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In high energy collisions the description of newly formed hadrons as a Unruh radiation phe-

nomenon applies at vanishing baryonchemical potential, µB ≃ 0. It has already been found to cor-

rectly yield the freeze-out universal temperature, Th, and the strangeness suppression in elemen-

tary collisions. Moreover, the Unruh mechanism leads, for µB ≃ 0, to the freeze-out conditions on

the average energy per hadron, 〈E〉/〈N〉 ≃ 1.08 GeV and on the entropy density, s/T 3
h ≃ 7.4, by

considering an area law for the entanglement entropy associated with the string breaking. These

agree with phenomenological and lattice results, s/T 3
h ≃ 7, 〈E〉/〈N〉 ≃ 1.09 GeV, that lack a basic

theoretical justification.
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Figure 1: Hadronization temperature for different initial scattering configurations as a function of
√

s.

1. Introduction

The relative abundances of the produced hadrons in high energy e+e− annihilation, in hadron-

hadron interaction as well as in the collisions of heavy ions over an energy range from around 10

GeV up to the TeV range, appear to be those of an ideal hadronic resonance gas at a quite universal

temperature Th ≈ 160−170 MeV ( see fig.1) [1, 2, 3, 4, 3, 5, 6].

However the production of strange hadrons in elementary collisions is suppressed relative to

an overall equilibrium and this is usually taken into account phenomenologically by introducing an

overall strangeness suppression factor γs < 1 [7], which reduces the predicted equilibrium abun-

dances by γn
s for hadrons containing n strange quarks (or antiquarks), respectively.

In high energy heavy ion collisions, strangeness suppression becomes less, i.e. γs → 1 at high

energies, [8] and, moreover, another parameter , the baryochemical potential µB, takes into account

the finite baryon density.

It is also found that, for a large range of baryon densities, chemical freeze-out occurs for a

constant value of the dimensionless ratio s/T 3
h ≃ 7 of the entropy density over T 3

h . An alterna-

tive parametrization gives a constant ratio of the average energy per hadron, 〈E〉/〈N〉 ≃ 1.09 GeV

as freeze-out condition (see fig.2). Extensions to larger baryon density have led to various phe-

nomenological proposals for freeze-out conditions [9, 10, 11, 12, 13, 14, 15].

The success of the statistical hadronization model raises many questions: why is the hadroniza-

tion temperature universal? Why do even elementary, e+e− and hadron-hadron, collisions show

thermal behaviour? Why is there in such interactions a suppression of strange particle production?

Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why

does the thermal freeze-out curve correspond to s/T 3
h ≃ 7 and to 〈E〉/〈N〉 ≃ 1.09 GeV?

Indeed, there is a still ongoing debate about the interpretation of the observed thermal be-

havior [16]: in high energy heavy ion collisions multiple parton scattering could lead to kinetic

thermalization, but e+e− or elementary hadron interactions do not readily allow such a description.

Moreover, the universality of the observed temperatures, suggests a common origin for all high

energy collisions.
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Figure 2: Chemical freeze-out curve compared with the conditions s/T 3
h ≃ 7 and to 〈E〉/〈N〉 ≃ 1.09 GeV

It has been recently proposed [17] that thermal hadron production is the QCD counterpart of

Hawking-Unruh (H-U) radiation [18, 19], emitted at the event horizon due to colour confinement.

In the case of approximately massless quarks, the resulting universal hadronization temperature

is determined by the string tension σ , with T ≃
√

σ/2π ≃ 165 MeV [17]. Moreover in ref.[20]

it has been shown that strangeness suppression in elementary collisions naturally occurs in this

framework, without requiring an ad-hoc suppression factor, due to the non-negligible strange quark

mass, which modifies the acceleration and therefore the emission temperature for such quarks.

In the next sections, after a general discussion concerning the thermal spectrum of the parti-

cles radiated from an event horizon, it is shown that the freeze-out conditions, s/T 3
h ≃ 7 and to

〈E〉/〈N〉 ≃ 1.09 GeV, have a natural interpretation , for µB = 0, in the proposed Unruh hadroniza-

tion approach.

2. Event Horizon and Thermal Spectrum

Before considering the QCD case, let us recall that for a black-hole the Hawking radiation

has a thermal spectrum (with the limits discussed in ref.[21]), with the Hawking temperature[18]

Thaw = k/2π = 1/8πGM, where k is the surface gravity and G is the Newton constant.As shown in

ref. [22, 23] this result can be understood in terms of tunneling through the event horizon.

