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1. Introduction

Confinement and spontaneous symmetry breaking as well as their respective counterparts - decon-
finement and chiral restoration - are central issues of QCD. Their mutual relationship is among
the main questions investigated in heavy ion collisions (HICs). A particularly challenging task
is the establishment of the QCD phase diagram in a region of temperature T and baryo-chemical
potential µ which is accessible in HICs. While the beam energy scan at RHIC and forthcoming
accelerator/detector installations, e.g. at FAIR/CBM and NICA/MPD, aim at finding signatures of
the onset of deconfinement as a first-order phase transition in a critical point (CP), QCD based [1,2]
and QCD rooted [3] calculations try to quantify its coordinates. Instead of facing the sign prob-
lem of QCD at non-zero baryon density, one can resort to suitable models which display a CP
at (TCP,µCP) > (0,0) and a line of first-order phase transitions for µ > µCP (cf. [4, 5] for recent
surveys). By universality arguments, one can elucidate observables signaling the CP.
In the previous search for deconfinement effects in HICs, electromagnetic probes (cf. [6–8] for
recent evaluations and further references) have been considered as promising since, by their pene-
trating nature, they monitor the full space-time evolution of matter in the course of HICs. Given the
proximity of deconfinement and chiral restoration at µ/T ≪ 1, the dilepton spectra have been con-
sidered in [9, 10] as candidates for messengers of chiral restoration. It appeared that at the pseudo-
critical temperature of Tpc ∼ 154MeV the dilepton emission rates of confined matter (hadrons) and
deconfined matter (quarks and gluons) become degenerate - quite natural since Tpc quantifies the
cross over location at µ/T ≪ 1. This degeneracy can be named quark-hadron duality and has been
employed [11–13] to verify a “thermal radiation” component besides hard initial yield and electro-
magnetic hadron final-state decays after the disassembly of the fireball in HICs. The approximate
degeneracy of real-photon emission rates of confined and deconfined matter has been pointed out
quite early [14] and can be used analogously to arrive at a consistent modeling of thermal radiation
in HICs, either schematically [15, 16] or with many refinements [17–19].
The recent analysis in [17, 20], however, revealed that the calculated photon spectra fall short in
comparison with data. The tension is caused, to some extent, by the consistency requirement of
photon-v2 and photon-p⊥ systematics. According to [17,18], a solution is offered by the hypothesis
of a “pseudo-critical enhancement” of the photon emission at Tpc ±∆T with ∆T = O(15MeV). It
is therefore tempting to look for arguments which could support the hypothesis launched there and,
more general, to extend the consideration over the QCD phase diagram and to check whether the
CP can have a distinguished impact on the photon emission rate.

2. Linear σ model

We utilize here the linear sigma model (LσM), which has been originally designed to model spon-
taneous chiral symmetry breaking [21] and has been later coupled to the fermionic sector. It is a
special quark-meson model with the Lagrangian LLσM =L∂ψ +LψM +L∂M +LM+Ls.b., where
the kinetic terms L∂ψ and L∂M are supplemented by the O(4) symmetric meson self-interaction
LM , which refers to an SU(2)L × SU(2)R symmetry which, in combination with the symmetry
breaker Ls.b. = Hσ , dynamically generates mass terms; the fermion-meson coupling of Yukawa
type is encoded in LψM . The field content of L is a two component Fermion (light quark doublet
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ψ), an iso-vector (⃗π) and an iso-scalar (σ ) meson. (The model can be extended to SU(3) and may
include vector mesons [22] in the spirit of the gauged LσM [23] or can be supplemented by some
gluon dynamics encoded in the Polyakov loop [24] or a glueball condensate [25].) When including
linearized meson field fluctuations, as in [26–28], the resulting phase diagram has, in fact, a line of
first-order phase transitions (cf. solid curves in Fig. 1), where the pressure as a function of T and µ
has a self-intersection defining Tc(µ). The fine structure of the region, where the CP is located [28],
is thought to reflect the restriction to linearized fluctuations. (For a better account of fluctuations
within a FRG approach, cf. [29].)
The parameters in the Lagrangian are commonly fixed by requiring a coincidence of the dynam-
ically generated meson quasi-particle masses in the vacuum (T = µ = 0) with the experimental
values of pion, mvac

π = 138MeV, and sigma, mvac
σ = 700MeV, and the constituent quark mass,

adjusted to one third of the nucleon mass, mvac
ψ = 312MeV. The remaining free parameter is deter-

mined by ⟨σ⟩vac = fπ . With these settings, the CP coordinates are (TCP,µCP)∼ (74MeV,278MeV)

(without the Fermion vacuum loop; for its impact cf. [30]). Since the sigma field in LLσM can be
considered as an effective field which may be tentatively identified with f0(600) leading to vacuum
mass values of mvac

