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The net-baryon multiplicity is a link between high energy heavy ion collision experiments and
lattice gauge simulations both of which are pursued hardly to find the QCD critical point. We
propose to study the canonical partition function, Zn, in both experimental and numerical studies.
We first present a recipe how to extract Zn from experimental multiplicities and apply it for the
net-proton multiplicies, which can be a proxy of the net baryon multiplicity.
Next we present a method to calculate Zn in the lattice QCD. Lattice simulations at finite dencity
had been believed to go wrong because of the notorious sign problem. We show that a new
fugacity expansion works, and we can obtain Zn at the deconfinement region (T > Tc) and not
very low temperature region at T < Tc.
Using the relation between Zn and the grand canonical function, Z,

Z(µ,T ) = ∑
n

Zn(T )enµ/T ,

we can evaluate both real and complex chemical potential regions, both in experiment and
lattice simulations. This relation is a powerful new tool to search for the QCD critical point,
both in experimental and numerical analyses.
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1. Introduction

Needless to say, at least to those of the CPOD society, one of the most important research goal
is to clarify the QCD phase at finite temperature and density. Towards this goal, many theoretical
and experimental efforts have been done:

1. Experimentally, multiplicity distributions have been measured by varying energies in high
energy heavy ion collisions (BES (beam energy scan) experiments) [1, 2].

2. Phenomenologically, many interesting phases are predicted[3].

3. Numerically lattice QCD simulation is well formulated not only zero temperature and zero
density, but also at extreme condition[5].

Difficulty of each approaches are the following:

1. We measure hadrons in detectors. They are travelling on the temperature-density plane after
the deconfinement transition. So-called freezeout temperature and density are not on the
phase transition line, but within the confinement region. They bring the information about
the phase transition line, but we must extract the transition point, in some method.

2. Effective theories have usually unknown parameters, which are constrained by the symmetry.
Then their predictions are varying.

3. The lattice QCD simulation at finite chemical potential suffers from the sign problem, i.e.,
detD(µ) in the following path integral is complex,

Z(µ,T ) =
∫

DU(detD(µ))N f e−SG (1.1)

and the probability in the Monte Carlo step (detD(µ))N f e−SG/Z is complex in general.

In this report, we study the canonical approach which may solve the difficulty 1. and 3. above.

2. Grand Canonical Partition Function, Z, vs. Canonical Partition Function, Zn

We assume that fire-balls created in high energy heavy ion collision are described by the grand
canonical partition function,

Z(µ,T ) = Tre−(H−µN̂)/T , (2.1)

where µ and T are the chemical potential and the temperature, respectively. N̂ and H are the number
operator and the Hamiltonian, respectively. The system is considered to be in a equilibrium state,
and therefore this is an approximation. Surprisingly this is a good approximation, since we describe
the system in terms of µ and T without much contradiction[6].

The relation between the grand canonical and canonical partition functions can be expressed
as

Z(ξ ,T ) = Tre−(H−µN̂)/T =
+Nmax

∑
n=−Nmax

〈n|e−H/T |n〉eµn/T =
+Nmax

∑
n=−Nmax

Zn(T )ξ n, (2.2)

∗Speaker.
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Figure 1: Fugacity ξ = exp(µ/T ) as a
function of collision energy

√
sNN . Plot-

ted values are those obtained from RHIC
experiments (blue crosses) and the freeze
-out results reported in Ref.[4].
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Figure 2: Zn calculated from RHIC data
with

√
sNN = 19.6 39 and 200 GeV.

where Zn = 〈n|e−H/T |n〉 and ξ ≡ exp(µ/T ) is the fugacity. Here, we assume that the number
operator N̂ commutes with the Hamiltonian H, that is, N̂ is a conserved quantity.

From its definition, we see the following two characters of the canonical partition functions:

1. Zn are function of the temperature T , but not the chemical potential µ .

2. Zn satisfies
Zn = Z−n, (2.3)

due to the charge conjugation and parity symmetries.

Figure 3: From the relation Z(T,µ) =
∑n Zn(T )(eµ/T )n, we can get the informa-
tion at different values of µ/T at fixed T .

