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1. Introduction

The behavior of a system consists of charged fermions in a magnetic field had attracted con-
siderable interests in recent years. We investigate a system that share the same physics as chi-
ral magnetic catalysis, the Bose-Einstein Condensation(BEC) of composite Bosons-neutral bound
pairs made of two oppositely charged fermions in the presence of an external magnetic field.

The terminology "Magnetic Catalysis" refers to the fact that chiral symmetry is always spon-
taneously broken at finite magnetic field regardless of the coupling strength [2, 3]. It would thus
be natural to expect a higher transition temperature from the chiral broken phase to the chiral
symmetric phase due to magnetic catalysis effect. This is indeed the case within mean-field ap-
proximations of effective model studies, it was found that the chiral phase transition is significantly
delayed by a nonzero magnetic field even including the ρ meson contribution [4–6]. The recent
lattice calculations [7], however, provide surprising results that the chiral pseudo-critical tempera-
ture significantly decreases for increasing magnetic field. On the other hand, the chiral condensate
increase with increasing magnetic field at low temperature consistent with magnetic catalysis while
it turns out to a monotonously decreasing at high temperature [8], which is in apparent conflict with
magnetic catalysis and termed as inverse magnetic catalysis evoking an extensive studies [9–16].

While mean field approximation gives sensible results in certain circumstances, fluctuations
can break it down, especially in strong coupling domain or in lower dimensions. As was shown
in [17] in the absence of magnetic field, a long range order cannot survive at a nonzero temperature
in the spatial dimensionality two or less because of the fluctuation of its phase. A long wavelength
component of the fluctuation variance goes like 1/p2 with p the momentum, which gives rise to
infrared divergence of the momentum integration in two and lower dimensions. The anisotropy
introduced by a magnetic field Bẑ renders the long wavelength fluctuation ∼ 1/(p2

z +κ p2
⊥), with

κ positive constant between zero and one. Such a distortion of the bosonic spectrum towards
dimensionality one (κ → 0), as a consequence of the dimension reduction of the pairing fermions,
would enhance the phase fluctuation. A preliminary study of the Ginzburg-Landau theory of the
chiral phase transition [18] reveals the same effect and the Ginzburg critical window gets widened
in the presence of magnetic field, indicating the enhancement of the long wavelength fluctuations.

The BEC of bound pairs made of oppositely charged fermions in a magnetic field provides
another platform to explore the competition between the enhanced Cooper pairing by Landau or-
bitals and the enhanced phase fluctuation by the distortion of the bosonic spectrum. Our system
corresponds to the BEC limit of the BCS/BEC crossover, which has been studied extensively in the
absence of magnetic field for nonrelativistic fermions [19, 20] and relativistic ones [21–24]. We
found that the critical temperature for the BEC was dramatically affected by the magnetic field ex-
hibiting magnetic catalysis or inverse magnetic catalysis depending on the coupling strength. In the
weak coupling domain, where no bound pairs(composite bosons) exist at zero magnetic field, the
magnetic catalysis induces bound pairs and thereby a BEC. The critical temperature increases with
increasing magnetic field. In the strong coupling domain, where bound pairs exist without magnet-
ic field, an inverse magnetic catalysis was found. The critical temperature decreases as increasing
magnetic field, signaling the enhanced fluctuation in a magnetic field.

The rest of the paper is organized as follows: in Section II we lay out the general framework
within which we take into account the Gaussian fluctuations. The magnetic field dependence of
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the BEC temperature is investigated in Section IV. Section V is devoted to the conclusions and
outlooks. Throughout the paper, we will work in Euclidean space with the four vector represented
by xµ = (iτ,x),qµ = (iωn,q) with ωn the Matsubara frequency for bosons ωn = 2iπnT and for
fermions ωn = (2n+1)iπT .

2. General framework

We consider a system consisting of nonrelativistic fermions of mass m and chemical potential
µ with opposite charge interacting through a short ranged instantaneous attractive interaction. The
Hamiltonian density reads

H [ψ,ψ†] = ∑
σ=±

ψ†
σ (x)

[
(−i∇+σeA)2

2m
−µ

]
ψσ (x)−gψ†

+(x)ψ
†
−(x)ψ−(x)ψ+(x). (2.1)

where e > 0 is the charge magnitude carried by each fermions, g > 0 and A is the vector potential
underlying an external magnetic field, B = ∇×A. To avoid the Meissner effect, only fermions with
opposite charges can pair. For the sake of simplicity, we ignore the spin degrees of freedom.

