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1. INTRODUCTION

A deconfined medium is produced experimentally on the Earth by ultra-relativistic heavy ion
collisions [1, 2]. The dilepton production is one of significant observables to study properties of the
hot medium [3] because they penetrate and are unaffected by the medium. The dilepton production
yield provides us direct information of the hot medium.

STAR and PHENIX Collaborations measured e+e− pair production yield at Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory [4, 5]. Although the results of the pair
production yields measured in the most central Au+Au collisions at

√
sNN = 200 GeV reported

by two collaborations do not coincide with each other, both of these Collaborations reported that
the pair production yields show enhancements at low invariant mass, m, regions compared with
the cocktail [4, 5, 6], The result of PHENIX Collaboration shows that the yeild for m ≃ 500 MeV
is about one order larger than the cocktail, which implies that the medium modification effects
significantly enhance the dilepton production rate.

When one performs an estimate of the dilepton production yield, one first calculates the dilep-
ton production rate per unit time and unit volume from a static medium. The dilepton production
rate of a static medium is proportional to the imaginary part of virtual photon self-energy [7, 8, 9].
When the temperature, T , is asymptotically high, the photon self-energy can be calculated pertur-
batively. Using the hard thermal loop (HTL) resummed perturbation theory [10, 11], the dilepton
production rates are calculated in Ref. [12] for lepton pairs with zero total three-momentum, and
the result is extended in Ref. [13] to nonzero momentum. It is, however, nontrivial whether or not
such a perturbative analysis well describes the production rate from the deconfined medium near
the critical temperature Tc, where the medium is turned out to be a strongly-coupled system [1]. It
is therefore desirable to evaluate the dilepton production rate in the deconfined phase incorporating
non-perturbative effects.

The exact non-perturbative photon self-energy can be calculated with the Schwinger-Dyson
equation (SDE) if we have the full quark propagator and the photon-quark vertex function. Re-
cently, an analysis of the non-perturbative quark propagator above Tc is performed on the lattice in
the quenched approximation in Landau gauge [14, 15, 16] based on the two-pole ansatz. From the
comparison with the perturbative analysis of the quark propagator [21, 22, 23, 24], it is expected
that the quark propagator obtained in this simple ansatz well characterizes the non-perturbative
nature of the quark propagator.

The purpose of the present study [25] is to analyze the dilepton production rate using this
quark propagator. We construct the SDE with the quark propagator obtained on the lattice in
Ref. [16] with the vertex function constructed so as to satisfy the Ward-Takahashi identity (WTI).
Our formalism, therefore, fulfills the conservation law of electric current. In this analysis, we show
that the obtained dilepton production rate exhibits an enhancement of one order larger than the one
from free quark gas.

2. Schwinger-Dyson equation for photon self-energy

2.1 Schwinger-Dyson equation

As dileptons are emitted from decays of virtural photons, the dilepton production rate from a
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medium per unit time per unit volume is related to the retarded self-energy ΠR
µν(ω, q⃗) of the virtual

photon as [7, 8, 9]
d4Γ

dωd3q
=

α
12π4

1
Q2

1
eβω −1

ImΠR,µ
µ (ω, q⃗), (2.1)

at the leading order of fine structure constant α with Q2 = ω2 − q⃗2 and the inverse temperature
β = 1/T . With the SDE in Matsubara formalism, the exact photon self-energy is given by the full
quark propagator S(P) and full photon-quark vertex Γµ(P+Q,P) as

Πµν (iωm, q⃗) =−3∑
f

e2
f T ∑

n

∫ d3 p

(2π)3 TrD
[
S(P)γµS(P+Q)Γν(P+Q,P)

]
, (2.2)

where ωm = 2πT m and νn = (2n+1)πT with integers m and n are the Matsubara frequencies for
bosons and fermions, respectively, Pµ = (iνn, p⃗) is the four-momentum of a quark in the imaginary
time, and e f is the electric charge of a quark with an index f representing the quark flavor. TrD

denotes the trace over Dirac indices, and the factor 3 in Eq. (2.2) comes from trace over color
indices. The retarded photon self-energy is obtained by the analytic continuation

ΠR
µν(ω, q⃗) = Πµν(iωm, q⃗)|iωm→ω+iη . (2.3)

In the following, we consider the two-flavor system with degenerate u and d quarks, where ∑ f e2
f =

5e2/9. In this study we also limit our attention to q⃗ = 0 case.

2.2 Lattice Quark Propagator and Spectral Function

In the present study, we use the quark propagator obtained on the quenched lattice in Ref. [16]
as the full quark propagator in Eq. (2.2). In this subsection, after a brief review on the general
property of the quark propagator, we describe how to implement the results in Ref. [16] in our
analysis.