σ = 400− 800MeV. It is instructive to study its impact on the phase diagram
(cf. left panel of Fig. 1). It turns out that the phase contour curves are shifted approximately lin-
early with mvac

σ . For an estimate we note ∆Tpc ≈ 0.12∆mσ on the temperature axis. The CP is
shifted approximately parallel to the µ axis by about 40MeV per 100MeV change of mvac

σ in this
mass region. The impact of mvac

π is discussed extensively in [27]. We refrain here from a discussion
of the phase structure under variations of all parameters at fixed Tpc, which we define here as the
curve, where the normalized heat capacity as a function of T at fixed µ has a maximum - other
definitions of the pseudo-critical temperature are conceivable. For further discussion of the phase
diagram within effective chiral quark-meson models cf. [31–33].
Analogously to the mean field approximation [34] a crucial role is played by dynamically gener-
ated mass terms, which may be considered as quasi-particle masses mψ,π,σ (cf. Fig. 2) of thermal
excitations of the ψ , π⃗ and σ fields (for details see [35]). Prominent features are (i) degeneracy of
mπ and mσ at temperatures larger than Tpc(µ) or Tc(µ), respectively, (ii) a rapid dropping of mψ

at T = Tc(µ) and a mild dropping at T ∼ Tpc(µ) and (iii) a global minimum of mσ at (TCP,µCP)

(for the rationale of the softening of the σ -mode, cf., e.g., [36–38] and for the impact on di-photon
spectra [39, 40]).
It is remarkable that the mass ordering changes over the T -µ plane, see Fig. 1 (right panel). The
delineation of 2mq > mπ,σ vs. 2mq < mπ,σ coincides with Tc(µ). There is a narrow valley, wherein
mσ < 2mq < mπ separating 2mq > mπ,σ vs. 2mq < mπ,σ regions. This and the other delineation
curves have no direct relation to Tc(µ) or Tpc(µ).

3. Photon emission rates

In a phenomenological approach and as a first exploratory step one can consider the above men-
tioned quasi-particle masses as masses of the quanta entering the respective dispersion relations
E2

ψ,π,σ = p⃗2 +m2
ψ,π,σ , which in turn show up in the thermal occupation functions (cf. appendix B

in [29]). Due to the strong variations of these masses over the phase diagram (cf. Fig. 2), one can
expect also a non-trivial pattern of the real-photon emission rate (see figure 2 in [35]).
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Figure 1: Left panel: Phase structure of the LσM for various values of the sigma mass parameter mvac
σ =

400, 500, 600, 700 and 800 MeV (bottom to top). The solid curves depict first-order phase transition lines
and the dotted curves are an estimate for a pseudo-critical temperature Tpc(µ). Both curves meet at the CP
(dots). Right panel: Relations of the effective masses mψ,π,σ over the phase plane (for mvac

σ = 700MeV,
with phase structure as in left panel).
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Figure 2: Quark (blue solid curve), sigma (red dashed curve) and pion (green dotted curve) effective masses
as a function of the quark chemical potential µ for temperatures slightly below (left panel), at (middle panel)
and slightly above (right panel) the critical temperature TCP. The position of the critical chemical potential
µCP is depicted by the thin vertical line in the middle panel.

Leaving a theoretically sound approach from Wightman functions to imaginary part of the retarded
photon propagator to kinetic theory expressions from cutting rules for separate work, we employ
the phenomenologically anticipated kinetic approach by estimating the rates via

ω
d7N

d4xdk3 =C
∫ d3 p1

2p0
1

d3 p2

2p0
2

d3 p3

2p0
3

f1(p1) f2(p2)(1± f3(p3))|M12→3γ |2δ (4)(p1 + p2 − p3 − k), (3.1)

with C = (2(2π)8)−1, i.e. we account for lowest-order tree-level 2 → 2 processes 1+ 2 → 3+ γ ,
where the photons are minimally coupled to LLσM according to [41]. These are annihilations
ψi + ψ̄ j → M + γ and Compton processes ψi +M → ψ j + γ and ψ̄i +M → ψ̄ j + γ , respectively,
with i, j ∈ {u,d} and M ∈ {π0,π±,σ} being the respective meson(s) fulfilling charge conservation
depending on the choice of i, j. (Clearly, this list of reactions is by far not exhaustive when having
in mind hadronic sources in general. For instance, in [42] the non-linear σ model with vector and
axial-vector mesons has been used to investigate real-photon emission rates from hadron sources.
In [43], the channel π+π−→σ/ρ → π+π−γ has been identified as important for soft photons. This
and many more channels should be considered when attempting a comprehensive rate estimate.)
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The matrix elements for Compton and annihilation processes are related by crossing symmetries.
The evaluation of (3.1) by means of the δ (4) and exploiting the cylinder symmetry in the center of
mass frame of the reaction leaves four integrals [44, 45] to be done numerically.

