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The influence of heavy quarks on color deconfinement is examined within an effective model
of gluons interacting with dynamical quarks. As the quark mass decreases, the strength of the
explicit Z(3) symmetry breaking grows, and the first-order phase transition in the pure SU(3)
gauge theory ends in a critical end point. The nature of this critical end point is explored by
studying the fluctuations of the Polyakov loop, quantified by the corresponding susceptibilities.
We argue that the ratio of Polyakov loop susceptibilities characterizes the onset of deconfinement
in QCD.
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1. Introduction

The first-order nature of the deconfinement phase transition in SU(3) pure gauge theory is
directly connected to the global Z(3) center symmetry and its spontaneous breaking [1, 2, 3, 4, 5].
The transition is eventually washed out by the explicit symmetry breaking induced by dynamical
quarks. The strength of this breaking increases as the quark mass decreases. It is thus expected
that the transition remains discontinuous in the heavy-quark region and becomes a continuous
crossover at some critical value of quark mass [6]. This defines the critical end point (CEP) of the
deconfinement phase transition.

Details of the phase structure of the deconfinement transition are revealed by examining the
fluctuations of the Polyakov loop. Lattice results on these quantities exist for both the pure gauge
theory [7] and the (2+1)-flavor QCD [8, 9]. In particular, the ratio of the transverse and longitudinal
Polyakov loop susceptibility is motivated as an effective probe for deconfinement. In the case of
pure gauge theory, it exhibits a θ function-like behavior at the critical temperature Td , with almost
no dependence on temperature on either side of the transition. In the presence of light quarks, the
ratio is considerably smoothed, reflecting the crossover nature of the transition.

However, theoretical understanding of these quantities remains incomplete. It is therefore
important to explore the properties of the Polyakov loop susceptibilities for different number of
flavors, as functions of the quark mass in the heavy-quark region, thus bridging the gap between
pure gauge theory and QCD.

In this work we discuss the phase structure of the deconfinement transition for heavy quarks.
We study the behavior of the Polyakov loop susceptibilities near the CEP, and investigate their
dependencies on the quark mass and quark chemical potential. We also relate the mean-field model
results with lattice studies.

2. Modeling deconfinement in the presence of quarks

To explore the influence of heavy quarks on deconfinement, we consider the following effec-
tive model for the thermodynamic potential,

T−4
Ω =UG(L,L∗)+UQ(L,L∗). (2.1)

The Z(3) invariant part of the potential, UG, is extracted from pure gauge theory. In this study the
following phenomenological Polyakov loop potential is employed [9]:

UG =− 1
2

A(T )L∗L+B(T ) lnMH

+
1
2

C(T )(L3 +L∗3)+D(T )(L∗L)2, (2.2)

where the SU(3) Haar measure MH is given by

MH = 1−6L∗L+4(L3 +L∗3)−3(L∗L)2, (2.3)
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Figure 1: Temperature dependence of the thermal averaged Polyakov loop (left) and its longitudinal sus-
ceptibility (right) for different values of quark masses: m = 0.5,1.48, and 3.5GeV at N f = 3.

and A,B,C, and D are model parameters, tuned to describe lattice results on pure gauge thermo-
dynamics. Particularly, this potential reproduces a first-order deconfinement phase transition at the
critical temperature Td = 0.27GeV, which allows the expression of observables in physical units.

The explicit symmetry breaking term, UQ, describes the coupling of quarks to the Polyakov
loop. It can be obtained from the fermionic determinant in a uniform background gluon field as
[10]

det(Q̂F) = det((−∂τ +µ− igA4)γ
0 + i~γ ·∇−m). (2.4)

In the one-loop approximation, this gives the quark contribution to the effective Polyakov loop
potential

UQ =−2N f β
4
∫ d3k

(2π)3 [T lng++T lng−], (2.5)

where

T lng+ = T ln(1+3Le−βE+
+3L∗e−2βE+

+ e−3βE+
) (2.6)

specifies the coupling of quarks to the Polyakov loop, with E+ =
√

k2 +m2− µ . The function
T lng− describes the antiquarks, and is obtained from Eq. (2.6) by replacing µ→−µ and L↔ L∗.

The thermal average of the Polyakov loop, ` = 〈L〉 and its conjugate ¯̀= 〈L∗〉, are obtained
within the mean-field approximation as solutions of the gap equations

∂Ω/∂L|L=`,L∗= ¯̀ = 0, ∂Ω/∂L∗|L=`,L∗= ¯̀ = 0. (2.7)

In the following, we focus on how the position of the CEP changes with the number of quark flavors
at vanishing and at finite quark density.
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2.1 Deconfinement critical end point at µ = 0

The expectation value of the transverse Polyakov loop, LT = (L−L∗)/(2i), vanishes due to
the symmetry of the effective potential. Consequently, only the longitudinal Polyakov loop, LL =

(L+L∗)/2, serves as an order parameter for deconfinement. On the other hand, the fluctuations of
the order parameter along the longitudinal and transverse directions are both non-vanishing. They
are quantified by the following susceptibilities [11]:

χL,T =
1
2

V [〈LL∗〉c±
1
2
〈(LL+L∗L∗)〉c]. (2.8)

where 〈. . .〉c denotes the connected part. Within the mean-field model, χL,T are the inverse cur-
vatures of the thermodynamic potential (2.1) along the respective directions around the global
minimum [9, 11].

