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We investigate the phase transitions of (2+Nf)-flavor QCD, where two light flavors and Nf mas-

sive flavors exist, aiming to understand the phase structure of (2+1)-flavor QCD. Performing sim-

ulations of 2-flavor QCD with improved staggered and Wilson fermions and using the reweight-

ing method, we calculate probability distribution functions in the many-flavor QCD. Through the

shape of distribution functions, we determine the critical surface terminating first order phase

transitions in the parameter space of the light quark mass, heavy quark mass and the chemical

potential, and find that the first order region becomes larger with Nf. We then study the critical

surface at finite density for large Nf and the first order region is found to become wider with the

increasing chemical potential. On the other hand, the light quark mass dependence of the crit-

ical mass of heavy quarks seems weak in the region we investigated. The result of this weak

dependence suggests that the critical mass of heavy quark remains finite in the chiral limit of 2-

flavors and there exists a second order transition region on the line of the 2-flavor massless limit

above the tri-critical point. Moreover, we extend the study of 2-flavor QCD at finite density to the

case of a complex chemical potential and investigate the singularities where the partition function

vanishes, so-called Lee-Yang zeros. The plaquette effective potential is computed in the com-

plex plane. We find that the shape of the effective potential changes from single-well on the real

axis to double-well at large imaginary chemical potential and the double-well potential causes the

singularities.
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1. Introduction

QCD at high temperature and density has rich phase structure, and the nature of the phase

transition changes depending on the quark mass and the number of flavors. The quark mass de-

pendence of the QCD phase transition is important not only for the theoretical interest in the phase

structure of QCD with various quark masses but also for the investigation of finite density QCD or

QCD near the chiral limit, in which the numerical studies are difficult. From the numerical study

of (2+1)-flavor QCD, the QCD phase transition is considered to be crossover at low density but

is expected to turn into a first order transition at high density. Finding the endpoint of first order

transition is then crucial for establishing the above expectation. Unfortunately, it is still extremely

difficult to simulate quarks with physical mass at high density. But accessing the endpoint becomes

easy if one extends QCD in appropriate directions, and importantly if such an extension is smooth,

one can extract information on original QCD by suitable extrapolations [1, 2].

Moreover, the nature of the phase transition in the chiral limit of 2-flavor QCD is a long-

standing problem. The standard expectation is of second order, but the order is not conclusive

due to the difficulty of the numerical study in the chiral limit. One of the good approaches is to

investigate the boundary of the first order transition region. If the critical value of the strange quark

mass does not go to infinity in the up and down quarks massless limit, the transition of the massless

2-flavor QCD is not of first order. However, it is difficult to study it, because the first order region

is very small in (2+1)-flavor QCD and simulations with very small mass are required.

In Ref. [3], the boundary of the first order region is studied in many-flavor QCD, motivated

by a feasibility study of the electroweak baryogenesis in technicolor theories constructed by many-

flavor gauge theory. They studied QCD with two degenerate light quarks of the mass ml and the

chemical potential µl and Nf massive quarks with mh and µh, and found by measuring probability

distribution function that the critical massive quark mass becomes larger as Nf increases. Therefore,

the investigation of the critical line becomes easier as Nf increases. This extension of QCD is also

useful for the study of the phase transition of massless 2-flavor QCD. If the critical mass for the

massive Nf flavors remains finite in the massless limit of two light flavors, it gives a strong support

for the second order transition. A similar approach has been tried in Ref. [4].

This paper consists of two parts. The first part deals with the light quark mass dependence of

the critical massive quark mass separating the first order and crossover regions in (2+Nf)-flavor

QCD. We perform simulations with 2 flavors of improved Wilson quarks. The effect from the

dynamical Nf-flavors are added by a reweighting method assuming that the Nf-flavors are heavy.

We then investigate the critical heavy quark mass as a function of the light quark mass through

the shape of distribution functions and discuss the nature of phase transitions in the chiral limit of

2-flavor QCD.

