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In this talk I will discuss an effective field theory for electron excitations in graphene, and
show how it may be approached using the same lattice field theory methods more usually applied
to the strong interaction between quarks and gluons. I will argue that for sufficiently strong inter-
electron coupling, of the same order as that found in suspended graphene samples, there is a phase
transition to a insulating phase, described by a quantum critical point (QCP). I will then specialise
to the case of bilayer graphene with a biassing voltage applied between the layers, so that there is a
non-zero density of electrons on one layer and holes on the other. This is formally very similar to
the case of non-zero chemical potential for isopsin in QCD, and will permit numerical simulations
probing degenerate matter (albeit in 2+1d) in the presence of strong interactions.

1. Relativity in Graphene

Let’s begin with a simple tight-binding model, with a Hamiltonian describing electrons in π-
orbitals hopping between A and B sublattices on the bipartite honeycomb lattice appropriate for a
graphene monolayer (an excellent introduction can be found in the review by Castro Neto el al [1]):
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Figure 1: The honeycomb lattice of monolayer graphene.

H =−t ∑
~r∈B

3

∑
i=1

b†(~r)a(~r +~si)+a†(~r +~si)b(~r) (1.1)

In momentum space the Hamiltonian is rewritten

H = ∑
~k

(
Φ(~k)a†(~k)b(~k)+Φ

∗(~k)b†(~k)a(~k)
)

with Φ(~k) =−t

[
eikxl +2cos

(√3kyl
2

)
e−i kxl

2

]
(1.2)

where l is the length of a CC bond. Notice how the fact that a link emerging from a site is not
matched by another leaving at 180◦ results in a complex-valued kernel Φ(~k). If we define states
|~k±〉= (

√
2)−1[a†(~k)±b†(~k)]|0〉, then

〈~k±|H|~k±〉=±(Φ(~k)+Φ
∗(~k))≡±E(~k), (1.3)
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so that the energy spectrum is symmetric about E = 0.
In fact, E = 0 at precisely two independent points within the first Brillouin Zone, the so-called

Dirac points~k = ~K± = (0,±4π/3
√

3l). Linearise about these points;

Φ(~K±+~p) =±vF [py± ipx]+O(p2) with vF =
3
2

tl. (1.4)

The Fermi velocity vF ≈ 106ms−1 in graphene. Now define modified electron operators a±(~p) =
a(~K± +~p) etc, and combine them into a four-spinor Ψ = (b+,a+,a−,b−)tr. To linear order in p
the complex structure implicit in (1.4) results in the Dirac Hamiltonian

H = vF ∑
~p

Ψ
†(~p)~α.~pΨ(~p), (1.5)

with 4× 4 matrices obeying {αi,α j} = δi j. In other words, low-energy excitations in graphene
are massless relativistic fermions with velocity ≈ c/300. For monolayer graphene, the number of
relativistic flavors N f = 2, ie 8 spinor degrees of freedom = 2 C atoms/unit cell × 2 Dirac points ×
2 spins.

Electron-electron interactions in graphene can’t be ignored for two reasons. Firstly, Debye
screening is suppressed due to the vanishing density of free electron states at the Dirac points.
Secondly, the effective fine structure constant is boosted by a factor c/vF and is hence of order
unity. The following effective field theory treats interactions in a simple way [2, 3]:

S =
N f

∑
a=1

∫
dx0d2x(ψ̄aγ0∂0ψa + vF ψ̄a~γ.~∇ψa + iV ψ̄aγ0ψa)+

1
2e2

∫
dx0d3x(∂iV )2. (1.6)

The field V is an “instantaneous” Coulomb potential governed by 3d Maxwell electrodynamics
with vF � c, interacting with relativistic electrons moving in the plane; this is a “braneworld”. In
the large-N f limit the V -propagator is given by

D(p) =

(
2|~p|
e2 +

N f

8
|~p|2

(p2
0 + v2

F |~p|2)
1
2

)−1

. (1.7)

The first term is the classical result, the second is the leading quantum correction arising from
vacuum polarisation due to virtual electron-hole pairs. In the static limit p0 = 0 both contributions
yield a 1/r potential. The dimensionless combination λ = e2N f /16εε0h̄vF ' 1.4N f /ε parametrises
the relative strengths of quantum vs. classical, and depends on the dielectric constant ε of the
substrate on which the graphene sits. λ is maximal for “suspended” graphene for which ε = 1.

