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1. Introduction

Chiral symmetry breaking is a well established property of the ground state of Quantum Chro-
modynamics (QCD). Lattice QCD simulations also predict the presence of a finite temperature
transition to a new phase of matter where chiral symmetry is restored. For physical quark masses,
which break chiral symmetry explicitly, a smooth crossover takes place [1–5] at a pseudocritical
temperature Tc ∼ 155 MeV. Many other properties of strongly interacting matter change around
that temperature, indicating the onset of deconfinement.

The dependence of Tc on external parameters is a question of utmost importance. One of
the most relevant parameters is the baryon chemical potential µB, which enters the phenomeno-
logical description of heavy ion collisions. The analysis of the collision yields within a thermal-
statistical hadronization model leads to the determination of a chemical freeze-out curve in the
T − µB plane [6–13], corresponding to the point of last chemical equilibrium of hadron particles
following re-hadronization. Even if this point is not expected to coincide with the one at which
deconfinement and chiral symmetry restoration take place, a comparison with Tc(µB) is very inter-
esting, also in view of the possible critical endpoint which could be present along the line and at
which the crossover would turn into a real transition.

Exploration of the T −µB plane by lattice QCD simulations is presently hindered by the sign
problem. Various methods exist to partially circumvent it, which permit to obtain reliable results in
the regime of small µB/T , for example the reweighting method, the Taylor expansion method, the
canonical approach and the method of analytic continuation from an imaginary chemical potential.
In the regime of small µB/T the pseudocritical line can be parametrized as follows

Tc(µB)

Tc
= 1−κ

(
µB

Tc

)2

+ O(µ4
B) , (1.1)

where κ defines the curvature of the pseudo-critical line Tc(µB). In the Taylor expansion approach
κ is determined by a proper combination of expectation values computed at µB = 0 [14–18],
while in the imaginary chemical potential approach one determines Tc for imaginary values of
µB, then fitting results according to a particular ansatz for Tc(µB), e.g., the analytic continuation of
Eq. (1.1) [18–28].

In this study we present results regarding an improved determination of the curvature by means
of analytic continuation. We consider a discretization of N f = 2 + 1 QCD which adopts stout
improved staggered fermions (with rooting), the tree level Symanzik gauge action and physical
quark masses. We are interested in the properties of the chiral transition, therefore, in order to locate
Tc, we look both at the renormalized chiral condensate and at the renormalized chiral susceptibility.
We explore two different lattice spacings, corresponding to temporal extensions Nt = 6 and Nt = 8,
and several spatial volumes, in order to keep both finite size and finite lattice spacing effects under
control.

Regarding the setup of chemical potentials, we consider both the case µs = 0 and µs 6= 0, where
µs is the chemical potential coupled to the number of strange quarks. This is interesting in order
to compare with results from heavy ion collision, where the initial conditions impose strangeness
neutrality. In the free quark limit (hence for asymptotically high T ) that implies µs = 0, which
is the setup adopted by most of previous studies. However interactions lead to corrections and,
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Figure 1: Renormalized chiral condensate (left) and renormalized chiral susceptibility (right) for various
values of T and µl on a 323×8 lattice with µs = 0. Lines correspond to the best fits described in the text.

around Tc, strangeness neutrality is guaranteed by µs ∼ 0.25 µl [29]. Exploring both cases (µs = 0
and µs = µl) permits to state the systematic corrections due to the choice of µs. A full account of
our results has been presented in Ref. [30].

2. Numerical Setup

We perform lattice simulations of N f = 2+ 1 QCD with purely imaginary quark chemical
potentials, µ f = iµ f ,I, µ f ,I ∈ R, with f = u,d,s. The euclidean partition function is the following:

Z =
∫

DU e−SYM ∏
f=u,d,s

det
(

M f
st[U,µ f ,I]

)1/4
, (2.1)

(M f
st)i, j = am f δi, j +

4

∑
ν=1

ηi;ν

2

[
eiaµ f ,Iδν ,4U (2)

i;ν
δi, j−ν̂ − e−iaµ f ,Iδν ,4U (2)†

i−ν̂ ;ν
δi, j+ν̂

]
,

where SYM is the tree level improved Symanzik action [31, 32] and the staggered Dirac operator
(M f

st)i, j is built up in terms of the two times stout-smeared [33] links U (2)
i;ν

with isotropic smearing
parameter ρ = 0.15. The residual fourth degeneracy of the lattice Dirac operator is removed, as
usual, by means of the rooting procedure. The imaginary chemical potential is introduced, for
each quark flavor, by multiplying all temporal links in the corresponding Dirac operator by eiaµ f ,I ,
f = u,d,s. That can be viewed as a rotation by an angle θ f ≡ aNt µ f ,I = µ f ,I/T of the temporal
boundary conditions for the quark flavor f .