Introducing the standard Hubbard-Stratonovich field ∆(x) coupled to ψ†
+ψ†

− and integrating
out the fermionic fields, we obtain the parition function

Z = N
∫

D∆∗(x)D∆(x)exp(S [∆(x)]), (2.2)

with the action S given by

S [∆] =−
∫

dτd3x
|∆(x)|2

g
+TrlnG−1(x,x′), (2.3)

where the inverse propagator in Nambu-Gorkov space is

G−1 =

[
− ∂

∂τ −
(−i∇+eA)2

2m +µ ∆(x)
∆∗(x) − ∂

∂τ +
(−i∇+eA)2

2m −µ

]
δ (x− x′). (2.4)

The mean field approximation corresponds to set ∆(x) = ∆0, which is determined by the saddle
point condition δS /δ∆0 = 0. A nontrivial saddle point, ∆0 ̸= 0, corresponds to a long range order
and the superfluidity phase of the system. ∆0 drops to zero at the transition to the normal phase.
One then obtains the familiar gap equation

1
g
=

1
2V ∑

ky,kz;l

1
εkz + lωB −χ

tanh
εkz + lωB −χ

2Tc
. (2.5)

where l = 0,1,2, ... are the Landau levels and εkz = k2
z/2m. We have also defined χ = µ−ωB/2 with

ωB = eB/m the cyclotron frequency. In BCS limit, this equation would be solved to yield the critical
temperature with the chemical potential given by that of an ideal Fermi gas at a given density. In
BEC limit, however, the role is reversed [20]. Eq.(2.5) determines the chemical potential. In the
latter case, the fluctuation contribution to S has to be restored to determine the critical temperature
at a given density.
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The hyperbolic tangent function in (2.5) may be approximated by one with T << |χ | and
we replace the coupling constant by the s-wave scattering length via 1/g − 1/V ∑k(2εk)

−1 ≡
−m/4πas. Carrying out the summation explicitly, we find that

− m
4πas

=

√
ωBm3/2

4
√

2π
ζ
(

1
2
,
|χ |
ωB

)
, (2.6)

with the Hurwitz zeta function defined by ζ (s,a)=∑∞
n=0(n+a)−s. In the absence of magnetic field,

the RHS of (2.6) becomes −m3/2
√

|χ|/(2
√

2π) and we have a solution χ = −1/(2ma2
s ) only for

as > 0, which defines the strong coupling domain. The weak coupling domain, as < 0, however,
entirely resides on the BCS side of the BCS/BEC crossover. When the magnetic field is turned on,
the RHS of (2.6) can take both signs and a solution emerges in the weak coupling domain. This is
caused by the dimensional reduction of the Landau orbitals, i.e., magnetic catalysis and the BEC
limit can be approached in both strong and weak coupling domains.

The eq.(2.6) sets the chemical potential at the energy of a bound pair of zero center-of-mass
momentum in vacuum and this is the condition for the BEC of an ideal Bose gas. The contributions
of the bound pairs of nonzero momentum, however, is ignored here. Therefore the mean field
approximation is not sufficient and the contribution from the bound pairs with nonzero momenta
to the density equation has to be restored to determine the transition temperature.

The Gaussian fluctuations about the trivial saddle point ∆0 = 0 can be taken into account by
replacing the entire S of (2.3) by its expansion to the quadratic order in the entire boson field ∆(x).

Seff[∆]≃ S [0]−
∫

dτd3x
|∆(x)|2

g
−

∫
dτdτ ′d3xd3x′

[
G+(x,x′)∆(x′)G−(x′,x)∆∗(x)

]
, (2.7)

with G−1
± (x,x′) the diagonal elements in (2.4).