On the other hand, for an observer in uniform acceleration a ( a Rindler observer), with a

space-time hyperbolic motion, there is an event horizon: the observer in the accelerating rocket

in fig.3 can send informations to but cannot (classically) receive any signals from a Minkowski

observer. For the accelerated observer any n-point Green function of an interacting field theory

corresponds to the n-point Green function for the Minkowski observer evaluated in a thermal bath

with the Unruh temperature TU = a/2π [19, 24]. Moreover the Unruh temperature can be evaluated

by considering particle tunneling through the event horizon [25].

The correspondence between black-hole and uniformly accelerated observer is much more

than an analogy. Indeed for a Rindler observer the space-time metric in spherical coordinates

(τ ,χ,θ ,φ ) is given by ds2 = χ2a2dt2 −dχ2 − χ2cosh2(aτ)(dθ 2 + sin2θdφ 2) and the metric for a
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Figure 3: Event Horizon for Rindler observer

Schwarzschild black-hole in the near horizon approximation turns out to be ds2 = η2k2dt2−dη2−
R2(dθ 2 + sin2θdφ 2). A direct comparison shows that the Rindler metric corresponds to the near

horizon black-hole metric if the acceleration a is equal to the surface gravity k. Indeed the Unruh

formula, TU = a/2π , for a = k = 1/4GM gives the Hawking temperature.

It is rather interesting to see if some of the previous considerations apply to QCD dynamics.

Indeed lattice simulations and phenomenological analyses indicate that the large distances

behavior of the potential,V , between two static color charges increases linearly with the separation

r, V = σr.

Therefore QCD at large distances has a typical Rindler force, i.e. a constant acceleration,

usually associated with a flux tube (a string) between a quark and an antiquark. Incidentally, it has

been recently shown that gravity at large distances can be described by a Rindler force [26].

The phenomenological consequences of a constant acceleration and of the breaking of the

flux tube in the hadronization process have been analyzed in ref.[17, 20, 27]) with the conclusion

that:1) there is a universal Unruh temperature associated with the hadronization, Th ≃ 165 MeV; 2)

a small difference in the acceleration due to quark masses (ms 6= mu = md) explains the strangeness

suppression in elementary collisions; 3) this suppression is almost removed in heavy ion collisions.

In this framework a possible understanding [28] of the freeze-out conditions s/T 3
h ≃ 7, 〈E〉/〈N〉≃

1.09 GeV, for µB ≃ 0 , is proposed in the next section.

3. Rindler force, string breaking and freeze-out conditions

3.1 String breaking and 〈E〉/〈N〉 ≃ 1.09 GeV

In the Unruh scenario, the fundamental mechanism of hadronization is quark acceleration,

leading to string breaking with the resulting pair production: to separate ends for an initial qq̄ pair

at a distance R, when each quark hits the confinement horizon, i.e., when it reaches the end of the

binding string, a further quark-antiquark system is excited from the vacuum. Although the new

pair q1q̄1 is at rest in the overall center of mass system, each of its constituents has a transverse

momentum kT , determined by the uncertainty relation in terms of the transverse dimension of the
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string flux tube. String theory [29] gives for the basic thickness rT =
√

2/πσ ,leading to kT =
√

πσ/2. The maximum separation distance R is thus specified by

σR = 2

√

m2
q + k2

T = 2kT , (3.1)

where we have taken mq = 0 for the quark mass. From this we obtain

R =
√

2π/σ (3.2)

as the string breaking distance.

The Unruh phenomenon, in high energy collisions, is responsible for the production of newly

formed hadrons, therefore, it cannot address the role of the nucleons already present in the initial

state of heavy ion collisions. As such, it captures the whole of the freeze-out process only as long as

there are no significant baryon-density effects, i.e., only for µB ≃ 0, corresponding to high energy

collisions where the large part of produced hadrons are qq̄ mesons.

The energy of the pair produced by string breaking, i.e., of the newly formed hadron, is, from

previous equation, given by

Eh = σR =
√

2πσ . (3.3)

In the central rapidity region of high energy collisions, one has µB ≃ 0, so that Eh is in fact the

average energy 〈E〉 per hadron, with an average number 〈N〉 of newly produced hadrons.