For sufficiently large e2/ε or sufficiently small N f it has been hypothesised that the Fock vac-
uum is unstable with respect to condensation of particle-hole pairs with 〈ψ̄ψ〉 6= 0, spontaneously
breaking the global U(2N f ) symmetry of (1.6) to U(N f )⊗U(N f ) and leading to a gapping of the
electron dispersion at the Dirac points [3]. In particle physics we say a fermion mass is dynami-
cally generated via a chiral condensate; in condensed matter physics the resulting phase is known
as a Mott insulator. The transition occuring at e2

c(N f ) defines a QCP whose universal properties
characterise the low-energy excitations of graphene. In the (e2,N f ) plane the QCPs lie along a
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EoS results

comes from the chirally symmetric phase there may be a small systematic error in the
identification of g2

peak.
Fits to (15) favour Nfc ≃ 3.8−4, and p ≃ 0.9. These values are also favoured by the

most comprehensive FVS fit to the 96 datapoints with Nf < 5. There is no evidence
that discarding m = 0.01 data, which may be most prone to finite volume artifacts,
improves any of the fits. On the other hand, discarding Lt = 16 and perhaps Lt = 24
does have a significant effect on the fitted values of Nfc, p and νt in the FVS fits. In
these cases the fitted δ ≈ 4. Once data with extremal values of Nf is excluded, on the

assumption that they lie outside the scaling window, the fitted values of δ rise to >∼ 5.
In almost all cases the fitted value of νt exceeds 1, though often not by a statistically
significant margin.
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Figure 4: Finite volume scaling fit to (17) to data with m = 0.01 (circles), 0.02 (squares), 0.03 (dia-
monds) and 0.04 (triangles), in terms of N ′

f . Different colous and and shadings represent data from
differing Ls, Lt

Our favourite fit, yielding the smallest χ2/dof, emerges from the 60 datapoints with
Nf ∈ [3, 5) and Lt ≥ 32. Another reason for preferring this is that the fitted Nfc is
consistent with the value (14) coming from the behaviour of g2

peak(Nf), which could thus
be regarded as an additional constraint on the global fit. The fit is plotted in Fig. 4 in

terms of the control parameter in the thermodynamic limit N ′
f = Nf + CL

− 1
νt

t , so that
data with differing Lt should collapse onto a single curve for each value of m.
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Strong coupling limit

Nfc = 4.8(2) > 2

δ(Nfc) = 5.5(3)
⇒ graphene is an insulator for 

sufficiently strong coupling 
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Figure 2: (Color online) Fit to (9) to order parameter data taken on 242 × 48. The function in the
m → 0 limit is also shown.
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Figure 3: (Color online) Plot of m/⟨χ̄χ⟩δ vs. (g−2 − g−2
c )⟨χ̄χ⟩−1/β using the critical parameters (10).
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Physical graphene Nf =2

gc-2 = 0.609(2)

δ(Nf =2) = 2.66(3)

SJH & C.G. Strouthos, Phys. Rev. B78(2008) 165423
W.  Armour, SJH & C.G. Strouthos, Phys. Rev. B81(2010) 125105

⇒ QCP potentially relevant for Nf = 2

So δ depends on Nf 
Cf Drut & Lähde Phys. Rev. B79(2009) 241405(R)
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Figure 2: Chiral order parameter 〈χ̄χ〉 resulting from (2.1) for various m at strong coupling (left), and for
N f = 2 (right).

phase boundary between insulating and metallic phases, and the values of exponents such as δ in
the critical scaling relation

〈ψ̄ψ〉|e2=e2
c

∝ m
1
δ , (1.8)

where m is an explicit symmetry-breaking mass parameter, depend on N f . This behaviour is similar
to that of the 3d Thirring model, whose phase diagram has been mapped numerically over many
years [4], and inspires a treatment based on the technically simpler action (with units vF = 1)

S =
N f

∑
a=1

∫
dx0d2x

[
ψ̄aγµ∂µψa + iV ψ̄aγ0ψa +

1
2g2V 2

]
(1.9)

This has the identical D(p) in the strong-coupling limit, but the Coulombic r−1 tail is screened for
g2 < ∞. The relation between g2 and e2,λ is not known a priori.

