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1. Introduction

QCD at finite density is one of the most fascinating topicsesfearch currently because of
the tantalizing experimental possibility of exploring tite possible region of QCD critical point
in the T-u phase diagram. The challenges of the conceptual diffisylsech as the complex
fermion determinant and getting the physics of axial angroatrect on the lattice make it further
attractive. A lot of progress has been made in recent yearadking it thus a very active field of
research. In the early years of lattice QCD, one of the ingmbrproblem was how to incorporate
a finite chemical potentialy, in the local Dirac operator on the lattice. Naively introthg u
as a Lagrange multiplier of the local point-split consercedrgedxys, , 5 + Py, 5Yalx led to u-
dependent divergences in the free energy of quarks in théncoam limit. Arguing that since
U enters in the continuum like a fourth component of a staticggéafield, the chemical potential
should enter on the lattice as$h factors, multiplying the forward and backward temporal ggu
links respectively [2]. It did eliminate the undesired diyences mentioned above. However, this
proposal is not unique though: weigits+ au)/+/(1— a?u?) to the temporal links also lead to
finite results for the free energy [3]. In fact the most gehesights f (ua),g(na) should follow
f(au)-g(ap) = 1 with f(0) = f/(0) = 1 in order to cure the divergences on the lattice [4]. The
analytical proof of absence of divergences in all thesescabeve was for free quarks. Indeed,
further numerical computations in quenched QCD showed Wddk for the interacting case as
well [5], while a similar check in the full theory is still [&ing.

We revisit the problem of introduction of chemical potehtia the lattice again with a view
to develop a simpler alternative. We foresee two importpptieations in which the alternative we
pursue here may be of practical relevance in the coming yekgavy ion collision experiments at
RHIC at Brookhaven National Laboratory and at FAIR, GSI nikgly produce strongly interact-
ing systems at finite density. An important theoretical injou modeling of the evolution of these
systems is the QCD equation of state(EoS). In order to alethe EoS as a function of one
needs higher order quark number susceptibilities. Therlate also important measurables on the
lattice which relate directly to the fluctuations of net arynumber [6] that are being measured
in the heavy ion collision experiments. Furthermore, thesealso important in estimating the
location of the critical point in the QCD phase diagram. Thtoal point is governed by the sin-
gularity of the Taylor expansion of the baryon number susle#ipy in pg/T. Its location can be
determined by the radius of convergence of this Taylor esioan It, in turn, depends on the ratios
of the higher order quark number susceptibilities. Thamftheir accurate and efficient measure-
ment on the lattice is necessary although a rather chatigngioblem. Having a Dirac operator
with a linearuN term, simplifies the problem quite a lot. For example, the beinof the inver-
sions of the Dirac operator needed to calculate the eighlitrajuark number susceptibility with
the naive staggered quarks reduces from 20 to 8 [7]. For atifmoved Dirac operators and even
higher order QNS, the gain is even more which leads to a sigmifireduction of the computational
time.

Since the study of QCD critical point would be a major problefrinterest in the coming
years both from experimental and theory perspective, ilsis important to consider how crucial
is the role of exact chiral fermions at finite density for tladtite studies. The presence of the
critical end-point depends crucially on the number of lightirk flavours. Model-based consid-



A simple idea for Lattice QCD at finite density Rajiv V. Gavai

erations favour its presence for QCD with only two light daf8]. In addition, it needs the
anomaloudJa (1) symmetry-restoration to take place at sufficiently highpgenatures [8]. A mod-
erately heavy strange quark may affect the location of th®@fical end-point quantitatively but
not its existence. Majority of the calculations on QCD attérdensity on the lattice employ stag-
gered fermions and its improved versions. However, theiwonin flavour and spin symmetries
are intermingled for the staggered quarks and the flavogietida(1) anomaly is recovered only
in the continuum limit. As is well-known, the overlap [9] dod domain wall fermions [10] are
much more preferable from the chiral symmetry perspeciivey have both the correct chiral and
flavour symmetry on lattice as well as an index theorem ondtteé [11, 12]. These are likely
to be crucial for investigations of the QCD critical pointt present the computations with chiral
fermions are prohibitively expensive.