4. Photon spectra

An instructive form of (3.1) can be derived by resorting to the Boltzmann approximation:

ω
d3N
dk3 ≈ C̃eεµ/T

∫ ∞

s0

ds
σ̃(s)

s−m2
3

e−F(s)/T (4.1)

with C̃ =T/(32ω(2π)6), σ̃(s)=
∫ t+

t− dt|M12→3γ |2, t±=m2
1−

s−m2
3

2s

(
(s+m2

1−m2
2)∓

√
λ (s,m2

1,m
2
2)
)

,

λ (x,y,z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, F(s) = (s − m2
3)/(4ω) + (sω)/(s − m2

3) and
√

s0 =

max{m1 +m2,m3}. The variable ε discriminates between three reaction types under consider-
ation: annihilation (ε = 0), Compton scattering at quarks (ε =+1) and Compton scattering at
antiquarks (ε =−1). For disentangling effects of the phase space distributions f1−3, in particu-
lar the role of the involved quasi-particle masses, and matrix elements M12→3γ encoded in σ̃(s)
let us analyze the function F . Two cases are to be distinguished: (i) If the position of the min-
imum of F w.r.t. s, s1 = m2

3 + 2ωm3, lies within the range of integration, i.e. s0 < s1, a Taylor
expansion F(s) = F(s1) + 1/2 ·F ′′(s1) · (s− s1)

2 +O((s− s1)
3) is in order and the exponential

in (4.1) can be replaced by a Gaussian with width
√

4m3ω2T and height exp{−(ω +m3)/T},
making the exponential thermal suppression apparent. (ii) If s1 < s0, a Taylor expansion F(s) =
F(s0)+F ′(s0) · (s− s0)+O((s− s0)

2) yields a s independent suppression factor exp{−F(s0)/T}
that develops a maximum w.r.t. ω at ωp = (s0−m2

3)/(2
√

s0), meaning the spectrum displays a peak
at ωp > 0. Whether it appears is thus controlled by the relative size of s0 and s1. If m1 +m2 < m3,
then s0 = m2

3 < s1 (cf. case (i)), and the photon rate has its maximum at ω = 0 and declines ex-
ponentially with power law corrections originating from σ̃(s) and other omitted factors in (4.1).
On the other hand, if m1 + m2 > m3, then s1 < s0 (cf. case (ii)), and the rate has a maximum
∝ e−(m1+m2)/T at ωp. Furthermore, even for m1+m2 > m3, there will be a certain photon frequency
ωs > ωp for which s0 = s1, implying that for ω > ωs case (i) is applicable and the rate behaves as
∝ exp{−ω/T} at large ω . Thus the mass ordering determines some basic features of the spectra,
which is the reason why we have shown in the right panel of Fig. 1 the corresponding regions.
In Fig. 3, the photon spectra originating from four selected processes are plotted for three different
positions in the phase diagram, corresponding to the chirally broken phase (a), the chirally restored
phase (c) and the proximity of the CP (b). Comparing the spectra based on (3.1), one notices that
in fact some of the processes develop a maximum at ≈ ωp and vanish at ω → 0, while others seem
to diverge in the IR limit as anticipated above by generalizing a previous consideration in [45].
With the above approximations one can understand why at different positions in the phase diagram
the IR behavior of the photon rates is so different. It is the interplay of the masses of the involved
modes and to a less extent the details of the interaction process. Since for the Compton process
the sum of the incoming masses mψ +mπ,σ is larger than the mass of the outgoing quark mψ , the
corresponding contribution to the photon rate always has a maximum at finite photon energies. For
the annihilation process there is a sensible dependence on the position in the phase diagram: In the
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Figure 3: Photon spectra ω d7N
d4xd3k for the LσM evaluated at µ = 0MeV (a), µ = 270MeV (b) and µ =

360MeV (c) for T = 80MeV; panel (d) is a zoom into (b). Depicted are annihilations into photon and sigma
ψ + ψ̄ → γ +σ (solid blue curves) and into photon and pions ψ + ψ̄ → γ +π (red short dashed curves) as
well as the corresponding Compton processes ψ+σ →ψ+γ (green long dashed curves) and ψ+π →ψ+γ
(cyan dotted curves).

