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1. Introduction

In the chiral limit of QCD, obtained by setting the light quark masses to zero, theglobal sym-
metry of QCD is chiralSU(2)×SU(2). This is homomorphic to a O(4) symmetry. The universality
conjecture then leads us expect that the critical indices and critical amplituderatios in chiral QCD
should be the same as for O(4) magnetic systems [1].

In recent times, the chiral condensate of QCD (which is equivalent to the spontaneous magne-
tization of the magnet), its derivatives with respect to the quark mass (equivalent to the magnetic
susceptibility), and their scaling towards the chiral limit, have been studied with somewhat am-
biguous results [2].

The scaling of the internal energy and the specific heat of O(N) symmetric systems is intricate,
as is known from the phenomenology of liquid Helium. However, with the extensive lattice QCD
computations now available on quark number susceptibilities in QCD at zero baryon density [3],
their important role in heavy-ion collisions [4], and their connection with temperature derivatives
of the free energy, it is important to initiate the scaling analysis of these quantities. That is the
purpose of this talk.

2. Scaling and the limits of universality

The thermodynamics of QCD is characterized by a free energy, which is a function of some
number of intensive control parameters. These could include the temperature, T, and the baryon
chemical potential,µ. If the pion mass were exactly vanishing, then QCD would have a O(4) global
chiral symmetry. Since we are interested in real QCD, where the pion is not massless, an explicit
chiral symmetry breaking parameter is needed. This is the quark mass,m, which plays the same
role in QCD as a magnetic field does for the O(4) magnet.

Near the critical point one can decompose the free energy,F(T,m), into the sum of two terms.
One of these is a regular part,Fr(T,m), and the other is a singular part,Fs(T,m). Fr(T,m) is Taylor
expandable around the critical point,T = Tc andm= 0 with some large radius of convergence.
The modern theory of critical phenomena starts from the observation that the most singular part is
a scaling function

Fs(T,m) = t2−αΦ(τ), where t =

∣
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T
Tc

∣

∣

∣

∣

, τ =
t

(m/M0)1/∆ , (2.1)

where we have chosen the scaling variablest andτ to be dimensionless,Tc is the critical temper-
ature,M0 is any mass scale which remains finite in the chiral limit, andα , ∆ = βδ are critical
exponents. The functionFs(t,τ), defined so, is universal, in the sense that whether we examine
an O(4) Heisenberg magnet, QCD, a non-linear sigma model of pions, or theNambu-Jona-Lasinio
(NJL) model, theFs(t,τ) we obtain from all of them are the same. As a result, the universal prop-
erties of thermal QCD know nothing about QCD, aside from its chiral symmetry. However, the
various models differ inFr(T,m), so this is the piece which gives information about the actual
degrees of freedom involved in the QCD phase transition.

Even if the magnitude ofFs is comparable toFr , since it is singular, its effect may be enhanced
by taking sufficient number of derivatives. For example, the specific heat, cV ∝ t−α , and hence
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Model Example β δ α Ref

O(∞) 1/2 5 -1 [5]
O(4) chiral QCD 0.380 4.86 -0.2268 [6]
O(3) ? 0.365 4.79 -0.115 [8]
O(2) liquid He 0.349 4.78 -0.0172 [7]
O(1) liquid-gas 0.325 4.8 0.11 [8]

MFT 1/2 3 0

Table 1: Critical exponents of O(N) models in three spatial dimensions. The exponentα is obtained from
the other reported exponents using scaling identities. O(1) should be taken to mean the Ising model. MFT
stands for mean field theory. There are no known examples of O(3) models, since real ferromagnets have
relevant terms which break this symmetry.

diverges atT = Tc, provided thatα > 0. As one can see from Table 1, this is true of the Ising
model. However, for all otherO(N) modelsα < 0, and, as a result, the singular contribution to the
specific heat exactly vanishes forT = Tc.