In terms of the Fourier transformation,

Seff[∆] = Seff[0]+ ∑
ωnp ,p

Γ−1(iωnp ,p)|∆(iωnp ,p)|2 (2.8)

where the dependence of the coefficient Γ−1(iωnp ,p) on T , µ and B has been suppressed and the
thermodynamic potential density reads

Ω = Ω0 −
1

βV ∑
ωnp ,p

lnΓ(iωnp ,p). (2.9)

where Ω0 =−2/(βV )∑ky,kz;l ln
[
1+ exp(εkz + lωB −χ)

]
is the thermodynamic potential of an ideal

Fermi gas. It follows that

n = n0 −
1

βV
∂

∂ µ ∑
ωnp ,p

lnΓ(iωnp ,p), (2.10)

with n0 = 2V ∑ky,kz;l
[
exp(β (εkz + lωB −χ)+1

]−1 the fermionic contribution to the density. Con-
tinuating iωnp to an arbitrary real frequency ω according to the prescription in [25] and introducing
a phase shift defined by Γ(ω ± i0,q) = |Γ(ω,q)|exp[±iδ (ω,q)], the number equation can also be
written as [20]

n = n0 +
1
V ∑

q

∫ ∞

−∞

dω
π

nB(ω)
∂δ
∂ µ

(ω,q). (2.11)
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with nB(ω) = (eβω −1)−1 the Bose-Einstein distribution function. The pair of equations, (2.6) and
(2.11), at zero magnetic field are widely employed in the context of BCS/BEC crossover in the
literature.

Through some calculations, we obtain

Γ−1(ω,q)≃ a1

[
ω +2(µ − µ̄)−

p2
z

4m

]
−a2

p2
⊥

4m
. (2.12)

with

a1 =
m3/2

16π
√

2ωB

∞

∑
l=0

(
l +

|χ̄ |
ωB

)− 3
2

, (2.13)

and

a2 =
m3/2

π
√

2ωB

∞

∑
l=0

 l + 1
2√

l + |χ̄ |
ωB

− l

2
√

l − 1
2 +

|χ̄|
ωB

− l +1

2
√

l + 1
2 +

|χ̄|
ωB

 . (2.14)

where the frequency ω is the continuation of the Matsubara frequency iωnp to the neighborhood of
the zero and χ̄ is the solution to the mean field equation (2.6). Obviously, the kinetic term becomes
anisotropic with respect to the directions along and perpendicular to the magnetic field due to the
rotational symmetry breaking by the magnetic field.

The partition function (2.2) under the Gaussian approximation of fluctuations may be written
as

Z = N
∫

Dϕ ∗Dϕ exp

{
∑

ωnp ,p
ϕ ∗

p (ω −ωb +2µ)ϕp

}
. (2.15)

where ϕ is the rescaled field of the fluctuation ∆ and ωb = −EB +ωB + pz
2/(4m)+κ p2

⊥/(4m) is
the dispersion relation with EB =−2χ̄ the binding energy that is measured from the lowest Landau
level. We have also the explicit expression of the anisotropy factor

κ ≡ a2/a1 = 16
ζ
(
−1

2 ,
|χ̄ |
ωB

)
−ζ

(
−1

2 ,
1
2 +

|χ̄ |
ωB

)
+
(

1
2 −

|χ̄ |
ωB

)[
ζ
(

1
2 ,

|χ̄|
ωB

)
−ζ

(
1
2 ,

1
2 +

|χ̄|
ωB

)]
ζ
(

3
2 ,

|χ̄|
ωB

) . (2.16)

One can show that κ ≤ 1 for an arbitrary value of the ratio |χ̄ |/ωB and is a monotonically increasing
function of this ratio.

The partition function (2.15) is nothing but an ideal Bose gas with anisotropy in kinetic term.
The density is dominated by the pole of ∂δ

∂ µ of (2.11) at ω =ωb−2µ . The condensation temperature
is determined by setting the chemical potential at the solution of the mean field equation (2.6), i.e.
µ = ωB/2+ χ̄ , and we have

n = 2
∫ d3p

(2π)3

[
exp

(
p2

z +κ p2
⊥

4mTc

)
−1

]−1

, (2.17)

It follows that
Tc = κ

2
3 T 0

c , (2.18)

where

T 0
c =

[
n

2ζ (3/2)

]2/3 π
m
. (2.19)

is the condensation temperature of an ideal Bose gas of the same density at zero magnetic field.
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3. Bose-Einstein condensation in a magnetic field

In this section, we shall explore the magnetic field dependence of the BEC temperature (2.18)
for both strong coupling, as > 0 and weak coupling, as < 0.