On the lattice with a gauge fixing, one can measure the imaginary-time quark propagator

Saa
µν(τ, p⃗) =

∫
d3xe−ip⃗·⃗x⟨ψa

µ(τ , x⃗)ψ̄a
ν(0,⃗0)⟩, (2.4)

where ψa
µ(τ, x⃗) is the quark field with the Dirac index µ and the color index a. Here, τ is the

imaginary time restricted to the interval 0 ≤ τ < β . Saa
µν is a diagonal component, not traced out

on the color indices. In the following section, the color indices of the quark field are suppressed in
Eq. (2.4). The Fourier transform of the quark correlator

Sµν(iνn, p⃗) =
∫ β

0
dτeiνnτSµν(τ, p⃗), (2.5)

is written in the spectral representation as

Sµν(iνn, p⃗) =−
∫

dν ′ ρµν(ν ′, p⃗)
ν ′− iνn

, (2.6)

with the quark spectral function ρµν(iνn, p⃗). The spectral function is related to the imaginary-time
correlator Eq. (2.4) as

Sµν (τ, p⃗) =
∫ ∞

−∞
dν

e(1/2−τ/β )βν

eβν/2 + e−βν/2 ρµν (ν , p⃗) . (2.7)
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In the deconfined phase, where the chiral symmetry is restored, the quark propagator anticom-
mutes with γ5. In this case, the spectral function can be decomposed with the projection operators
Λ± (p⃗) =

(
1± γ0 ˆ⃗p · γ⃗

)
/2 as

ρ(ν , p⃗) = ρ+(ν , p)Λ+(p⃗)γ0 +ρ−(ν , p)Λ−(p⃗)γ0, (2.8)

with p = |p⃗|, ˆ⃗p = p⃗/p and

ρ±(ν , p) =
1
2

TrD [ρ (ν , p⃗)γ0Λ± (p⃗)] . (2.9)

It is shown from the anticommutation relations of ψ and ψ̄ that the decomposed spectral functions
satisfy the sum rule, ∫

dνρ±(ν , p) = 1. (2.10)

Using charge conjugation symmetry, one can show that ρ±(ν , p⃗) satisfy [16]

ρ±(ν , p) = ρ∓(−ν , p). (2.11)

On the lattice, one can measure the imaginary-time correlator Eq. (2.4) for discrete imaginary
times. To obtain the quark propagator one has to deduce the spectral function from this information.
In Refs. [14, 15, 16], the quark correlator in Landau gauge is analyzed on the lattice with the
quenched approximation, and the quark spectral function is analyzed with the two-pole ansatz,

ρ+(ν , p) = Z+(p)δ (ν −ν+(p))+Z−(p)δ (ν +ν−(p)) , (2.12)

where Z±(p) and ν±(p) are the residues and positions of poles, respectively. Four parameters,
Z±(p) and ν±(p), are determined by fitting correlators obtained on the lattice for each p. The
two poles in Eq. (2.12) at ν+(p) and ν−(p), respectively, correspond to the normal and plasmino
modes in the HTL approximation. In fact, the study of the momentum and bare quark mass, m0,
dependences of the fitting paramters shows that these parameters behave reasonably as functions of
m0 and p [14, 15, 16]. The restoration of the chiral symmetry for massless quarks above Tc is also
checked explicitly on the lattice by measuring of the scalar term of the massless quark propagator
[15, 16].

In Fig. 1, we show the fitting result of each parameter in Eq. (2.12) for massless quarks as
a function of p for T = 1.5Tc and 3Tc obtained in Ref. [16]. These analyses are performed on
the lattice with the size 1283 × 16, at which both the lattice spacing and finite volume effects are
found to be small [16]. In the upper panel, p dependences of ν±(p), i.e. the dispersion relations
of the normal and plasmino modes, are shown by open symbols. The vertical and horizontal axes
are normalized by the thermal mass mT defined by the value of ν±(p) for p = 0. The value of
mT obtained on the lattice after the extrapolation to infinite volume limit is mT/T = 0.768(11) and
0.725(14) at T = 1.5Tc and 3Tc, respectively [16]. The lower panel shows the relative weight of the
plasmino residue, Z−/(Z++Z−). The panel shows that the weight becomes smaller as p increases,
which indicates that the quark propagator for large p/T is dominated by the normal mode.

Although the lattice data are available only for discrete values of p, we need to have the quark
propagator as a continuous function of p to solve the SDE. For this purpose, we take interpola-
tion and extrapolation of the lattice data by the cubic spline method. From the charge conjuga-
tion symmetry one can show that dν+(p)/d p =−dν−(p)/d p, d2ν+(p)/d p2 = d2ν−(p)/d p2, and
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Figure 1: Open sympols show the momentum dependence of the parameters ν+(p), ν−(p), and
Z−(p)/(Z+(p)+ Z−(p)) obtained on the lattice in Ref. [16]. The solid lines represent their interpolation
obtained by the cubic spline method.