Hence we obtain

< E > / < N >=
√

2πσ ≃ 1.09±0.08, GeV (3.4)

for σ = 0.19±0.03 GeV2, in accord with the phenomenological fit obtained from the species

abundances in high energy collisions [9, 10, 11].

It is, of course, an intriguing open question why phenomenological conditions, well accounted

for by the Unruh mechanism, appear to remain as valid also for increasing µB.

3.2 Freeze-out for s/T 3
h ≃ 7 and string breaking

In the hadronization process one deals with quantum particles, relativistically accelerated by

the strong Rindler force, which experience a Rindler spacetime with an event horizon. From this

point of view, since there is no gravitational interaction, the corresponding entropy has to be con-

sidered as an entanglement entropy due to causally disconneted regions.

A quantum field near an event horizon has modes belonging to both sides, inside and outside

the horizon, whose entanglement entropy can be computed to give

Sent = α
A

r2
, (3.5)

see, e.g., [30], [31]. Here A is the area of the event horizon, r is the scale of characteristic quantum

fluctuations (UV cut-off), α is an undetermined numerical constant.
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This expression shares the holographic structure1 with the Bekenstein-Hawking entropy [34]

of gravitational origin

SBH =
1

4

A

r2
P

, (3.6)

with rP =
√

h̄G/c3, the Planck length, i.e. the scale of quantum gravity fluctuactions. It is an im-

portant open question of fundamental physics whether the entanglement entropy can fully account

for the Bekenstein-Hawking’s2.

The Rindler metric can be written also as

ds2
Rindler = e2aξ (dη2 −dξ 2)−R2dΩ2 , (3.7)

where and η and ξ are Rindler time and space coordinates, respectively, related to the Minkowskian

ones, t and x, through the usual transformations

t = a−1eaξ sinhaη , x = a−1eaξ coshaη . (3.8)

The other two dimensions have the topology of a sphere [37], as this is the case of interest for the

hadronization mechanism [17], thus, the area of the event horizon, Ah =
∫

dydz, that is a surface of

constant proper acceleration (i.e., of constant Rindler coordinate ξ ), and of constant Rindler time

η , is given by Ah = 4πR2, where R is the radius of the spherical Rindler horizon.

As well known [38], the Bekenstein-Hawking formula also holds for the Rindler spacetime,

when the latter is the near-horizon approximation of a black hole spacetime.

Therefore let us take a phenomenological point of view and extend the validity of the formula

to the case in point, where a constant, non gravitational, acceleration is involved and where the

scale of the characteristic quantum fluctuations is given by rT , (that is rP → rT ), and, noticeably,

the whole entropy is of the entanglement type. If for the entropy associated with hadron production

at the string breaking the formula

Sh =
1

4

Ah

r2
T

=
1

4

4πR2

r2
T

(3.9)

is used , with R given by eq.(3.2) and T ≃
√

σ/2π [17], one gets

Sh = π3, (3.10)

i.e., the entropy is a pure number with an exact cancellations in the ratio of dimensionfull quantities.

The entropy density divided by T 3
h at freeze out (for µB ≃ 0) turns out to be

s

T 3
h

=
Sh

(4π/3)R3T 3
h

=
3π2

4
≃ 7.4. (3.11)

This result is in good accord with the value obtained for s/T 3
h in terms of the ideal resonance gas

model [14, 15] and with the most recent lattice QCD studies [39].

1Holography of entanglement entropy is a widely general result, see, e.g., [32], and the review [33].
2Standard quantum field theory computations leading to (3.5) cannot reproduce α = 1/4, have to face the issue of

the UV cut-off r, that cannot be fixed by the theory to be rP, and the so called, “species puzzle” issue. On this see, e.g.,

[33], and the recent [35].

6



P
o
S
(
C
P
O
D
2
0
1
4
)
0
0
7

Hadron Freeze-Out and Unruh Radiation Paolo Castorina

4. Conclusions

The formula (3.9) deserves a full theoretical explanation, that would bring us right in the core

of the long-standing debate on the entanglement nature of the Bekenstein-Hawking entropy. We

hope to come back to this in future work. Nonetheless, let us stress here that is of paramount

importance, for fundamental questions of physics, to have a Unruh phenomenon as the one we

have here. Therefore, the phenomenological regime of zero chemical potential, µ ≃ 0, is perhaps

the one to focus on, to extract from it precious experimental informations on the Unruh radiation,

a phenomenon that has eluded direct observation since decades.
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