The second part is the chemical potential dependence. In particular, we extend the real chemi-

cal potential (µ) to complex value. The phase transition of 2-flavor QCD with finite mass at µ = 0

is crossover. But, when the chemical potential is introduced, the shape of the distribution changes

and the distribution function will become first-order-transition-like. For the complex µ , this prop-

erty make a singularity, which is called “Lee-Yang zero” [5]. Lee and Yang proposed the method

to investigate the nature of phase transitions from the singularities in the complex parameter plane,

and applications to finite density QCD have been discussed in Refs. [6, 7].
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In the next section, we explain our method to identify the nature of phase transitions via

the distribution function. We then argue the light quark mass dependence of the endpoint of the

first order transition in Sec. 3. The singularities in the complex plane are discussed in Sec. 4.

Conclusions are given in Sec. 5.

2. Critical point by a histogram method

We study QCD with two degenerate light quarks of the mass ml, the chemical potential µl and

Nf heavy quarks. We define the probability distribution function of average plaquette value,

w(P;β ,ml,µl,m f ,µ f ) =
∫

DUDψDψ̄ δ (P− P̂) e−Sq−Sg

=
∫

DU δ (P− P̂) e6βNsiteP̂ (detM(ml,µl))
2

Nf

∏
f=1

detM(m f ,µ f ) (2.1)

where Sg and Sq are the actions of gauge and quark fields, respectively, and M is the quark matrix.

For simplification, we adopt M which does not depend on β explicitly. Nsite ≡N3
s ×Nt is the number

of sites and β = 6/g2
0 is the simulation parameter. P̂ defined by P̂ =−Sg/(6Nsiteβ ) is 1×1 Wilson

loop for the standard plaquette gauge action. δ (P− P̂) is the delta function, which constrains the

operator P̂ to be the value of P. We moreover define the effective potential, Veff(P;β ,m f ,µ f ) =

− lnw(P;β ,m f ,µ f ).

Denoting the potential of 2-flavor at µ = 0 by V0(P;β ), that of (2+Nf)-flavor is written as

Veff(P;β ,m f ,µ f ) =V0(P;β0)− lnR(P;β ,m f ,µ f ;β0), (2.2)

with

lnR(P;β ,m f ,µ f ;β0) = 6(β −β0)NsiteP+ ln

〈

(

detM(ml,µ)

detM(ml,0)

)2 Nf

∏
f=1

detM(m f ,µ f )

detM(∞,0)

〉

(P:fixed)

,(2.3)

where 〈· · ·〉(P:fixed) ≡ 〈δ (P− P̂) · · ·〉β0
/〈δ (P− P̂)〉β0

and 〈· · ·〉β0
means the ensemble average over

2-flavor configurations generated at β0, ml and vanishing µl. β0 is the simulation point, which may

differ from β in this method.

At a first order transition point, Veff shows a double-well shape as a function of P, and equiva-

lently the slope of the potential dVeff/dP shows an S-shape. Since β appears only in the linear term

of P on the right hand side of Eq. (2.3), the shape of the slope dVeff/dP is independent of β , i.e. a

change of β just shifts the overall constant of the slope of Veff [8]. Although β must be adjusted to

the first order transition point to observe the double-well potential, the fine tuning is not necessary

if we investigate the slope.

The derivative dV0/dP can be measured easily from the peak position of the plaquette his-

togram [9]. When one performs a simulation at β0, the slope is vanishing at the minimum of

V0(P;β0), and the value of P at the minimum can be estimated by 〈P〉β0
approximately. Hence, we

obtain dV0/dP at 〈P〉β0
by

dV0

dP
(〈P〉β0

,β ) =−6(β −β0)Nsite. (2.4)

We therefore focus on the slope of the effective potential to identify the nature of transitions.
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Figure 1: Left: Plaquette histogram of 2-flavor QCD w0(P;β ,κ ,0) at κ = 0.145. Right: ln R̄(P;h,0) as a

function of P for h = 0.05 – 0.50.