We explore the region around the transition temperature on lattices with two different temporal
extensions, Nt = 6 and Nt = 8. Various spatial sizes are explored in some cases, to check for finite
size effects. For each lattice we study 3-4 different values of the imaginary chemical potentials with
two different setups, either µu = µd = µl and µs = 0, or µu = µd = µs = µl . The temperature T =

1/(aNt) of the system is changed by varying the value of the bare coupling constant β , rescaling
the bare quark masses ms and mu = md = ml so as to move on a line of constant physics, with
mπ ' 135MeV and ms/ml = 28.15; this is done by a spline interpolation of the values reported in
Refs. [34, 35].
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Figure 2: Determinations of Tc obtained from the renormalized chiral condensate (left) and from the renor-
malized chiral susceptibility (right) for various values of the chemical potential and of the lattice size. The
lines correspond to quadratic and quartic fits in µl,I , as discussed in the text.

The location of the transition is defined in terms of the light quark condensate:

〈ψ̄ψ〉l =
T
V

∂ logZ
∂ml

= 〈ūu〉+ 〈d̄d〉 , (2.2)

which is renormalized by adopting the prescription introduced in Ref. [36]:

〈ψ̄ψ〉rl (T )≡

[
〈ψ̄ψ〉l− 2ml

ms
〈s̄s〉
]
(T )[

〈ψ̄ψ〉l− 2ml
ms
〈s̄s〉
]
(T = 0)

, (2.3)

where ms is the bare strange quark mass. The light quark chiral susceptibility is given instead by

χψ̄ψ =
∂ 〈ψ̄ψ〉l

∂ml
= χ

disc
ψ̄ψ +χ

conn
ψ̄ψ (2.4)

χ
disc
ψ̄ψ ≡

T
V

(
Nl

4

)2 [
〈(TrM−1

l )2〉−〈TrM−1
l 〉

2] (2.5)

χ
conn
ψ̄ψ ≡ −T

V
Nl

4
〈TrM−2

l 〉 . (2.6)

where Ml is the Dirac operator corresponding to a single light flavor and Nl = 2. Traces are com-
puted by noisy estimators, with 8 random vectors for each flavor. The renormalization of the chiral
susceptibility is performed by subtracting the T = 0 contribution, then multiplying the result by m2

l
in order to fix the multiplicative ultraviolet (UV) divergence [34]:

χ
r
ψ̄ψ = m2

l
[
χψ̄ψ(T )−χψ̄ψ(T = 0)

]
. (2.7)

All the T = 0 quantities have been measured on symmetric lattices.
The Rational Hybrid Monte-Carlo algorithm [37–39] has been used for sampling gauge con-

figurations according to Eq. (2.1), each single run consisting of 2-5 K trajectories of unit length in
molecular dynamics time, with higher statistics around the transition.
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Figure 3: Sketched phase diagram in the T −θl plane for µs = µl (left) and for µs = 0 (right). Solid lines
indicate the RW (or RW-like) lines, while the dashed lines corresponds to the analytic continuation of the
pseudocritical line.

3. Numerical Results

In Fig. 1 we plot the results obtained for the renormalized chiral condensate and for the renor-
malized chiral susceptibility on the 323×8 lattice and for the µs = 0 setup; analogous results have
been obtained for the other cases explored. In order to determine the location of the pseudocritical
temperature Tc, we have looked either for the inflection point of the renormalized chiral condensate
or for the maximum of the renormalized chiral susceptibility. Both these definitions are faithful,
meaning that they provide the correct answer in case a real phase transition is present.

In order to determine the inflection point of the renormalized chiral condensate, we have per-
formed a best fit to the data by using the expression

〈ψ̄ψ〉rl (T ) = A1 +B1 arctan(C1(T −Tc)) . (3.1)

Instead, in the case of the renormalized susceptibility, the peak has been located by fitting data to a
Lorentzian function

χ
r
ψ̄ψ =

A2

B2
2 +(T −Tc)2 . (3.2)

In both cases such functions are found to well describe the behavior of data points in the whole
range of explored temperatures. In Fig. 1 the best fits are plotted together with the data points, the
position of the inflection point being denoted, for each data set, by a filled triangle. The errors on
the fit parameters have been estimated by means of a bootstrap analysis; results for Tc are stable,
within errors, if different fitting functions are adopted (e.g., a hyperbolic tangent for the condensate
or a quadratic function for the susceptibility).

