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1. Introduction

In the chiral limit of QCD, obtained by setting the light quark masses to zeraltal sym-
metry of QCD is chiraBU(2) x SU(2). This is homomorphic to a O(4) symmetry. The universality
conjecture then leads us expect that the critical indices and critical amptétids in chiral QCD
should be the same as for O(4) magnetic systems [1].

In recent times, the chiral condensate of QCD (which is equivalent tqih@aneous magne-
tization of the magnet), its derivatives with respect to the quark mass édeuivto the magnetic
susceptibility), and their scaling towards the chiral limit, have been studied witiewhat am-
biguous results [2].

The scaling of the internal energy and the specific heat of O(N) symmuegstieras is intricate,
as is known from the phenomenology of liquid Helium. However, with the ekterattice QCD
computations now available on quark number susceptibilities in QCD at zeyorbdensity [3],
their important role in heavy-ion collisions [4], and their connection with tejoee derivatives
of the free energy, it is important to initiate the scaling analysis of these quantifieat is the
purpose of this talk.

2. Scaling and the limits of universality

The thermodynamics of QCD is characterized by a free energy, whichuiscéidn of some
number of intensive control parameters. These could include the temerBtand the baryon
chemical potentialy. If the pion mass were exactly vanishing, then QCD would have a O(4)Igloba
chiral symmetry. Since we are interested in real QCD, where the pion is resiesa, an explicit
chiral symmetry breaking parameter is needed. This is the quark masd)ich plays the same
role in QCD as a magnetic field does for the O(4) magnet.

Near the critical point one can decompose the free enerdy,m), into the sum of two terms.
One of these is a regular palt,( T, m), and the other is a singular palg(T, m). F (T, m) is Taylor
expandable around the critical poifit,= T, andm = 0 with some large radius of convergence.
The modern theory of critical phenomena starts from the observation thatdht singular part is
a scaling function
t

T ,T=— (2.1)

F(T.m) =t> %d(1), where t=|1—
(T, m) (1), ’ T, (m/Mo) /8"

where we have chosen the scaling variablasd 1 to be dimensionlesS, is the critical temper-
ature,Mg is any mass scale which remains finite in the chiral limit, and\ = 30 are critical
exponents. The functioRs(t, ), defined so, is universal, in the sense that whether we examine
an O(4) Heisenberg magnet, QCD, a non-linear sigma model of pions, Nathéu-Jona-Lasinio
(NJL) model, thers(t, T) we obtain from all of them are the same. As a result, the universal prop-
erties of thermal QCD know nothing about QCD, aside from its chiral symmétowever, the
various models differ ir (T, m), so this is the piece which gives information about the actual
degrees of freedom involved in the QCD phase transition.

Even if the magnitude d¥ is comparable t&;, since it is singular, its effect may be enhanced
by taking sufficient number of derivatives. For example, the specifit,lsg 0 t~?, and hence
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Model  Example B o a Ref
O(e0) 1/2 5 -1 [5]
O(4) chiralQCD| 0.380 4.86 -0.2268 [6]
0(3) ? 0.365 4.79 -0.115] [8]

O(2) liquidHe | 0.349 4.78 -0.0172 [7]
O(1) liquid-gas | 0.325 4.8  0.11 | [8]
MFT 12 3 0

Table 1. Critical exponents of O(N) models in three spatial dimensioThe exponent is obtained from
the other reported exponents using scaling identities) 8{auld be taken to mean the Ising model. MFT
stands for mean field theory. There are no known examples 3 @¢dels, since real ferromagnets have
relevant terms which break this symmetry.

diverges afl = T, provided thata > 0. As one can see from Table 1, this is true of the Ising
model. However, for all othe®(N) modelsa < 0, and, as a result, the singular contribution to the
specific heat exactly vanishes for= T..

This seems to contradict our knowledge of the specific heat of liquid Highvigin the O(2)
universality class and has a cusp at the critical point. The resolution optlzde comes from
noticing that the peak ad, is only finite, and hence is regular. It is the shape which is singular.
So the specific heat has to arise through a playoff between the singdlaegudar parts. In fact,

a very precise microgravity experiment has been done over the fang&;| < 2 nK [9], and the
results fitted to the formula

e =A +t 9B+Ct2), (2.2)

whereA; comes only fronF.. A’ is a possible correction-to-scaling expone#t.is positive and
B is constrained to be negative. It can be shown Baian be negative without violating the
thermodynamic consistency criterion tltat> 0. A result of the microgravity experiment is that
a = —0.0128538). For a discussion of the disagreement between this and the result quoted in
Table 1, see [10].

This mechanism also works for QCD and other O(N) symmetric models. For ieseay

write
—a

¢ (T,m) :Ar+t?lP(t,r). (2.3)

C

T. and A; are non-universal, and change from QCD to various effective ig®edor it, but the
exponenta, and the regular functioW (which may be written in terms of the scaling function

and its derivativesp’ and®”, if desired) are universal. So the shape of the specific heat cusp is
universal but its height and width must be determined in QCD. Furtherrimse two parameters
are good tests of possible effective models, since a bad model of QCDowileproduce its non-
universal properties.

An interesting statement about the scalingcpfwith mass arises from this. Suppose we
succeeded in measuring (on the latticefor QCD with various different light quark masses. By
plotting the data as a function baind scalings, appropriately, can we observe scaling in the form
of data collapsing on to an universal curve? Clearly, there are nolarnitggs of the free energy if
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Figure 1: Data collapse obtained in an MFT treatment of the NJL modednwikeeping only the data for
7 > 50. Tiny violations of scaling are visible; these can be oalgd by increasing the cut on The value

of this cut depends on the choiceldf (here it was taken to b&), and the renormalization scheme, when
going beyond MFT. Also, since this value is not universaipitld be differentin QCD. Only data fdr < T

is used in this plot to avoid having to subtract a large ragogat, as discussed in the text.