In Fig. 1 we show the Polyakov loop as a function of temperature for different values of quark
masses. For a sufficiently large quark mass, the first-order nature of the phase transition persists,
while at smaller quark masses, the explicit symmetry breaking increases resulting in the transition
to be a crossover. The end point of the first-order transition line defines the critical value of the
quark mass, mCEP.

To identify the CEP, we use the longitudinal fluctuations of the Polyakov loop. In Fig. 1 we
show the longitudinal susceptibility for three degenerate quark flavors. While both susceptibilities
depend on the value of the quark mass, only the longitudinal one shows an enhancement near
the CEP [12]. The transverse susceptibility decreases monotonically with decreasing quark mass.
Thus, for a given N f , the CEP can be located by identifying the global maximum of χL. For
different N f , our model yields the following results for the critical quark masses,

mCEP = 1.10, 1.35, 1.48GeV, forN f = 1,2,3. (2.9)

The resulting trend, with mCEP increasing with N f , agrees with the recent study in Ref. [13]. The
location of the deconfinement critical end point is closely related to the form of the Polyakov loop
potential [13]. In the present calculation, UG reproduces the lattice data on the equation of state as
well as on the susceptibilities of the Polyakov loop. This feature is crucial for locating the CEP,
which is influenced by fluctuations of the order parameter.

2.2 Deconfinement CEP at finite chemical potential

At finite µ , the thermal averaged Polyakov loop ` and its conjugate ¯̀ are both real, but in
general different [11, 14, 15]. This is because at nonzero µ the effective action is complex [11, 15].

The finite density results for the longitudinal susceptibility is shown in Fig. 2.1. As in the case
of µ = 0, only the longitudinal susceptibility is enhanced near the CEP, whereas the transverse
susceptibility is insensitive to criticality.

The dependence of the critical quark mass mCEP on the chemical potential µ is shown in Fig.
2.1. The points in the figure are extracted from the divergence of χL, while the line is determined
using only the leading explicit symmetry breaking term in the effective potential [12]. The increase
of the critical quark mass with µ indicates that the first-order region shrinks with increasing density.
This finding is consistent with the lattice results presented in Refs. [16, 17, 18].
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Figure 2: Left: The longitudinal χL susceptibility (2.8) as a function of T at µ = 0.5 GeV for different
values of quark mass. Right: The critical quark mass as a function of the quark chemical potential for
N f = 3. Solid points represent results obtained from the global maximum of χL. The line represents the
result obtained by keeping only the linear symmetry breaking term in the quark potential [12].

3. Interplay between confinement and chiral symmetry breaking

In QCD, the expectation value of the Polyakov loop is substantially modified by dynamical
quarks. A constructive way to explore deconfinement is to study various fluctuations associated
with conserved charges. One of such key observables is the kurtosis of net-quark number fluctua-
tions, which was proposed to be a measure of the onset of deconfinement [23].

In Fig. 3, the ratio RA = χA/χR is compared with the kurtosis of the quark number fluctuations,
where χA represents the fluctuation of the modulus of the Polyakov loop [7].

We observe that quark deconfinement happens when RA undergoes a qualitative change. These
abrupt changes in the Polyakov loop and quark number fluctuations appear in the same narrow tem-
perature range around the pseudo-critical temperature of chiral symmetry restoration. This suggests
that Tdeconf ' Tchiral at vanishing chemical potential. An extensive analysis for these observables is
underway.

4. Conclusions

We have concentrated on the structure of the phase diagram and discussed the properties of the
deconfinement critical end point within an effective model. The analysis was presented at vanishing
and finite chemical potential for different number of quark flavors. It is shown that the considered
model captures some of the basic properties of QCD in the heavy quark region, and yields results
that can be compared with lattice calculations.

We have also argued, within lattice QCD studies, that the ratio of Polyakov loop susceptibilities
characterizes the onset of deconfinement in QCD. We have compared the properties of this ratio
with the kurtosis of the net baryon number fluctuations, which suggests that at vanishing quark
chemical potential deconfinement appears in the region of the chiral crossover.
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Figure 3: The ratio of the Polyakov loop susceptibilities RA = χA/χR and the kurtosis of net quark number
fluctuations calculated on the lattice [9, 23]
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