2. Lattice Approach

Due to the absence of small parameters at the QCP, a non-perturbative approach is needed.
We have used a lattice model based on the staggered fermion formulation on a cubic lattice, with
action (i = 1, . . . ,N) [5]

Slatt =
1
2 ∑

xµi
χ̄

i
xηµx(1+ iδµ0Vx)χ

i
x+µ̂

− χ̄
i
xηµx(1− iδµ0Vx−0̂)χ

i
x−µ̂

+m∑
xi

χ̄
i
xχ

i
x +

N
4g2 ∑

x
V 2

x (2.1)

The fermion fields χ , χ̄ are defined on lattice sites, and the boson fields V on the timelike links. The
sign factors ηµx ≡ (−1)x0+···+xµ−1 ensure a covariant continuum limit in the free-field limit g2 = 0.
The action (2.1) only has a chance of recovering the physics of (1.6) at a QCP, where for instance
details of the underlying lattice should become irrelevant. However, (2.1) exhibits a distinct chiral
symmetry breaking pattern U(N)⊗U(N)→U(N); away from weak coupling, there is no guarantee
of “taste symmetry restoration” ensuring the correct continuum symmetries with N f = 2N.
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Fig. 2 shows the order parameter 〈χ̄χ(m)〉 as a function of N f in the strong coupling limit
(left) [5], and as a function of g−2 for the monolayer value N f = 2 (right) [6]. In both cases a power-
law equation of state appropriate for a continuous phase transition has been fitted; this identifies
the location of the QCP. The left hand plot shows a critical value N f c = 4.8(2), proving that a QCP
exists for finite g2 for N f = 2 < N f c, and is thus potentially relevant for monolayer graphene. The
right hand plot shows a critical coupling g−2

c = 0.609(2) for N f = 2, with the critical exponent
δ = 2.66(3), to be contrasted with δ (N f c) = 5.5(3). The model (2.1) has also been used to study
the symmetry restoring transition at temperature T > 0, expected to be of BKT type [7].

These results are consistent with those obtained by simulating the braneworld gauge theory [8].
That work initially suggested the QCP might occur at a coupling sufficiently small that suspended
graphene samples might lie in the insulating phase. Later simulations on a 2d honeycomb lattice
with a more realistic inter-electron potential suggest the critical coupling is slightly too strong for a
Mott insulator to be observed, although modification of the electron dispersion in pure suspended
samples due to the vicinity of a QCP is not excluded [9].

3. Bilayer Graphene

There is just as much interest in graphene samples formed from two honeycomb layers, in
which the A atoms of one sheet lie directly over the B atoms of its neighbour. Naively, electron
transport should have an effective description with N f = 4 relativistic fermions; however in the
absence of any further interactions the Hamiltonian (1.1) actually predicts a parabolic band struc-
ture [10]. Let’s rename the original intralayer coupling along a CC bond within a layer t0 and
introduce new interlayer couplings t1 between overlying AB sites and t3 between AB sites displaced
horizontally a distance l. This latter coupling results in a trigonal distortion of the parabolic band,
breaking it into four separate cones at the Dirac point. It turns out an N f = 4 effective field theory
description is plausible for long-wavelength excitations with kl <∼ t1t3/t2

0 .
The new ingredient in the bilayer problem is the possibility of applying a bias voltage across

the layers, inducing a negative charge on one layer due to non-zero density of electrons, and a
positive charge on the other due to holes. Denoting this voltage by 2µ we can introduce it with
positive minimal coupling to fields ψ on the the upper layer and negative coupling to fields φ on the
lower. This is formally identical to the introduction of an isopsin chemical potential in two-flavor
QCD. The lagrangian density in continuum notation reads [11]

L = (ψ̄, φ̄)
(

D[V ; µ]+m i j
−i j D[V ;−µ]−m

)(
ψ

φ

)
+

1
2g2V 2 ≡ Ψ̄M Ψ+

1
2g2V 2, (3.1)

where D[V ; µ] = D[V ;0]+ µγ0 = −D†[V ;−µ]. The parameter m is a symmetry-breaking gap pa-
rameter due to intralayer particle-hole pairing, and j a gap parameter due to interlayer pairing; the
bound state formed in the latter case is known as an exciton. They act as IR regulators for the
model; in practice numerical simulations with m = 0, j 6= 0 are perfectly feasible. The model is not
realistic in the sense that intralayer ψ – ψ interactions have the same coupling strength as interlayer
ψ – φ ; however, from a simulator’s point of view the key feature is the identity

detM = det[(D+m)†(D+m)+ j2] > 0. (3.2)

5
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Figure 3: Carrier density nc in bilayer model as a function of µ (left), and in the small µ j → 0 limit (right).