This seems to contradict our knowledge of the specific heat of liquid He, which is in the O(2)
universality class and has a cusp at the critical point. The resolution of thispuzzle comes from
noticing that the peak ofcV is only finite, and hence is regular. It is the shape which is singular.
So the specific heat has to arise through a playoff between the singular and regular parts. In fact,
a very precise microgravity experiment has been done over the range|T −Tc| ≤ 2 nK [9], and the
results fitted to the formula

cV = Ar + t−α(B+Ct−∆′
), (2.2)

whereAr comes only fromFr . ∆′ is a possible correction-to-scaling exponent.Ar is positive and
B is constrained to be negative. It can be shown thatB can be negative without violating the
thermodynamic consistency criterion thatcV > 0. A result of the microgravity experiment is that
α = −0.01285(38). For a discussion of the disagreement between this and the result quoted in
Table 1, see [10].

This mechanism also works for QCD and other O(N) symmetric models. For thesewe may
write

cV(T,m) = Ar +
t−α

Tc
Ψ(t,τ). (2.3)

Tc and Ar are non-universal, and change from QCD to various effective theories for it, but the
exponentα , and the regular functionΨ (which may be written in terms of the scaling functionΦ,
and its derivatives,Φ′ andΦ′′, if desired) are universal. So the shape of the specific heat cusp is
universal but its height and width must be determined in QCD. Furthermore,these two parameters
are good tests of possible effective models, since a bad model of QCD will not reproduce its non-
universal properties.

An interesting statement about the scaling ofcV with mass arises from this. Suppose we
succeeded in measuring (on the lattice)cV for QCD with various different light quark masses. By
plotting the data as a function oft and scalingcV appropriately, can we observe scaling in the form
of data collapsing on to an universal curve? Clearly, there are no singularities of the free energy if
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Figure 1: Data collapse obtained in an MFT treatment of the NJL model when keeping only the data for
τ > 50. Tiny violations of scaling are visible; these can be controlled by increasing the cut onτ. The value
of this cut depends on the choice ofM0 (here it was taken to beTc), and the renormalization scheme, when
going beyond MFT. Also, since this value is not universal, itcould be different in QCD. Only data forT < Tc

is used in this plot to avoid having to subtract a large regular part, as discussed in the text.

T is varied aroundTc at fixed non-vanishingm. As a result, takingt → 0 andτ → 0 simultaneously
will not reveal scaling. Instead, one must take the limitm→ 0 first andT → Tc next, which means
that one must takeτ → ∞ first and thent → 0 in order to see data collapse.

One can test this in the NJL model even at tree level,i.e., in the MFT approximation. The high
temperature limit of this model contains weakly interacting quarks, so the regular contribution to
cV actually increases fairly rapidly with temperature. As a result, one may miss the pseudo-critical
behaviour incV unless the temperature range is scanned finely to discover a peak sitting over a
rising background, or the free quark contribution is subtracted to make thepeak stand out over a
falling background. This difficulty would also occur in QCD [11], but notin the O(4) Heisenberg
magnet.

With this MFT one sees that data collapse is possible when one plotscV againstt provided that
one selects onlyτ > 50. This is sufficient to ensure that for any finitem one does not approach
t = 0 too closely. Figure 1 shows that one may relax the conditionτ → ∞ provided one is willing to
tolerate small enough violation of scaling. Since experimental data or Monte Carlo computations
come with errors, it should be possible to tune the cutoff onτ in order to find the scaling curve
within the errors.

We end this section with a remark about the scaling fields. In making use of effective models
to study universal properties of QCD, most works make the assumption thatthe scaling fields of
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Figure 2: Data collapse obtained forχ4
B using the results of [15], when keeping only the data forτ > 0.04

with O(4) exponents. The data is plotted as a function of 1−T/Tc instead oft because the regular parts on
the two sides ofTc are have not been removed. The colour coding corresponds to the values ofm2

π/m2
ρ given

in the figure legend.

the effective theory (T andm) are identical to those of QCD. Whether or not this assumption is
correct can be tested, but, to the best of our knowledge, such tests have not been performed.