3. Light quark mass dependence of the critical heavy quark mass

In this section, we discuss the light quark mass dependence of the critical hopping parameter of

heavy quarks terminating the first order transition. It is important to investigate whether the critical

hopping parameter vanishes at a finite light quark mass or not. If the critical line crosses the line

of κh = 0, the 2-flavor chiral limit is in the first order region, where κh is the hopping parameter

of heavy-flavors being proportional to the inverse mass. Restricting the calculation to the heavy

quark region near κh = 0, the second determinant for Nf flavors in Eq. (2.3) is approximated by the

leading order of the hopping parameter expansion,

ln

[

detM(κh,µh)

detM(0,0)

]

= 288Nsiteκ4
h P̂+12N3

s (2κh)
Nt
(

cosh(µh/T )Ω̂R + isinh(µh/T )Ω̂I

)

+ · · · (3.1)

for the standard Wilson quark action [10]. Ω̂R and Ω̂I are the real and imaginary part of the

Polyakov loop, respectively. For improved gauge actions such as Sg = −6Nsiteβ [c0(plaquette)+

c1(rectangle)], additional c1×O(κ4) terms must be considered, where c1 is the improvement coef-

ficient and c0 = 1−8c1. However, since the improvement term does not affect the physics, we will

cancel these terms by a shift of the coefficient c1. It is shown in Ref. [3] that the hopping parameter

expansion is applicable for large Nf.

Denoting h = 2Nf(2κh)
Nt , we obtain lnR(P;β ,κh,0;β0) = ln R̄(P;h,0) + (plaquette term)

+O(κNt+2
h ) for µl = µh = 0 with

R̄(P;h,0) =
〈

exp[6hN3
s Ω̂R]

〉

(P:fixed,β0)
, (3.2)

where R̄(P;h,0) is given by the Polyakov loop and is independent of β0. The plaquette term

does not contribute to d2Veff/dP2 and can be absorbed by shifting β → β ∗ ≡ β + 48Nfκ
4
h for

Wilson quarks. Moreover, one can deal with the case with non-degenerate masses by adopting

h = 2∑
Nf

f=1(2κ f )
Nt for the Wilson quark action or h = (1/4)∑

Nf

f=1(2m f )
−Nt for the staggered quark

action. Thus, the choice of the quark action is not important. In the following, we discuss the mass

dependence of R̄ through the parameter h.
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Figure 2: dVeff/dP(P;β ,κ ,h) as a function of P at κl = 0.1450(top left), 0.1475 (top right), 0.1500 (bottom

left) and 0.1505 (bottom right).

We perform simulations of 2-flavor QCD with the clover-improved Wilson quark and Iwasaki

gauge actions1. We take four different values of light quark masses ranging from κl = 0.145 to

0.1505. The corresponding ratio of pseudo-scalar and vector meson masses is mPS/mV ≈ 0.6647,

0.5761, 0.4677 and 0.4575 for κl = 0.145, 0.1475, 0.150 and 0.1505, respectively. The data are

taken at about 30 values of β around the pseudo-critical point at each κl , and at each simulation

point 10,000 to 40,000 trajectories have been accumulated.

In the calculation of R̄(P;h,0), we use the delta function approximated by δ (x) ≈ 1/(∆
√

π)

exp[−(x/∆)2], where ∆ is selected consulting the resolution and the statistical error. Because

R̄(P;h,0) is independent of β , we mix all data obtained at different β as was done in Ref. [8].

The histograms of plaquette value are plotted in the left panel of Fig. 1. The results for ln R̄(P;h,0)

at κl = 0.145 are shown in the right panel of Fig. 1 for h = 0.05 – 0.50 at interval of 0.05. A rapid

increase is observed around P ∼ 1.6, and the gradient becomes larger as h increases.