Even with µ 6= 0 the model has no sign problem and is amenable to orthodox Monte Carlo methods.
We have implemented a lattice version of (3.1) using N = 2 staggered fermion flavors on 323

and 483 lattices. Since N f = 4 is close to N f c, it is hard to identify the location of the QCP; we
set (g2a)−1 = 0.41, which we believe is just to the sub-critical side of the QCP. Simulations with
varying µ have been performed, and the following observables monitored:

carrier density nc ≡
∂ lnZ

∂ µ
= 〈ψ̄D0ψ〉−〈φ̄D0φ〉, (3.3)

exciton condensate 〈ΨΨ〉 ≡ ∂ lnZ

∂ j
= i〈ψ̄φ − φ̄ψ〉, (3.4)

chiral condensate 〈Ψ̄Ψ〉 ≡ ∂ lnZ

∂m
= 〈ψ̄ψ− φ̄φ〉. (3.5)

The exciton condensate 〈ΨΨ〉 (3.4) caused by spontaneous pairing of electrons and holes between
layers is a new feature; just like any other pairing phenomenon it is expected to induce a gap
rendering the ground state insulating. By varying µ we can check how exciton condensation varies
with the extent of the Fermi surface (strictly a Fermi line in 2+1d).

Fig. 3 shows simulation results for nc; at the left the data rise steeply with µ to reach a plateau
at µa ≈ 0.5. There is no discernable onset µo below which nc vanishes. The plateau marks the
saturation region where the lattice contains one fermion (both particle and hole) per site and the
Exclusion Principle prevents further occupation. It should be regarded as an artifact of simulating
continuous fields on a discrete lattice. Interestingly, all other known simulable lattice models reach
saturation at µa ∼ O(1); indeed, the result for free fermions in 2+1d is shown as a dashed line.
In the limit T → 0, µ coincides with the Fermi energy EF . Since nc is directly related to the
Fermi momentum kF , the precocious saturation is the first hint that EF < kF , ie. the system is
strongly self-bound. At right the j → 0 extrapolated data are fitted to a power law, with the result
nc( j = 0) ∝ µ3.32(1). The density rises faster than the free-field expectation nc ∝ µ2 coming from
the area of the Fermi disk.

Fig. 4 shows the corresponding plots for 〈ΨΨ〉. Again there is a steep rise to a peak at µa ≈
0.3, followed by an even more rapid descent to zero in the saturation region. The free-field results,

1Care is needed since a priori there is no reason for spatial and temporal lattice spacings to coincide at the QCP.
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Figure 4: Exciton condensate 〈ΨΨ〉 as a function of µ (left), and in the small µ j → 0 limit (right).

which are much smaller and extremely sensitive to j, are shown as dashed lines. The extrapolated
data is fitted by 〈ΨΨ( j = 0)〉 ∝ µ2.39(2). As we will see below, this result also suggests a weak-
coupling approach is not applicable.
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Figure 5: Chiral condensate 〈Ψ̄Ψ〉 vs. µ (left), and the ratio 〈ΨΨ〉/
√

nc vs µ for various j (right).

The left panel of Fig. 5 shows the intralayer condensate 〈Ψ̄Ψ〉; for small µ it exceeds its free-
field value, as might be expected from the strong interactions close to a QCP, but then rapidly falls
to zero as µ increases, so that by the time µa=0.3 where 〈ΨΨ〉 peaks, it falls below the free-field
value. This can be understood in terms of a competition between the two condensates; intralayer
pairing is suppressed as EF grows, because more energy is needed to excite a particle-hole pair
from a single layer, whereas interlayer pairing is enhanced by the larger density of states as kF

grows. Even at µ = 0 |〈Ψ̄Ψ〉| ≈ 1
3 |〈ΨΨ〉|peak.