chirally broken phase, the sigma mass can be larger than twice the quark mass (cf. the diagonally
hatched region in the right panel of Fig. 1). Therefore, there is no maximum of the rate at non-zero
photon energy. Instead, the exponential factor approaches some finite value at ω = 0 and other -
in the former case subleading - effects get dominant. The most prominent effect stems from IR
divergencies of the matrix elements which let the photon rate diverge as ω−2 at ω → 0 and thus
needs to be regularized. In a band around the phase transition line and the pseudocritical region
(horizontally hatched region in the right panel of Fig. 1) the meson masses are less than twice
the quark mass (e.g. mψ ∼ mσ ∼ mπ ∼ 200MeV at (T,µ) ∼ (TCP,µCP)). Therefore, all processes
lead separately to spectra which vanish at ω → 0 and have a maximum of similar height and an
exponential tail at large ω . From such a consideration one can already conclude that a divergency
will not appear in a region of the phase diagram where the sigma mass is smaller than twice the
quark mass. In the high temperature phase the quarks get light and the mesons heavy (cf. Fig 2).
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(c) Figure 4: σ̃ as a function of s for the re-
actions exhibited in Fig. 3 (same linestyle) at
the same positions in the phase diagram (µ =

0,270 and 360MeV from (a) to (c) at T =

80MeV). The arrows depict the maxima of
the integrand in (4.1) for ω = 50MeV, where
the contribution to the respective emissivities
are largest.

Therefore, the annihilation rates have no maxima in the unhatched region of Fig. 1 (right panel)
and hence are not exponentially suppressed at ω → 0 leading - together with the IR divergency of
the matrix element - to a large photon rate at small ω . Thus the pattern of the rate behavior for
the subprocesses shown in Fig. 3 can be explained quite naturally. Comparing parameter sets with
different vacuum sigma masses, the above considerations imply a strong change of the low energy
photon rates over the phase diagram if we contrast the emissivity of the LσM with low vacuum
sigma mass (mvac

σ ≲ 2mvac
ψ ) to the emissivity at higher vacuum sigma mass (mvac

σ ≳ 2mvac
ψ ).

To highlight the role played by the matrix elements we also show in Fig. 4 the s dependence of
σ̃ . Again there are two types of functions: If m1 +m2 < m3, σ̃(s) diverges in the limit s → s0 like
∼ (s− s0)

−1, and conversely, if m1 +m2 > m3, then σ̃(s) behaves like
√

s− s0. The reason for the
divergence in the former case are IR divergencies of the matrix elements, because if s ≳ s0 = m2

3
the photon energy in the center of mass frame is small and thus the matrix elements are enhanced
because the numerators in the propagators get small.
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Figure 5: Contour plots of photon rates ω d7N
d4xd3k in units of MeV2 for ω = 50MeV over the phase diagram

for the reactions (a): ψ +π → γ +ψ , (b): ψ + ψ̄ → γ +π , (c): ψ +σ → γ +ψ , (d): ψ + ψ̄ → γ +σ . The
phase structure is as in Fig. 1 (right panel).

5. Variation of photon rates over the phase diagram

The photon rates at fixed photon frequency depend sensitively on the position in the phase diagram
as shown in [35] for ω = 10MeV. A rate maximum in the critical region for the σ -involving
Compton process was found. We focus here on higher values of ω . From Fig. 3(d) one notices
that up to ω ∼ 50MeV the σ -involving Compton process (for which the available phase space
around the critical point is enlarged, because of the small sigma mass) is the dominant channel
and hence one can hope that a signal characteristic for the critical point can be obtained. For this
frequency, the rates are depicted in Fig. 5. Several features are apparent. In the high temperature
phase the Compton rates (a) and (c) are suppressed by many orders of magnitude relative to the
corresponding annihilation processes (b) and (d). While the π-involving Compton rate is largest
in the crossover region, the σ -involving Compton rate exhibits a global maximum in the critical
region. In the low-temperature phase, the annihilation into a σ meson and a photon is the strongest
contributing process and shows the remnant of the structure seen in figure 2 in [35]. All of these
observations can be explained with the above reasoning. The suppression of the Compton processes
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is explained by the different approximation schemes necessary for the two types of processes. Since
m1 +m2 is for the Compton process always larger than m3 = m1, and ω = 50MeV is far below the
peak frequency in the high temperature phase the exponential suppression factor exp{−F(s0)/T}
is many orders of magnitude smaller than the one for the annihilation case exp{−(m3 +ω)/T}.
For ω = O(1−2GeV) our results show no special features at Tpc for small µ .

6. Summary

Employing the linear sigma model (LσM) we investigate whether the soft-photon emission rates
can reflect the conjectured phase structure of QCD. The LσM is chosen as a simple approach which
exhibits a critical point (CP) at non-zero chemical potential. Relying on the LσM field content,
which is very schematic and mirrors only in a limited manner the proper degrees of freedom of
QCD, we find, however, that the changes of the quasi-particle excitations masses within the phase
diagram give rise to significant changes of the emission rates in selected channels. In particular,
the spectral shapes depend strongly on the effective masses of excitation modes involved. This
lets us hope that more advanced considerations can dig out peculiarities of the total emission rate,
e.g. caused by the softening of the σ -type mode near the CP.
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