Z+(0) = Z−(0) [14, 16]. These properties are taken into account in our cubic spline interpola-
tion. The lattice data are available only in the momentum range p/T ≲ 4.7. To take extrapo-
lations to higher momenta, we extrapolate the parameters using an exponentially damping form
for Z−/(Z++Z−), Z−/(Z++Z−) = e−α p, while ν±(p) we extrapolate by a polynomial function,
ν±(p) = p+β±

1 /p+β±
2 /p2 + · · · , which approach the light cone for large p with the parameters

α and β±
i are determined in the cubic spline analysis. The p dependence of each parameter deter-

mined in this way is shown by the solid lines in Fig. 1. Finally, we demand Z++Z− = 1 throughout
this paper to satisfy the sum rule Eq. (2.10).

With the two-pole form of the spectral function Eq. (2.12), the quark propagator reads

S(iνn, p⃗) = S+(iνn, p)Λ+(p⃗)γ0 +S−(iνn, p)Λ−(p⃗)γ0

= ∑
s=±

Ss(iνn, p)Λs(p⃗)γ0, (2.13)

where

Ss(iνn, p) =
Z+(p)

iνn − sν+(p)
+

Z−(p)
iνn + sν−(p)

(2.14)

with s =±1. Correspondingly, the inverse propagator is given by

S−1(iνn, p⃗) = ∑
s

S−1
s (iνn, p)(p⃗)γ0Λs(p⃗) (2.15)

with

S−1
s (iνn, p) =

(iνn − sν+(p))(iνn + sν−(p))
iνn − sE(p)

, (2.16)

and E(p) =−Z+(p)ν−(p)+Z−(p)ν+(p). Note that the inverse propagator has poles at iνn =±E.
This pole inevitably appears in the two-pole ansatz, because the propagator Eq. (2.14) has one zero

5
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point in the range of ω sandwiched by the two poles. The form of the inverse propagator Eq. (2.16)
will be used in the construction of the vetex function. We will see that the poles at iνn =±E give
rise to additional terms in the dilepton production rate.

2.3 Vertex Function

The SDE Eq. (2.2) requires the full photon-quark vertex Γµ(P+Q,P) besides the full quark
propagator. So far, the evaluation of Γµ(P+Q,P) on the lattice at nonzero temperature has not
been performed to the best of the authors’ knowledge. In the present study, we construct the vertex
function from the lattice quark propagator to satisfy the Ward-Takahashi identity (WTI) as follows.

The gauge invariance requires that the vertex function fulfill the WTI

QµΓµ(P+Q,P) = S−1(P+Q)−S−1(P), (2.17)

with the inverse quark propagator S−1(P). For q⃗ = 0, the temporal component Γ0 is completely
determined only by this constraint as follows. First, in this case q⃗ · Γ⃗ should vanish provided that
Γi is not singular at q⃗ = 0. Then, by substituting q⃗ · Γ⃗ = 0 into Eq. (2.17) one obtains

Γ0(iωm + iνn, p⃗; iνn, p⃗) =
1

iωm

[
S−1(iωm + iνn, p⃗)−S−1(iνn, p⃗)

]
. (2.18)

On the other hand, the spatial components Γi cannot be determined only with Eq. (2.17) [17].
In the present study, we employ an approximation to neglect the q⃗ dependence of Γ0(iωm+ iνn, p⃗+
q⃗; iνn, p⃗) at q⃗ = 0; in other words we assume that

∂Γ0(iωm + iνn, p⃗+ q⃗; iνn, p⃗)/∂qi |⃗q=0 = 0. (2.19)

Within this approximaiton and Eq. (2.17), one obtains

qiΓi(iωm + iνn, p⃗+ q⃗; iνn, p⃗) = S−1(iωm + iνn, p⃗+ q⃗)−S−1(iωm + iνn, p⃗). (2.20)

By taking the leading-order terms of q⃗ on the both sides, one obtains

Γi(iωm + iνn, p⃗; iνn, p⃗) =
∂S−1

∂ pi (iωm + iνn, p⃗)

= ∑
s

∂S−1
s (iωm + iνn, p)

∂ pi γ0Λs(p⃗)

+∑
s

S−1
s (iωm + iνn, p)γ0

∂Λs(p⃗)
∂ pi , (2.21)

where in the second equality, we used Eq. (2.15).
The determination of the non-perturbative form of the photon-quark and gluon-quark vertices

is generally difficult, and various approximations have been employed in the study with the SDE
[17, 18, 19, 20]. It should be emphasized that the vertex functions Eqs. (2.18) and (2.21) satisfy the
WTI and thus is advantageous in light of the gauge invariance among various ansätze on the vertex
function. Eq. (2.18) is the same as that obtained in Ref. [17], since it is uniquely determined only
from the WTI; while Γi are different from the ones in Ref. [17].
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3. Dilepton production rate

Now, let us calculate the dilepton production rate with the lattice quark propagtor Eq. (2.13)
and the full vertex functions Eqs. (2.18) and (2.21).