We shall begin with an examination of the two asymptotic behaviors r ≫ 1 and r ≪ 1 of the
Hurwitz zeta function ζ (s,r). The large r expansion reads

ζ (s,r)≃ r−s+1

s−1
+

r−s

2
+

sr−s−1

12
− s(s+1)(s+2)r−s−3

720
+O(r−s−5). (3.1)

The negative value of ζ (1/2,r) in this limit leads us to the strong coupling domain via the mean-
field equation (2.6)

1
as

≃
√

2m|χ̄|− 1
2

√
m

2|χ̄|
ωB > 0, (3.2)

If follows that the approximate binding energy |χ̄ | ≃ (1+ eBa2
s )/(2ma2

s ), with as << 1/
√

eB. The
anisotropy factor (2.16) reads

κ ≃ 1− 1
16

(
ωB

|χ̄|

)2

≃ 1− 1
4
(eB)2a4

s . (3.3)

and gives rise to a slight suppression of the condensation temperature according to (2.18), corre-
sponding to an inverse magnetic catalysis.

The small r behavior follows from the relation

ζ (s,r) = r−s +ζ (s,1+ r)≃ r−s +ζ (s), (3.4)

which, for s > 0, is dominated by the first term on RHS and corresponds to the lowest Landau level
approximation in our problem. The positivity of ζ

(
1
2 ,

|χ̄|
ωB

)
in this case, i.e. |χ̄| << ωB, together

with the mean-field equation (2.6) implies a negative as and thereby the weak coupling domain, i.e.

1
as

≃−
√

m
2|χ̄|

ωB < 0. (3.5)

It follows that the binding energy |χ̄| ≃ 1
2 mω2

Ba2
s is entirely induced by the magnetic field, as a

consequence of the magnetic catalysis. In terms of the binding enery, the inequality |χ̄| << ωB

implies |as|<< 1√
eB

. The anisotropy factor

κ ≃ 8
|χ̄ |
ωB

≃ 4eBa2
s << 1. (3.6)

in this case and maximizes the suppression of the condensation temperature.
Since ζ (1/2,r) is a monotonically decreasing function of r and is negative (positive) for a

large (small) r, its zero, rc, serves a demarcation between the strong coupling domain, where as > 0
and |χ̄|/ωB > rc, and the weak coupling domain, where as < 0 and |χ̄ |/ωB < rc. The value of
rc as well as the solution of the mean-field equation (2.6) and the condensation temperature for
|χ̄ |/ωB = O(1) can only be calculated numerically. We find rc ≃ 0.303 and |χ̄ | ≃ rcωB ≃ 0.303ωB

as B → ∞.
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Figure 1: The ratio of BE condensation temperature tc versus the dimensionless magnetic field b in strong
coupling domain.
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Figure 2: The ratio of BE condensation temperature tc versus the dimensionless magnetic field b in weak
coupling domain.

In the strong coupling domain, as > 0, bound pairs exist in the absence of magnetic field with
the binding energy Eb = 1/(ma2

s ) and condense at the temperature T 0
c . The mean-field equation

(2.6) and the condensation temperature (2.18) in a magnetic field can be expressed in terms of
dimensionless quantities, i.e.

b−
1
2 =−1

2
ζ
(

1
2
,

v
b

)
(3.7)

and

tc = κ
2
3

( v
b

)
, (3.8)
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where b ≡ ωB
Eb

, v ≡ |χ̄|
Eb

and tc ≡ Tc
T 0

c
. The solution of (3.7) for tc versus the dimensionless magnetic

field b is plotted in Fig.1. The condensation temperature deceases as magnetic field increases,
consistent with the large r limit. The physical reason for this inverse magnetic catalysis is the
enhanced fluctuations by the anisotropic distortion of the bosonic spectrum, κ < 1, in the magnetic
field. The effect is, however, rather mild with κ decreasing from one at b = 0 to about 0.9 at
b = 50 because the ratio r never drops to a level to warrant the LLL approximation within the
strong coupling domain.