Now, 〈ΨΨ〉 is simply the density of exciton pairs in the ground state. In a weakly-coupled
BCS picture of exciton condensation, the excitons would be drawn from a shell of thickness ∆

around the Fermi surface, where ∆ is the induced gap; we would then expect 〈ΨΨ〉 ∝ ∆kF ∝ ∆n
1
2
c ,

where the last step follows from Luttinger’s theorem relating nc to the volume enclosed within the
Fermi surface. Thus we predict

∆(µ) ∝
〈ΨΨ(µ)〉√

nc(µ)
. (3.6)
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The quantity on the RHS of (3.6) is plotted as a function of µ in the RH panel of Fig. 5, with
particular attention paid to the extrapolation to both thermodynamic and j → 0 limits. For small
µ we infer ∆ ∝ µ; at a QCP no other behaviour could arise, since µ is the only scale. This should
be contrasted with other models studied using lattice simulation; in the non-renormalisable NJL
model, ∆ ∝ ΛUV [12], whereas in two-color QCD ∆ = O(ΛQCD) [13]. In neither case is there any
significant dependence on µ .

4. Quasiparticle Dispersion in Bilayer Graphene

In order to confirm the picture developed in the previous section of a system with kF > µ and
∆ ∝ µ it would clearly help to have direct knowledge of these quantities from the fermion (in this
context known as the quasiparticle) dispersion relation E(k). Here we present preliminary results
obtained from the Euclidean propagator 〈Ψ(k)Ψ̄(k)〉∝ e−E(k)t on 323; to improve momentum reso-
lution partially twisted boundary conditions are used [14], so that the smallest non-zero k is π/48a.
We calculated the timeslice correlators in both normal and anomalous channels according to

0 5 10 15 20 25
ka/(π/48)

0.1
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Figure 6: Quasiparticle dispersion relation E(k) at µa = 0.2 for various j (left), and the fitted propagator
amplitudes (right).

CN(~k, t) = ∑
~x
〈ψ(~0,0)ψ̄(~x, t)〉e−i~k.~x; CA(~k, t) = ∑

~x
〈ψ(~0,0)φ̄(~x, t)〉e−i~k.~x (4.1)

and fitted to the forms [15].

CN(k, t) = Ae−Et +Be−E(Lt−t); CA(k, t) = C(e−Et − e−E(Lt−t)). (4.2)

The resulting dispersion E(k) is shown for several j in the left panel of Fig. 6. The clear dip
marks the Fermi surface; for k < kF the correlator is dominated by forwards-propagating holes,
and for k > kF by backwards-propagating particles, as demonstrated in the relative magnitudes of
the amplitudes A and B in Fig. 6 (right). Note that the amplitude C for anomalous propagation,
in which eg. an electron in one layer is absorbed by an exciton transferring its momentum to an
electron in the other, is comparable in magnitude to those for normal propagation for a range of
momenta with k ≈ kF .
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From the plots we estimate kFa≈ 0.4 > µa = 0.2, supporting the earlier contention that kF >

EF due to the self-bound nature of the system near the QCP. As a sanity check we note that for free
lattice fermions the carrier density n f reelatt

c (µa = 0.4)a2 ≈ 0.06, to be compared with the directly
measured value 0.09 (see Fig. 3).

0 0.01 0.02 0.03 0.04 0.05 0.06
ja

0

0.05

0.1

0.15

0.2

0.25

∆a/2

µ=0.2 483

µ=0.2 323

µ=0.1 323

Figure 7: Gap ∆( j) estimated from the minimum of E(k).

Finally in Fig. 7 we plot the gap ∆ estimated from the minima of E(k) in Fig. 6, with data taken
at two different values of µ . We can then extrapolate to j = 0 and estimate ∆a(µa = 0.1) ≈ 0.1,
∆a(µ = 0.2)≈ 0.3. This is roughly consistent with our earlier prediction that ∆ ∝ µ , and supports
a physical picture of a gapped Fermi surface with ∆/µ ∼ O(1). This should be compared with
studies using a diagrammatic approach predicting ∆/µ ∼ 10−7 [16].

5. Summary

We’ve discussed how the effective description of graphene in terms of relativistic field the-
ory can be studied non-perturbatively using orthodox lattice simulation techniques familiar from
particle physics. The simulations have confirmed at least the theoretical possibility of a QCP in
monolayer graphene which may have relevance for the correct description of charge transport in
suspended samples. In the case of bilayer graphene the model presented here, though arguably not
very realistic due to the equality of intra- and inter-layer interaction stengths, is at least an inter-
esting new member of the rather exclusive stable of models which permit study by Monte Carlo
techniques in the presence of a chemical potential. As we have seen, its behaviour is rather differ-
ent from other models in this class (NJL, QC2D) because residual interactions at the Fermi surface
are strong in the vicinity of a QCP.
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