3. Relevance to the phase diagram of chiral QCD

The phase diagram of chiral QCD can be extended to finite baryon chemical potential, µ.
Since this scaling field preserves the O(4) symmetry, the critical point of chiral QCD atµ = 0 gets
stretched into a line. The global CP symmetry of QCD implies thatF(T,m= 0,µ) = F(T,m=

0,−µ), so

Tc(µ) = Tc+
1
2

κµ2+ · · · . (3.1)

The curvature has been studied in lattice QCD for about a decade. Different determinations agree
roughly on its value [12].

If one assumes thatµ enters the scaling function of eq. (2.1) only through the dependence of
Tc on µ as given in eq. (3.1), then, as in [13], we can write

∂
∂T

g(t,τ)
∣

∣

∣

∣

µ=0
=−

Tc

Tκ
∂ 2

∂ µ2 g(t,τ)
∣

∣

∣

∣

µ=0
. (3.2)
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Qualitative evidence for this relation between derivatives was obtained very long back [14]. The
relation above implies a connection betweencV and the fourth order baryon number susceptibility—

χ4
B(T,m) =

∂ 4P(T,m,µ)
∂ µ4

∣

∣

∣

∣

µ=0
≃ (κTc)

2
(

T
Tc

)4 cV

T3 . (3.3)

The last expression forχ4
B comes from retaining only the most singular contribution. This suggests

a scaling test ofχ4
B similar to that forcV .

This test can be performed with the results of [15]. For the treatment of latticeQCD computa-
tions we may replacem/M0 in the definition ofτ by m2

π/m2
ρ , so thatt, τ andχ4

B are all renormalized
quantities. In Figure 2 we plot the full measuredTcχ4

B/T. Data collapse should be expected in the
region where the contribution from the singular part dominates.

The regular parts at temperatures well above and well belowTc are expected to be different,
since effective theories in these two regions are the hadron gas model (T ≪ Tc) and the weak
coupling expansion of QCD (T ≫ Tc). We have plotted Figure 2 to show these two branches
separately. It seems that in the regiont ≤ 0.1, the differences in the regular parts may be neglected
within the precision of the data. One particular implication is that the gas model should not work
for χ4

B within 10% ofTc.

While this gives us a first test (in this sector) of scaling atT = 0 at surprisingly large quark
masses, the current errors are large. Improvement in errors would allow us to test scaling better, and
also to test the importance of the variation of the regular part of these quantities with approximately
10% change int. These requirements set benchmarks for future measurements ofχ4

B.

It is clear from eq. (2.1) and the values ofα in Table 1 that derivatives ofcV with respect toT
would diverge in the vicinity of the critical point. As a result, one should be able to observe scaling
of the higher order baryon number susceptibilities. For example, the sixth order quantity,χ6

B would
be universal, and is likely to have a shape similar to that shown in Figure 3. Itwould be interesting
to test this in future, when improvement in statistics makes these tests significant.

4. Some remarks

It is interesting to recall that before the modern theory of critical phenomena was developed,
the Ehrenfest classification of phase transitions was in vogue. This attemptedto define orders of
phase transitions according to which derivative of the free energy diverged. In the case of O(N)
models one sees very clearly that such a classification runs into trouble. Onexamining the chiral
(magnetic) susceptibilities, one comes to the conclusion that the QCD transition is of second order.
However, on examiningcV one comes to the conclusion that the same transition is of third order,
sincecV does not diverge, but its derivative with respect toT does. We realize today that the
differences are due only to the value of associated critical index.

We conclude by reiterating the importance of scaling tests such as that suggested here. They
constitute a new domain of tests of the universality hypothesis in the context ofQCD. Not only
is this important in its own right, but also serves to put bounds on the region ofapplicability of
models such as the hadron gas model. This model is a mixture of ideal gases and hence contains
no singular part, whereas O(4) universality is based entirely on the singularity due to pions in the
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χ

Τ−Τc
Finite mass
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6

Figure 3: In the chiral limitχ6
B diverges with critical exponent 1+α and is proportional to the temperature

derivative ofcV . At finite m2
π/m2

ρ these divergences would be rounded off as shown.

chiral limit. Since these are mutually exclusive descriptions of the free energy, the success of one
rules out the other.
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