Grant et al., 2010; Subrahmanyan et al., 2010; Tucci et al., 2004). P is the total
linearly polarised intensity. SKA will probe 10-100 times deeper than these surveys.

formation rate, with dust extinction correction. The 2-arcsec resolution of SASS1 corresponds to
400 pc at z=0.01, so that individual giant molecular clouds can be studied.

Virtually all spiral galaxies and high mass elliptical galaxies in this redshift range will be de-
tected by SASS1 (Brown et al., 2011), so the radio duty cycle of galaxies can be directly measured.
The shape of the radio luminosity function can thus be derived from the galaxy mass function and
radio duty cycle, rather than being empirically modelled with broken power-laws.

Since the large-scale (∼10 Mpc) clustering of dark matter halos is a function of their mass, the
halo masses of radio source populations will be determined by measuring how optically selected
galaxies cluster around radio sources. At fixed halo mass, the small-scale clustering of galaxies
as a function of radio power will reveal the relative contribution of galaxy mergers and secular
evolution in driving star formation and AGN activity. If secular evolution plays a dominant role
in driving star formation rates in nearby galaxies, the ≤ 1 Mpc environments of galaxies (at fixed
halo mass) with high and low star formation rates will be virtually identical.

5. Science outcomes in SKA1

§§2-4 were based on the baseline design specifications of SKA1, giving a continuum survey
(SASS1) of 3π steradians (i.e. covering the declination range -90 to +30◦) with an rms sensitivity
of 2 µJy/beam. Table 1 shows that SASS1 increases the number of known radio sources by nearly
an order of magnitude compared to EMU, or by a factor of 200 compared to the number (∼ 2.5
million) of radio sources known in 2014, resulting in the following science outcomes:

• Discovering the unexpected: experience with previous major instruments (e.g. HST) shows
that the most significant discoveries from SKA will not be those listed in the science goals.

13



P
o
S
(
A
A
S
K
A
1
4
)
0
8
6

SKA All-sky survey Ray P. Norris

SASS1 goes nearly an order of magnitude deeper than any other all-sky survey with all-sky
coverage ensuring detection of even the rarest phenomena within that phase space.

• Transforming radio-astronomy from niche to mainstream: SASS1 sensitivity will detect most
star-forming galaxies to R∼23, matching SDSS and SkyMapper, so SASS1 will supply radio
data for most galaxies currently being studied by optical astronomers, and will be routinely
used in constructing SEDs and photo-z’s.

• Cosmology: SASS1 will place significant constraints on the parameters of dark energy, mod-
ified gravity, non-gaussianity, and neutrino mass, and will test low multipole isotropy of the
Universe, giving measurements independent of those from optical and HI surveys.

• Galaxy Clusters and Large-scale Structure: SASS1 will detect about a million clusters, in-
cluding about 100,000 radio halos. Together with Euclid and eROSITA data, this will trans-
form our understanding of the physics of the large scale structure of the Universe.

• Evolution of Galaxies: SASS1 will detect about 500 million galaxies spanning all redshifts,
and will trace the growth of black holes, the evolution of the cosmic star formation rate,
and the interaction between these, to exquisite precision, finally nailing down the feedback
mechanisms which regulate the growth and evolution of galaxies.

• The Magnetic Sky: SASS1 will measure the polarisation of about 10 million galaxies, de-
termining not only the effect of magnetic fields on galaxies, but also providing a rotation
measure grid nearly three orders of magnitude denser than currently available, measuring the
intergalactic magnetic field as a function of redshift, giving clues to the origin of magnetism.

• Nearby Galaxies: SASS1 will provide detailed imaging of virtually all nearby (z<0.01) star-
forming and high-mass elliptical galaxies, to a resolution of 400pc or higher, measuring the
effect of both environment and AGN activity on the evolution of these galaxies.

6. Science outcomes from SKA1 early science operations

Here we estimate the scientific productivity of an “early science SKA1” all-sky-survey, with
50% of the sensitivity of SKA2. We assume the “50%” SKA1 still has the same resolution as the
full SKA1, and is therefore able to deliver an-all-sky radio continuum survey with 4 µJy/beam
rms, which is a factor 2.5 deeper than the deepest previous survey, ASKAP-EMU.

• Discovering the unexpected: Halving SKA1 sensitivity makes it only a factor of 2.5 deeper
than EMU, reducing the amount of virgin observational space, reducing the likelihood of
new discoveries compared to SKA1.