However, recently domain wall fermions have been used tesareghe chiral crossover tran-
sition temperature on the lattice [13]. This gives us a hb¢ Wwith the increase in computational
resources and smarter algorithms, use of chiral fermionddvioe more realistic in the coming
years. Non-locality of the overlap fermions makes the ihticiion of the chemical potential non-
trivial. Bloch and Wettig [14] proposed to use the same erptial prescription as above for the
timelike links of the Wilson-Dirac kerndDy (au) to define the corresponding overlap Dirac ma-
trix at nonzero density. The free energy from this overlamien action has na? divergences
[15, 16] in the free case. Unfortunately, however, it has niocat invariance for nonzerp either
[16]. Using the definition of the chiral projectors for owagslfermions, we [17] proposed a chirally
invariant Overlap action for nonzeyo:

s = Z [ (@Doy + au )ﬁ)Wn.,L + Unr(aDoy+ au Vl) UnR]
= Z Un [aDoy+ au Vl(l —aDoy/2)|Yn .

It was shown that the fermion action is invariant under thedaher transformation [12]
and the corresponding order parameter, the chiral contiemsanique for all values odu [17].
Moreover the anomaly ig-independent on the lattice as is expected from the contini]. It,
however, has the samedependent? divergences in the number density and the energy density
as the lineap-case for naive/staggered fermions [18]. Furthermorekerthat case, these cannot
be removed by exponentiation of theterm [18]. So either one has exact chiral invariance on
the lattice or have to deal with the divergences in the comtim limit of a — 0. One needs to
understand the origin of thegedependent divergences better. In quantum field theoresoval
of divergences from physical quantum theories has leadtensive studies of the different reg-
ulators and their suitability for different physical prebits. We aim to have an understanding of
the nature of the divergences at finite density, and look fethads to remove them in alternate,
perhaps simplifying, ways.

2. The divergences at finite density : Why and how to remove tha

2.1 Non-interacting fermions at finite chemical potential

As a first step we examined carefully the free dense quarkrgasritinuum. We found that
contrary to the common belief, these divergencesnatedue to lattice artifacts. Indeed, the
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dependent divergences exist in the continuum theory aswieth appropriate care is taken in
manipulating divergent integrals. The lattice regulaiot@dy makes it easy to spot them. Using
a Pauli-Villars cut-offA in the continuum theory, one can also show the presenge\éterms in
the number density easily [20]. We will sketch the argumesretbriefly, referring the reader to
[20] for more details. Let us recall that QCD partition funat can be written in the path integral
formalism as,

@ / DALGTDels " I P2, )Gl (9 -ioAw) +m)y] 2.1)

where () ¢ andA, represents the (anti-)fermion and the gluon fields resgalgtiOne introduces
a chemical potentigl; for each conserved chargé = [ d3x{i v, leading to the additional term
L4 in the action above. Canonical definitions consisting of &irel second derivative o with
respect tquy =  yield quark number density and susceptibility,

2
= —IMIT:fixed ; X= —Iwhzfixed (2.2)

vV du vV du?
These can be calculated analytically when the gauge inienscare switched off. For simplicity
we consider only massless fermions though this derivationbe easily extended to finite quark
mass. The expression for the free quark number densityis the

AT (th+ip) _ AT dp
- z/ i = v 2 @ ey Fennp. @)

wherep? = p?+ p3+ p3. All the gamma matrices are Hermitian in our conventinr= 0 andu = 0
corresponds to the vacuum contribution which can be rembyesubtractingn(T = 0, 4 = 0).
Although this is identically zero for number density, theresponding subtraction for the energy
density is actuallyd A*. Due to the Fermi-Dirac distribution functions, one does expect any
ultraviolet divergences at finit€. We therefore consider theé = O contribution of the above
expression to examine the presence of divergences, if dngyslim overu, turns into a continuous
w integral and the explicit expression for the zdr@ontribution to the number density is,

dw d®p  (w+ip)
n_4/ I (2 4 (oot (TR 2.4)

Under a variable transformatian+ iy = ', it can be recast as

coip 3
n—4/ do/ d°p o (2.5)

wtig 21T 27'[ P+ w?’