T is varied aroundy at fixed non-vanishingn. As a result, taking — 0 andt — 0 simultaneously
will not reveal scaling. Instead, one must take the limit> O first andT — T next, which means
that one must take — oo first and thert — 0 in order to see data collapse.

One can test this in the NJL model even at tree level,in the MFT approximation. The high
temperature limit of this model contains weakly interacting quarks, so the rezpri&ibution to
¢, actually increases fairly rapidly with temperature. As a result, one may misséuelp-critical
behaviour inc, unless the temperature range is scanned finely to discover a peak sitting ove
rising background, or the free quark contribution is subtracted to makeeidle stand out over a
falling background. This difficulty would also occur in QCD [11], but imothe O(4) Heisenberg
magnet.

With this MFT one sees that data collapse is possible when onegplatminst provided that
one selects only > 50. This is sufficient to ensure that for any finiteone does not approach
t =0 too closely. Figure 1 shows that one may relax the conditienco provided one is willing to
tolerate small enough violation of scaling. Since experimental data or Momte €amputations
come with errors, it should be possible to tune the cutoffrdn order to find the scaling curve
within the errors.

We end this section with a remark about the scaling fields. In making useecotie# models
to study universal properties of QCD, most works make the assumptioththataling fields of
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Figure 2: Data collapse obtained fog using the results of [15], when keeping only the datarfor 0.04
with O(4) exponents. The data is plotted as a function-efTl/T; instead oft because the regular parts on
the two sides of are have not been removed. The colour coding corresponts i@tues ofn,zT/mf, given

in the figure legend.

the effective theory andm) are identical to those of QCD. Whether or not this assumption is
correct can be tested, but, to the best of our knowledge, such testadidveen performed.

3. Relevanceto the phase diagram of chiral QCD

The phase diagram of chiral QCD can be extended to finite baryon chepoiemtial, u.
Since this scaling field preserves the O(4) symmetry, the critical point dIcQCD atu = 0 gets
stretched into a line. The global CP symmetry of QCD implies BN@t, m=0,u) = F(T,m=
07 _u)’ SO

1
Te(u) :Tc+§Ku2+---. (3.1)

The curvature has been studied in lattice QCD for about a decade. ebifféeterminations agree
roughly on its value [12].

If one assumes that enters the scaling function of eq. (2.1) only through the dependence of
T. onu as given in eq. (3.1), then, as in [13], we can write

T. 02

—g(t,T =— S _gtr

(3.2)
u=0
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Qualitative evidence for this relation between derivatives was obtaingdaeg back [14]. The
relation above implies a connection betwegand the fourth order baryon number susceptibility—

~ (KTe)? (T)4 & (3.3)

9*P(T,m, ) [
T.) T

Xé<T7m) - aIJ4

u=0

The last expression fofg comes from retaining only the most singular contribution. This suggests
a scaling test ofa similar to that forc, .

This test can be performed with the results of [15]. For the treatment of |QfRi2 computa-
tions we may replace/Mo in the definition ofr by mz/m?, so that, T andxg are all renormalized
quantities. In Figure 2 we plot the full measurggga/T. Data collapse should be expected in the
region where the contribution from the singular part dominates.

The regular parts at temperatures well above and well ba&loave expected to be different,
since effective theories in these two regions are the hadron gas miodel ;) and the weak
coupling expansion of QCDT(> Tc). We have plotted Figure 2 to show these two branches
separately. It seems that in the region 0.1, the differences in the regular parts may be neglected
within the precision of the data. One particular implication is that the gas modeldshot work
for xg within 10% of .

While this gives us a first test (in this sector) of scaling at 0 at surprisingly large quark
masses, the current errors are large. Improvement in errors wouldwgdIto test scaling better, and
also to test the importance of the variation of the regular part of these quantitieapproximately
10% change in. These requirements set benchmarks for future measuremexgs of

Itis clear from eq. (2.1) and the valuesafin Table 1 that derivatives af, with respect tor
would diverge in the vicinity of the critical point. As a result, one should be sbobserve scaling
of the higher order baryon number susceptibilities. For example, the sk quantity,xg would
be universal, and is likely to have a shape similar to that shown in Figurev®ult be interesting
to test this in future, when improvement in statistics makes these tests significant.

4. Someremarks

It is interesting to recall that before the modern theory of critical phenamers developed,
the Ehrenfest classification of phase transitions was in vogue. This attetopdefine orders of
phase transitions according to which derivative of the free energrgid. In the case of O(N)
models one sees very clearly that such a classification runs into troublexadmining the chiral
(magnetic) susceptibilities, one comes to the conclusion that the QCD transitiicseisomd order.
However, on examining, one comes to the conclusion that the same transition is of third order,
sincec, does not diverge, but its derivative with respectTtaloes. We realize today that the
differences are due only to the value of associated critical index.

We conclude by reiterating the importance of scaling tests such as thassedjfpere. They
constitute a new domain of tests of the universality hypothesis in the cont€x€Cbf Not only
is this important in its own right, but also serves to put bounds on the regiappifcability of
models such as the hadron gas model. This model is a mixture of ideal gasksrare contains
no singular part, whereas O(4) universality is based entirely on thelaniguue to pions in the
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Figure 3: In the chiral Iimit)(,g5 diverges with critical exponent-t o and is proportional to the temperature
derivative ofc,. At finite m%/mf, these divergences would be rounded off as shown.

chiral limit. Since these are mutually exclusive descriptions of the free pribgsuccess of one
rules out the other.
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