The derivative d ln R̄/dP is calculated by fitting ln R̄ to a nth-order polynomial of P in an ap-

propriate fit range. Using the equation,

dVeff

dP
=

dV0

dP
− d(ln R̄)

dP
+(const.), (3.3)

1The improvement parameters are almost the same as Ref. [11]
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Figure 3: The critical h as a function of (mπ/mρ)
2 (left) and of mPCAC (right). The red liens are lower and

upper bounds of the critical value of h obtained by dynamical simulations of degenerate 16-flavor QCD.

we compute dVeff/dP for each κl . The results for various h are shown in Fig. 2, where dV0/dP

is computed by Eq. (2.4). The shape of dVeff/dP is independent of β because d2Veff/dP2 is β -

independent. The first derivative dVeff/dP is the monotonically increasing function of P when h is

small, indicating that the transition is crossover. However, the shape of dVeff/dP turns into an S-

shaped function at h ≈ 0.3, which means that the system undergoes first order transition. The same

analysis has been done in Ref. [3] using the p4-improved staggered fermion action for 2-flavor

QCD with mPS/mV ≈ 0.7. The result of the critical value of h at which the first order transition

appears, hc, is about 0.06. The difference may be caused by the lattice discretization error due to

small Nt . We have defined the parameter h = 2Nf(2κh)
Nt for the Wilson quark. Then, the critical

point κhc corresponding hc decreases as κhc ∝ (hc/Nf)
1/Nt with Nf, and the truncation error from

the higher order terms of the hopping parameter expansion in κh becomes smaller as Nf increases.

The remarkable point of this study is light quark mass dependence. In Fig. 3, we plot the

results of the critical value hc as functions of (mPS/mV)
2 (left) and the quark mass defined by the

PCAC relation mpcac (right). The slope of Veff is computed fitting the data with 5th or 6th order

polynomials. The open symbols are the results by 5th order, and the filled symbols are those by

6th order. The difference is taken as the systematic error. The red lines are the upper and lower

bounds of the critical h for the system with Nf = 16 massive quarks and no light quarks, which is

determined by observing the hysteresis curves of the plaquette and Polyakov loop. It is found from

these figures that the light quark mass dependence of the critical mass of heavy quarks is very small

in the region we computed. The weak dependence suggests that the critical mass of heavy quark

remains finite in the chiral limit of 2-flavors. Thus, the sign of the first order transition in 2-flavor

QCD is not shown.

4. Singularities in the complex chemical potential plane

Let us turn to finite density QCD. The distribution function of 2-flavor QCD at finite density

and the appearance of the double-well potential are discussed in Ref. [8], and the boundary of the

first order transition region of (2+Nf)-flavor QCD at finite density is computed in Ref. [3] using the

6
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2-flavor QCD configurations generated with the p4-improved staggered quark action in Ref. [13].

The first order region is found to become larger as µ increases.

In this section, we extend the potential analysis to the complex chemical potential, µ = µRe +

iµIm. The numerical study of the singularities of Z = 0 has a potential danger for large µ when

we use the reweighting method [12]. We estimate the position of Z = 0 from the probability

distribution of the complex phase, since Z vanishes when the distribution function has two peaks or

more and the contributions from these peaks cancel each other [12]. In this study, we investigate the

plaquette distribution function and complex phase average with constraining the plaquette value.

To avoid the sign problem, the Gaussian approximation [8] is applied 2.

We compute the probability distribution function of the plaquette P,

w(P,β ,µ) =
∫

DU δ (P− P̂) (detM)2e6βNsiteP̂. (4.1)

We denote w0(P,β )≡ w(P,β ,0). The normalized partition function is rewritten as

Z (β ,µ)

Z (β ,0)
=

1

Z (β ,0)

∫

w(P,β ,µ) dP =
1

Z (β ,0)

∫

R(P,µ)w0(P,β ) dP. (4.2)

Here, R(P,µ) is the reweighting factor for finite µ defined by Eq. (2.3) with β0 = β and m f = ∞ for

Nf-flavors. This R(P,µ) is independent of β and R(P,µ) can be measured at any β . In this study,

all simulations are performed at µ = 0 and the effect of finite µ is introduced though the operator

detM(µ)/detM(0) measured on the configurations generated by the simulations at µ = 0.