In calculating this expression one considers a suitabléocoras shown in Figure 1 with a cut-off
N for the w integral in order to regulate the divergent terms, and ifletitem by powers of\. The
expression in EQ. 2.5 can be seen to be the line integral Jur&i 1. By adding and subtracting
the line integrals labelled as 2,4, one obtains the result from the contour integral in terfrth®
residue of the quark propagator pole with the correspon@ifignction defining the Fermi surface
and leading to the usual®-term. Out of the subtracted terms, the line integral 1 isct#xaero
due to CP symmetry. However, the contribution of the armsd24aim the Figure 1 clearly do not
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—A A

Figure 1: The contour integral used for calculating the zero tempeegiart of the number density.

cancel each other. The\? terms can be shown to arise from the algebraic sum of thase {€0],

being of the form Iog[ gzig/\““)z} . Inthe limit A > u, and with the same cut-off for momentum

A—il)?
p, an expansion in /A shows that while the leadingy® terms do cancel from the numerator and
denominator, theiA? terms add, and survive. It is easy to see that a simifdx? divergent term
persists in the energy density as well. It is amusing to no&t the divergence is absent in the
number density for nonzero isospin chemical potential wigh= 0, since this amounts to putting
two flavours of quarks in the Lagrangian with chemical pagai, and—L;. The divergent term
then cancels explicitly between the two quark flavours sihcemes with an equal and opposite
sign. The corresponding energy density, however, doesthay&A? divergent term. On the other
hand, the divergence does exist for imaginary chemicalnpielfor the number density as well, as

we show below.

2.2 Non-interacting fermions in presence of imaginaryu

The expression for the number density for free fermions @sence of imaginary chemical
potential at zero temperature is

CMNdw d*p (w—p)
n=—4i /f/\ZT 2P Pt (-2 (2.6)
Performing thew integral, which in this case is on reaktaxis only, one gets,
[ BPp (PP (A—p)?
n__4|/(2rr)4|n<p2+(A+u)2> . (2.7)

In the limit A > 1, one can again expand the numerator and the denominatce oftdgrand. As
above, we further assume the same cutfofér the momentum integral.
Keeping terms upto /A3, one obtains the number density as,
3 2
.MU CUA
nN=i—=+i—. 2.8

32 * 412 (2.8)
The imaginary nature of number density comes out, as exghelctdeed, one recovers thame quadratic
divergence back if one perform analytic continuation td geaThis is reassuring since it shows
that the presence of divergence for nonzgrs not due to the particular contour method we chose
in Figure 1, as the integrals in this case are performed onethlev-axis for imaginary chemical
potential.
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2.3 Free quark gas on the lattice

We have seen that for non-interacting fermions within aaftitegulator scheme one obtains
a u/N\? divergence. This explains the presence of a similar divergen the lattice expression of
number density for non-interacting fermions, since thigdategulator is simply a cut-off regulator
and theu /a® term in the number density on a lattice is just a manifegtatibthe continuum
divergence. This can be explicitly seen following the sawmm®putation as above. The expression
of the number density onig2 x Ny lattice with linearu and a conserved point-split charge is,

3 i (sinwy, + i pacoswy, ) coswn
na’ = — Z . - >
N3Nt & f + (sinwy + ipacoswy)

(2.9)

wheref = (ma)?+sir?(apy) +sir(ap) +sirf(aps), pj = 2n;7/N, nj € Z. At T = 0 one converts
the sum over the Matsubara frequencies into an integralpbtains a line integral in the complex
w plane analogous to the line integral marked 3 in Figure lartloe calculated using a contour
as in Figure 1 but with tanht(au) in place ofu. Again the residue of the contour integral yields
the Fermi surface on a finite lattice even in this method. Titherdence now comes from the line
integral equivalent to the one marked 1 in Figure 1. On thicéabne can perform the integral
over w to obtain the zero temperature part of the number densitikingiasuccessive derivatives
of this term with respect tqr gives the zero temperature artifacts in the lingamethod for the
second and fourth order susceptibilities [19]:

f 3+ 2f f
X20(T =0) = 4N3Z< A\ 117 ) Xao(T =0) = 4N3Z< 1+f 1+f>'