The full set of determinations of Tc(µl,I,µs,I) is reported in Fig. 2. In order to extract the
curvature, we performed a fit to the values obtained for Tc(µl,I), separately for each lattice size and
setup of chemical potentials, according to the function

Tc(µl,I) = Tc(0)

(
1+9κ

(
µl,I

Tc(µl,I)

)2

+81b
(

µl,I

Tc(µl,I)

)4

+O(µ6
l,I)

)
. (3.3)

5



P
o
S
(
C
P
O
D
2
0
1
4
)
0
1
3

The QCD pseudocritical line from imaginary chemical potentials Massimo D’Elia

0 0.01 0.02 0.03 0.04 0.05 0.06

1 / (V T
3
)

0.008

0.01

0.012

0.014

0.016

κ

Figure 4: Fitted values of the curvature κ from Nt = 6 lattices (µs = 0) as a function of the inverse spatial
volume. Squares correspond to the determinations obtained by using the chiral condensate, triangles to the
chiral susceptibility estimates.

In this way we have obtained estimates of κ for all the lattices and the chemical potential setups
adopted. In most cases, a simple linear fit (i.e. setting b = 0) works quite well. Just for the µs = µl

setup (studied only on the 323× 8 lattice) the introduction of a quartic correction is necessary in
order to obtain reasonable values of the χ̃2 test. However, as one can appreciate from the figure, the
value of the curvature, i.e. the slope at µl = 0, does not change in a significant way when changing
setup, showing that κ is not very sensitive to the value of µs.

It is tempting to associate the enhancement of non-linear corrections in the µs = µl setup to the
fact that, in this case, the phase structure in the T −θl plane, where θl = Im(µl)/T , is different. For
µs = µl one has the usual phase diagram with Roberge-Weiss (RW) transitions [40] taking place
for µl = π/3 or odds multiple of it, connected to the analytic continuation of the pseudocritical
line through their endpoints. For µs = 0, instead, the strange quark determinant has still standard
temporal boundary conditions (i.e. non-rotated), and that tends to keep the system in the real center
sector, so that the first sudden jump to non-real center sectors is delayed and the region around
θl = 0, which is the one available for analytic continuation, is a bit larger. This situation is depicted
in Fig. 3. The proximity of the RW line for µs = µl could explain the larger non-linear contribution
to the pseudocritical line in this case.

In Fig. 4 we compare data at fixed UV cutoff (Nt = 6) and different spatial volumes (Ls =

16,24,32), in order to show that finite volume effects are well under control. In Fig. 5, instead, we
report the values of κ obtained for µs = 0 and at fixed physical spatial volume for two different
values of the UV cutoff (corresponding to Nt = 6 and Nt = 8). Results show that UV effects are
under control.

A preliminary continuum extrapolation, performed assuming order a2 corrections, yields κ =

0.0132(18) (from the renormalized chiral condensate) and κ = 0.0126(22) (from the renormalized
chiral susceptibility), however this cannot be considered yet as a rigorous continuum extrapolation,
since we have not enough data points to perform a best fit. Different kinds of extrapolation (e.g.,
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Figure 5: Determinations of κ for µs = 0 and on lattices with aspect ratio 4 as a function of N−2
t ; the points

at zero abscissa correspond to a rudimentary continuum limit extrapolation, assuming corrections linear in
N−2

t . Squares correspond to the determinations obtained by using the chiral condensate, triangles to the
chiral susceptibility estimates.

according to a constant function) permits us to estimate systematic uncertainties, leading to a final
estimate κ = 0.13(2)(1).

Finally, in Fig. 6, we compare our present results with previous ones in the literature. We do
not report many early determinations and consider only a collection of recent ones, which look
at the chiral transition and have been obtained by discretizations of N f = 2+ 1 QCD at or close
to the physical point [15, 16, 28]. Our results are generally larger than results obtained by the
Taylor expansion [15,16] and in marginal agreeement with results obtained by analytic continuation
and a different discretization [28]. A careful analysis of systematic uncertainties shows that the
discrepancy with Taylor expansion determinations is presently at a 2σ level [30]. In our case, a
determination of κ on finer lattices, with Nt = 10 and Nt = 12, is a necessary step, which should be
undertaken in the next future in order to obtain complete control over the continuum extrapolation
and reach definite continuum results.
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