Because QCD has time-reflection symmetry, the partition function is invariant under a change

from µ to −µ , i.e. R(P,−µ) = R(P,µ). Moreover, the quark determinant satisfies detM(−µ) =

(detM(µ∗))∗. From these equations, we get

[R(P,µ)]∗ = R(P,µ∗). (4.3)

This indicates that R(P,µ) is real valued function in the case of real µ , i.e. µ = µ∗. Then, the

plaquette probability distribution R(P,µ)w0(P,β ) is also real valued. However, once the imaginary

part of µ becomes nonzero, R(P,µ) is not a real number any more. We thus write the partition

function,

Z (β ,µ) =
∫

eiφ(P,µ)|R(P,µ)|w0(P,β ) dP. (4.4)

This complex phase φ vanishes at µIm = 0, and φ is monotonic function of µIm at small µ if we

define the complex phase by a Taylor expansion of lndetM(µ).

If |R(P,µ)|w0(P,β ) becomes a double-peaked function which has two peaks of equal height at

P+ and P−, two phases coexist like first order phase transitions. When changing µ , the expectation

value of plaquette changes discontinuously form P−eiφ(P−) to P+eiφ(P+) at that point. And then, the

partition function can be approximated by Z ≈ (eiφ(P+)+ eiφ(P−))× (const.). When the difference

between φ(P+) and φ(P−) is equal to (2n+ 1)π with an integer n, the partition function will be

vanishing, i.e. Lee-Yang zeros appear. The first-order-transition-like point in the complex plane

corresponds to “Stokes line” in the infinite volume limit. We define the effective potential as

2Preliminary results are presented in Ref. [9]
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Figure 4: The derivative of the effective potential dVeff/dP at β = 3.65 for (µRe/T )2 − (µIm/T )2 = 1.0

(left) and 4.0 (right).

Veff = ln[|R(P,µ)|w0(P,β )] and investigate the position of this would-be Stokes line in the complex

µ plane.

We calculate these three quantities, |R(P,µ)|, φ(P,µ) and w0(P,β ) by Monte-Carlo simula-

tions. Because the exact calculation of the quark determinant is difficult except on small lattices,

we estimate the quark determinant from the data of Taylor expansion coefficients of lndetM(µ)

up to O(µ6) around µ = 0 obtained by a simulation of 2-flavor QCD with p4-improved staggered

quarks in Ref. [13]. The truncation error has been discussed in Ref. [8]. Notice that the complex

phase θ is not restricted to the range from −π to π because we define θ by the Taylor expansion

of lndetM.

To compute Veff at finite µ , we discuss the sign problem. We denote the quark determinant as

Nf ln[detM(µ)/detM(0)] ≡ F + iθ . Histograms of θ seem to be well-approximated by Gaussian

functions. (See Fig. 1 (left) in Ref. [9].) Here, we perform a cumulant expansion,

〈exp(F + iθ)〉= 〈eF〉exp

[

i〈θ〉− 1

2
〈(∆θ)2〉− i

3!
〈(∆θ)3〉+ i〈∆F∆θ〉− 1

2
〈∆F(∆θ)2〉+ · · ·

]

(4.5)

with ∆X = X −〈X〉.
For the case that the distribution of θ is of Gaussian, the O(θ n) terms vanish for n > 2 in this

equation. Moreover, since θ ∼ O(µ) and F ∼ O(µ2), this expansion can be regarded as a power

expansion in µ . If the convergence of the expansion Eq. (4.5) is good, we can extract the phase

factor eiφ from R easily and the sign problem in |R| is eliminated. We deal with the first two terms,

i.e. i〈θ〉 and −〈(∆θ)2〉/2, assuming the Gaussian distribution. The correlation terms between F

and θ are also neglected as a first step. Because we calculate the expectation value with fixed P and

the values of F and P are strongly correlated, the ∆F may be small once P is fixed. Then, φ ≈ 〈θ〉.
We discuss dVeff/dP instead of Veff itself, again. dVeff/dP at different β can be estimated by

the equation,

dVeff

dP
(P,β ) =

dVeff

dP
(P,β0)−6(β −β0)Nsite, (4.6)

under the parameter change from β0 to β .