The coefficients Zn are canonical partition func-
tions. The relation Eq.(2.2) is useful for investigating
the QCD phase diagram because if we obtain Zn, which
is a function of the temperature T , we can calculate the
grand canonical partition functions at any µ/T for the
same temperature T . See Fig.3

3. How to calculate Zn ?

3.1 RHIC data

A system created at central collisions in high en-
ergy heavy-ion experiments is well described by the
grand partition function Z(T,µ) with temperature T
and chemical potential µ . Equation (2.2) means that
an event with baryon multiplicity n occurs with a prob-
ability proportional to Znξ n,

Pn(ξ ) = Zn ξ n. (3.1)
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Using Eqs.(2.3) and (3.1), we can determine both ξ and Zn from experimental data. Currently,
experimental data on the net baryon multiplicity are not available, and we employ the net proton
multiplicity data of Refs. [1, 2] instead. We assume that they have similar behavior. Here we use
the data with the centrality 0 - 5% and analyze the multiplicities at

√
sNN = 11.5, 19.6, 27, 39 64.4

and 200 GeV.
Figure2 shows the obtained ξ together with that obtained by freeze-out analysis in Ref.[4].

Note that the freeze-out temperature and chemical potential in Ref.[4] were obtained from sec-
ondary particle distributions and yields, and multiplicity was not used. Some of the obtained Zn are
shown in Fig.2.

3.2 Lattice QCD

Fugacity expansion method
Lattice QCD simulations are usually performed using the grand partition functions

Z(µ,T ) =
∫

DU (det∆(µ))Nf exp(−SG), (3.2)

where ∆ is the matrix for Wilson fermions and SG is the gluon action. To reduce the lattice dis-
cretization artifacts, some improvements are made to ∆ and SG in this study. ∆ is expressed by the
reduction formula developed in Ref.[7],

det∆(µ) = C0ξ−Nred/2
Nred

∏
n=1

(λn +ξ ) = C0

Nred

∑
n=0

cnξ n−Nred/2 = C0

Nred/2

∑
n=−Nred/2

cnξ n, (3.3)

where λn are the eigenvalues of the reduced matrix and Nred = 4NcNxNyNz, with the number of
colors Nc and lattice spatial size NxNyNz. We substitute Eq.(3.3) into Eq.(3.2), and then the Zn are
obtained from Eq.(2.2).
Hasenfratz-Toussant method

Another way is the Fourier transformation of the grand partition function as a function of the
imaginary chemical potential [8],

Zn(T ) =
∫ dθ

2π
eiθnZ(θ ≡ Imµ

T
,T ). (3.4)

We employ the reweighting method

Zn(T ) =
∫ dθ

2π
eiθn det∆(θ)

det∆(θ0)
det∆(θ0)exp(−SG). (3.5)

In order to estimate det∆, we use the hopping parameter expansion,

det∆ = det(I −κQ) = expTr log(I −κQ) = expTr∑
m

1
m

κmQm (3.6)

Since the chemical potential accompanies to the link variables along the temporal direction as
eµU4(x) and e−µU†

4 (x), the last term of Eq.(3.6) is recombined as ∑n An exp(nµ/T ). Then

Zn = 〈An〉. (3.7)
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Although the grand partition function Z(µ,T ) is not complex when µ is pure imaginary, the
sign problem is believed to mimic the oscillating integral of the Fourier transformation in Eq.(3.4)
in the canonical approach. Indeed for large n, numerical cancellation make it hard to estimate
Eq.(3.4). We circumvent this problem by the multi-precision calculation [9].
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Figure 4: λ4/λ2 when
√

sNN =11.5, 19.6, 27, 62.4 and 200 GeV. The stars indicate the freeze-out points.

We compare the above two methods, and they agree very well in the regions where the hopping
parameter expansion works.

4. Outcomes from Zn

4.1 Moments

At first glance, the distributions of Zn seem to be similar. However, they show very different
characteristics at high and low energies. To see this feature, let us calculate the moments[10]

λk ≡
(

T
∂

∂ µ

)k

logZ. (4.1)

for RHIC data.
In Fig.4, we show λ4/λ2, the so-called kurtosis. At each energy, a red star represents the point

of the freeze-out, i.e., the values of T and µ on which Zn are estimated. We extracted the canonical
partition functions Zn in the previous section, we can predict the moments at higher µ/T . When
√

sNN = 19.6 GeV, λ4/λ2 becomes negative when µ/T increases; this behavior may indicate a
phase transition[11],[12].
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4.2 Lee-Yang zeros

Once we obtain Zn, Eq.(2.2) allows us to calculate Z(T,ξ ), even for complex values of the
fugacity ξ . The zeros of grand canonical partition functions in the complex fugacity plane, Z(α) =
0, are known as Yang-Lee zeros[13]. Their structure reflects the critical nature of the system. If the
zeros form a line and cross the real ξ axis, it is the first phase transition point.
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Figure 5: Yang-Lee zero diagram of RHIC data when
√

sNN =11.5, 19.6 and 200 GeV.