In the weak coupling domain, as < 0, bound pairs are formed through the mechanism of
magnetic catalysis. The mean-field equation becomes

b−
1
2 =

1
2

ζ
(

1
2
,

v
b

)
(3.9)

with the sign on RHS opposite to that of (3.7). The formula for the condensation temperature,
(3.8), remains unchanged. Here the denominator of b and tc, |Eb| and T 0

c , do not carry direct
physical meaning other than reference scales because the bound pairs do not exist in the absence of
magnetic field. The condensation temperature in Fig.2 increases as magentic field increases, which
is consistent with the analysis in small r limit. The LLL approximation works in the limit r → 0,
where the anisotropy of the bosonic spectrum is maximized. An increasing magnetic field raises
the ratio r and promotes the contribution from higher LL’s, and thereby increases the condensation
temperature.

Notice that, however, the condensation temperature is always suppressed compared with that
of an ideal Bose gas of mass 2m regardless of the coupling strength because of the inequality κ < 1
for all real as.

Before concluding this section, we would like to comment on the validity of the Gauss ap-
proximation of fluctuations in the context of the BEC limit, which ignored the quartic and higher
powers on ∆(x) in (2.3). These terms represents the interactions among the Cooper pairs, which
becomes significant when their wave functions overlap. Therefore the approximation will deterio-
rate at the density at which the inter-particle distance n−1/3 becomes comparable to the size of the
bound pairs.

4. Conclusion

We have investigated a system of nonrelativistic bound pairs made of oppositely charged
fermions in the presence of an external magnetic field. We found that the variation of the BEC tem-
perature with respect to the magnetic field depends on the coupling strength of pairing. In strong
coupling domain where the bound pairs(composite bosons) exist already without magnetic field,
we found the inverse magnetic catalysis that the condensation temperature decreases as increasing
magnetic field. In weak coupling domain where the bound pairs are induced by magnetic field, the
transition temperature exhibits the usual magnetic catalysis effect. In either domain, the condensa-
tion temperature is lower than that of an ideal Bose gas of the same mass, 2m, of each particle in
the absence of magnetic field. The suppression effect is maximized when the lowest Landau Level
approximation works which requires the ratio of binding energy relative to the lowest Landau level
over the spacing between adjacent Landau levels, r = |χ |/ωB << 1. This condition is realized in
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the weak coupling domain under a weak magnetic field. Otherwise, the ratio is order O(1) and the
suppression effect is less pronounced. In particular, the binding energy diverges like |χ| ≃ 0.303ωB

in the strong field limit, for both strong and weak couplings, making the ratio 0.303 with the sup-
pression factor κ ≃ 0.792. Of course, the BEC approximation requires the fermion density of the
system to be sufficiently low such that the bound pairs do not overlap. With increasing density,
individual bound pairs lose their identities and BCS condensation emerges. This crossover within
the weak coupling domain under a magnetic field is what we called the magnetic field induced
BCS/BEC crossover. Without the magnetic field, the weak coupling domain corresponds only to
the BCS side of the crossover.

To simplify the calculation, we ignored the spin degrees of freedom of the fermions as they
do not contribute to the pairing dynamics. The contribution of bound pairs with different spin
configurations to the total density are weighted by the Bose-Einstein distribution function with
different Zeeman energies. For the temperature much lower than the Zeeman energy of a fermion,
the density is dominated by the pairing channel with the lowest Zeeman energy and our previous
results can be carried over.

The system considered in the present work is of theoretical value only at this stage, but
the physics involved may be relevant to the BEC of excitons in a semiconductor in an magnetic
field [26]or the magnetic color-flavor-locked superfluidity of a dense quark matter [27]. In the for-
mer case, the pairing is implemented via the long range Coulomb attraction (the scattering length
formulation needs to be modified accordingly) and we are always in the strong coupling domain.
In the later case, the pairing force stems from the non-perturbative QCD effect and the Coulomb
interaction becomes perturbative at the typical density of a quark matter.
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