8
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Figure 5: Left: The complex phase φ for Re(µ/T )2 = 1 as a function of P. Right: The blue lines are

the would-be Stokes lines for each β . The values of β are shown near the blue lines. The red curve is the

boundary where Veff changes to double-well type in the complex µ/T plane. Below this line, Veff is always

of single-well.

If the effective potential Veff is a double-well function of P having two minima at P+ and P−
and one maximum at the middle P0, dVeff/dP is an S-shaped function and vanishes three times at

P+, P− and P0. The condition,

∫ P0

P−
(dVeff/dP)dP =−

∫ P+

P0

(dVeff/dP)dP, (4.7)

is satisfied when Veff(P+) =Veff(P−) at the transition point. In such a case, there exists a region of

P where the derivative of dVeff/dP is negative. The results of the first derivative of Veff(P,β ,µ) are

shown in Fig. 4 for various µ/T with Re[(µ/T )2] = (µRe/T )2 − (µIm/T )2 = 1 (left) and 4 (right),

where β = 3.65. We measured them at the peaks of the plaquette histograms and interpolated

the data by a cubic spline method. In the region of large µIm/T , dVeff/dP becomes an S-shaped

function. The result of φ is plotted in Fig. 5 (left) for Re[(µ/T )2] = 1. It is a monotonically

increasing function of P.

We then investigate the boundary at which dVeff/dP changes to an S-shaped function from a

monotonic function. The boundary is shown as a red line in Fig. 5 (right). Above this line, the

region of P where d2Veff/dP2 = 0 appears. The constant part of dVeff/dP is changed by varying β .

We then adjust β such that the depths of two minima of Veff are the same using Eq. (4.6). If the

dashed lines in Fig. 4 move to the horizontal axis by changing β , Eq. (4.7) is satisfied.

Contour plots of the β at which Veff(P+) =Veff(P−) are shown by blue curves in Fig. 5 (right).

The values of β are indicated near the blue lines. Along the line for each β , the double-well

potential appears, and the contour curve is expected to turn into the Stokes line in the infinite

volume limit. For finite volume, at points on that line, where the phase cancelation occurs, Lee-

Yang zeros appear. This result indicates the existence of singularities in the region of large µIm as

well as the region of large µRe, and the boundary in the complex plane is closer to the origin µ = 0

than that (the square symbol) on the real axis.

9



P
o
S
(
C
P
O
D
2
0
1
4
)
0
1
4

First order transition regions in the quark masses and chemical potential parameter space of QCD
Shinji Ejiri

5. Conclusions

We studied the distribution function and effective potential of QCD with two light flavors and

Nf massive flavors, aiming to understand phase structure of 2 and (2+1)-flavor QCD. Through the

shape of the distribution function, we investigated the critical surface separating the first order

transition and crossover regions in the parameter space of the light quark mass, heavy quark mass

and the chemical potential. It is found that the critical mass becomes larger with Nf and the first

order region becomes wider with the increasing chemical potential for large Nf. If (2+1)-flavor

QCD has the same property, this gives the strong evidence for the existence of the critical point at

finite density in the real world.

The nature of the chiral phase transition in the 2-flavor massless limit is still open question. To

study the chiral limit, we investigated the light quark mass dependence. If the transition is of first

order, the critical κh vanishes before going to the 2-flavor massless limit. But, the critical κh does

not show such a behavior in the region we investigated. This implies that the critical mass of heavy

quark remains finite even in the chiral limit of 2-flavors and 2-flavor QCD near the chiral limit is

not in the first order transition region.

We then discussed 2-flavor QCD with the complex µ by a numerical simulation. We found that

there is a region where the plaquette distribution function has two peaks, suggesting the existence of

singularities characterized by Z = 0, in the region of large µIm as well as of large µRe. Combined

with the analytical study of the complex chemical potential, the distribution of the singularities

may provide important information about the QCD phase transition.
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