We show Yang-Lee zero diagrams obtained from RHIC data when
√

sNN =11.5, 19.6 and 200
GeV in Fig.5. To observe the behavior at the large-volume limit, we require higher- multiplicity
data or a model that can be used to safely extrapolate the data.

In Fig.6, the Yang-Lee zero diagram calculated by lattice QCD simulation is depicted. In this
diagram we see a clear signal of the Roberge-Weiss phase transition [14], which appears not only in
the pure imaginary chemical potential region (|ξ | = 1) but also spreads along the radial direction.
This behavior is not seen in RHIC cases, suggesting that the RHIC data are in the confinement
phase.

5. Concluding Remarks

In this report, we show how to construct canonical partition functions Zn from high-energy
heavy ion collision data and lattice simulation data. Using Eq.(2.2), we can predict denser regions
in the QCD phase diagram. This increases the power of BES (beam energy scan) to search for
QCD phase transition regions, because now an experiment at a fixed energy can prove extended
regions in the QCD phase diagram.

From the relation, Z(µ,T ) = ∑Znξ n with ξ = eµ/T , Zn of large n regions contribute for µ > T ,
i.e., ξ > 1, although Zn decreases rapidly. Therefore, to investigate large µ area, we must estimate
Zn of large n very accurately.

Usually higher moments are used as an indicator of proximity to the phase transition. In
the proposed method, we employ all the available Zn to obtain information. More analyses will
be required to obtain reliable error bars for calculated moments and Yang-Lee zeros. Nmax in

6
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Figure 6: The Yang-Lee zero diagram calculated in lattice QCD simulations. Two simulations on different
space sizes give consistent results, when the number densities are roughly same.

Eq.(2.2) is much smaller than the kinematically allowed values in both RHIC experimental data
and the lattice QCD; in other words the contribution of higher values of n are missing. Since these
contributions correspond to higher densities, our prediction of the critical chemical potential µc

should be considered as a lower limit.
Our data are not enough both experimental and lattice QCD cases to determine the QCD phase

structure at the moment. More explicitly, Nmax in Eq.2.2 is not large enough. We expect effective
models to complement the shortage. As the first trial, let us see whether the bifurcation often seen
in the lattice simulation has the physical meaning. We consider the chiral random matrix model
with Ns sites given in [15],

ZRM =
∫

DX exp
(
−Ns

σ2 TrXX†
)

detN f (D+m) (5.1)

where D is the 2Ns ×2Ns matrix approximating the Dirac operator. It takes the form

D =

(
0 iX + iC

iX† + iC 0

)
. (5.2)

The matrix C includes terms to describe the effect of temperature and chemical potential. We
extend the model to exhibit the appropriate periodicity. We set Ns = 60. In this case Nmax = Ns = 60.
In Fig.7, the Lee-Yang zeros for Nmax = 60,58 and 56 cases are shown. No bifurcation appears at
Nmax = 60, i.e., in the exact case, while it appears when we truncate Zn for N ≥ Nmax. Although the
“volume” Ns is finite and therefore the model does not have Lee-Yang zero on the real axis, this

7
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suggests that the bifurcation seen in the lattice simulations at large (real) chemical potential regions
is due to the truncation effect.

We believe now that the canonical approach is very useful and promissing both for experimen-
tal and lattice QCD researches at finite density. One difficulty is its application at low temperature
where µ/T is very small, and consequently we need to calculate Zn very precisely until very large
n. Below the transition temperature, Zn is more difficult than above the transition temperature. In
the hopping parameter method, it is understandable because An in Eq.(3.7) is a kind of extended
Polyakov loop, which is small under the phase transition temperature.

This difficulty under the transition temperature occurs also in the fugacity expansion method.
The reason is unclear.
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Figure 7: Effects of truncation of Zn.
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