• Transforming radio-astronomy from niche to mainstream: Halving SASS1 sensitivity will
detect all star-forming galaxies to R ∼22 so will still supply radio data for most galaxies
being studied optically, and will be increasingly used in constructing SEDs and photo-z’s.

• Cosmology: A “half-SASS1” will still make important cosmological measurements, but they
will be less competitive than those derived from optical or HI measurements.

• Galaxy Clusters and Large-scale Structure: Halving the sensitivity of SASS1 will result in
about one quarter as many clusters detected, but this is still an enormous increase on what is
currently available at present, or will be available from EMU.

• Evolution of Galaxies: Halving the sensitivity of SASS1 significantly reduces the redshift
range at which star-forming galaxies and low power AGN can be detected. The study of
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high-power AGN will be largely unaffected, but measuring the evolution of the cosmic star
formation rate will be seriously affected.

• The Magnetic Sky: Halving the sensitivity of SASS1 will result in a reduction by one third
in the number of galaxies for which polarisation can be measured. The increase compared
to ASKAP-POSSUM is still valuable as the measurement of the intergalactic magnetic field
depends critically on the sampling density.

• Nearby Galaxies: Halving SASS1 sensitivity reduces the number of nearby galaxies by a
factor of ∼3, leaving ∼20,000 which can be studied in detail, far more than available now.

7. Science outcomes from SKA2

Assuming that SKA2 is ten times more sensitive and twenty times the FOV of SKA1-MID,
then it can survey the whole sky in 83 12-hour observations. A 6-month survey (SASS2) can
therefore observe each region of the sky four times, yielding an rms sensitivity 20 times deeper
than SASS1. In 6 months, SASS2 will have rms ∼0.1 µJy/beam at <0.1arcsec (assuming the
longer baselines planned for SKA2). The higher resolution will also provide low confusion and
unambiguous cross-identifications to optical and infrared counterparts. Table 1 shows that SASS2
increases the number of known radio sources by nearly three orders of magnitude compared to
current knowledge. This results in the following science outcomes:

• Discovering the unexpected: Figure 1 shows that SASS2 covers orders of magnitude more
observational phase space than any other radio survey, almost certainly resulting in major
science discoveries that are unlikely to feature in the current SKA science goals.

• Transforming radio-astronomy from niche to mainstream: SASS2 will detect all star-forming
galaxies to R ∼27, matching LSST, and will supply radio data for nearly all galaxies studied
by optical astronomers, becoming an indispensable component of SEDs and photo-z’s.

• Cosmology: SASS2 will probably measure the parameters of dark energy, modified gravity,
non-gaussianity, and neutrino mass with lower uncertainties than other competing projects
(DES, Euclid, etc) but this has yet to be established by careful modelling. Figure 5 gives on
example of how SASS2 can measure non-gaussianity ten times better than Euclid, provided
SASS2 sources can be placed into 3 redshift bins.

• Galaxy Clusters and Large-scale Structure: SASS2 could, in principle, detect about 30 mil-
lion clusters from their radio emission, including about 2 million radio halos. However, this
figure is extrapolated far beyond our current knowledge of cluster physics, and is unlikely to
be accurate. Clearly, SASS2 will be venturing into uncharted territory in this field!

• Evolution of Galaxies: SASS2 will detect over 3 billion galaxies spanning all redshifts. It
will trace the growth of black holes, the evolution of the cosmic star formation rate, and the
interaction between these to high precision, and will discover new classes of galaxy. SASS2’s
high resolution will enable unambiguous identification with optical and IR sources.

• The Magnetic Sky: SASS2 will measure polarisation for about 70 million galaxies, measur-
ing not only the effect of magnetic fields upon galaxies, but also providing a rotation measure
grid nearly four orders of magnitude denser than currently available. It will measure the in-
tergalactic magnetic field as a function of redshift and environment (sheet, string, void, etc.)
giving vital clues to the origin and evolution of cosmic magnetism.
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• Nearby Galaxies: SASS2 will not only provide detailed imaging of all nearby (z<0.05) star-
forming and high-mass elliptical galaxies, but will do so at a resolution of 0.1 arcsec (100pc
or higher), measuring the effect of both environment and AGN activity on the evolution and
star formation in these galaxies.
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