3. Testing the idea on the lattice

Having noted that the divergence on the lattice is no diffetieat a/\-cut-off in the continuum
theory, we proposed, and demonstrated, earlier that aasitibin of theT = O ideal gas term for
the quark number susceptibility on the same $iFdattice does eliminate the divergence in the
continuum limit obtained by sendingy — o for the free case [19]. Here we concern ourselves
with the test of that idea for interacting theory. We caltedethe susceptibilities(QNS) for two de-
generate quark flavours on quenched lattices with the lipdirac operator [20]. The purg8U(3)
gauge configurations were generated using the Cabibbaabtapseudo-heatbath algorithm with
threeSU(2) subgroup update per sweep using the Kennedy-Pendletotingdsethod. We gen-
eratedNt = 4,6,8,10 and 12 lattices and 25-100 independent configuratiorts ataevo different
temperatures given by/T. = 1.25,2. To keep the finite volume effects under control we checked
and usedNs = 4Nt. The second order QNS was calculated by inverting the Dipgeaior on 400
and 500 Gaussian random vectors dt 25T respectively. The results obtained using this method
contain unphysicali?/a® and u° artifacts for second and fourth order QNS. For removing them
we calculate the corresponding free theory QNS at zero teahye in Eq. (2.10) and perform the
continuum extrapolation. The expressions for th€se 0 values and the corresponding numeri-
cal values are displayed in Table 1. Performing the subitmacthe physical values of the second
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Nr | T(MeV) | m/Tc | X20(T =0) | Xao(T =0)
4 -0.062487 | -0.142923
8 1.25 -0.062499 | -0.142661
10 0.1 | -0.062501 | -0.142620
12 -0.062502 | -0.142607
4 -0.062541 | -0.142999
6 2 -0.062500 | -0.142611
8 0.1 | -0.062508 | -0.142677
10 -0.062512 | -0.142718

Table 1: TheT = 0 ideal gas subtraction terms at different volumes and teatpess for the second and

fourth order QNS used in thi

2

s work.
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Figure 2: The continuum extrapolated results for the second ordekquanber susceptibilities in quenched
QCD for a quark mass/ T, = 0.1 at 125T. (left) and ZI;; (right) compared to the corresponding results using
the €2 method.

order QNS with a quark mass/T; = 0.1 is shown in Figure 2. We do not observe any divergent
term as evident from the positive slope of the data. Moreawer extrapolated continuum result
coincides with the earlier result obtained with the @xpu) action [5, 22], marked with red open
circles on the vertical axis of each figure. In other to chdwlt there are no mass dependent di-
vergent terms we calculated the second order QNS with dastiir quark massn/T, = 0.01, the
continuum extrapolated results shown in the left panel glifFé 3. We indeed confirm absence
of any new divergences from the slope of the fitted curve. Heunbore, removing the free theory
T = 0 artifacts from the fourth order QNS also gives the correcttiouum limit as evident from
the right panel of Figure 3. For the QN& ,n > 6, the additional artifacts in the linearmethod
areo(a"#), hence do not affect the continuum extrapolation of thécetesults. Moreover these
terms reduce the cut-off effects compared to tha-method and facilitate a smoother approach to
the continuum [19].

4. Summary

We did a comprehensive study of the possible origin of iRga® divergences in the quark
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Figure 3: The continuum extrapolated results for the second ordekquanber susceptibilities for a lighter
quark massn/T. = 0.01 at 125T; (left) and the results for the fourth order susceptibility the quark mass
m/Te = 0.1 (right).

number susceptibility on the lattice when we introduce deahpotential as auN term in the
fermion action,N being the conserved number density on the lattice. We fourdiat such

a divergence explicitly exist for the QNS of free fermiongiwa cut-off regulator. The lattice
regulator just faithfully reproduces this divergence foe free fermions as well. Conserved charges
are not renormalized. Assuming therefore that the onlyrdsmece that would exist for QCD on
the lattice is due to theN term of the free theory, we did an explicit check in quench&D(y
taking the continuum limit of the second and the fourth oideal gas subtracted QNS. We indeed
find that there are no additional divergences that arise dumeractions. The divergence in the
linear u-method can be removed easily which gives us another patirdawntroducingu on the
lattice in addition to the most popular method [2] where ormifies the quark action at finite

to remove these divergences explicitly. This method maydreeficial for calculating the higher
order QNS with considerably less computational effortvaiia us to calculate the Lattice EoS at
finite baryon chemical potential and make progress towamssoring the critical end-point.
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