When the full vertex function satisfying the WTI is used in Eq. (2.2), the temporal component
Π00 for q⃗ = 0 vanishes, because of the current conservation qµ jµ = 0. For ∑i Πii, by substituting
Eqs. (2.13) and (2.21) in Eq. (2.2) and using the two-pole form of the quark propagator Eq. (2.14)
one obtains

∑
i

Πii

(
iωm ,⃗0

)
= −10e2

3

∫ d3 p

(2π)3 ∑
s=±1

s
[

2Z2
+ν+Ω̄

p(ν++E)
1−2 f (ν+)

iωm +2sν+
+

2Z2
−ν−Ω̄

p(ν−−E)
1−2 f (ν−)

iωm +2sν−

+2Z+Z−Ω̄
Ω̄E −2ω+ω−

p(ν++E)(ν−−E)
f (ν−)− f (ν+)

iωm − sν++ sν−

−
(

Z+
dν−
dp

−Z−
dν+

dp

)
1− f (ν+)− f (ν−)

iωm + sν++ sν−

+

(
− 2Z+Z−EΩ2

p(ν++E)(ν−−E)
− dE

dp

)(
Z+

f (E)− f (ν+)

iωm + sν+− sE
+Z−

f (−E)− f (ν−)

iωm + sν−+ sE

)]
,

(3.1)

with Ω̄ = ν+−ν−.
By taking the analytic continuation iωm → ω + iη and imaginary part, one obtains

ImΠR,µ
µ (ω ,⃗0) =− 20α

3

∫
dpp2

{
− 2Ω̄

p

[
Z2
+ν+

ν++E
{1−2 f (ν+)}δ (ω −2ν+)

+
Z2
−ν−

ν−−E
{1−2 f (ν−)}δ (ω −2ν−)

−Z+Z−
Ω̄E −2ν+ν−

(ν++E)(ν−−E)
{ f (ν−)− f (ν+)}δ (ω −ν++ν−)

]
+

(
Z+

dν−
dp

−Z−
dν+

dp

)
{1− f (ν+)− f (ν−)}δ (ω −ν+−ν−)

+

(
2Z+Z−EΩ2

p(ν++E)(ν−−E)
+

dE
dp

)
× [Z+{1− f (−E)− f (ν+)}δ (ω −ν++E)+Z−{ f (−E)− f (ν−)}δ (ω −ν−−E)]

}
+(ω →−ω). (3.2)

Now let us inspect the physical meaning of each term in Eq. (3.2). From the δ -functions
and thermal factors, one finds that the two terms in the first and second line represent the pair
creation and annihilation processes of normal and plasmino modes, respectively. The third line
corresponds to the Landau damping. The term in the fourth line in Eq. (3.2) can be interpreted as
the pair annihilation and creation of a normal and a plasmino modes. This process appears as a
consequence of the vertex correction. We note that a similar process exists in the formula obtained
in the HTL perturbation [12]. Thus, the terms in the first four lines in Eq. (3.2) can be understood as

7
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the decay, creation, and scattering processes of quark quasi-particles. We also note that the Landau
damping of two normal and two plasmino modes does not exist in Eq. (3.2), because such a term
can have a nonzero value only for ω = 0 for q⃗ = 0.

On the other hand, one cannot give such interpretations to the terms in the fifth and sixth lines
in Eq. (3.2). From the δ -functions and the thermal factors, these terms seem to represent the decay
and creation rates with a quasi-particle mode with the energy ±E, which, however, does not exist
in the quark propagtor Eq. (2.14). Mathematically, these terms come from the poles in the vertex
function Eq. (2.21). The poles appear in the vertex function via the WTI, Eq. (2.17) and the fact
that the analytic continuation of the propagator Ss(iνn, p) have zero points at energies ±E. As
discussed in Sec. 2.2, the zero points in Ss(ω, p) inevitably appear between the two poles in the
two-pole form of the quark propagator Eq. (2.14).

Another remark on Eq. (3.2) is the sign of each term in Eq. (3.2). In Eq. (3.2), all terms are
separately positive definite for ω > 0 except for the one in the fourth line, which becomes negative
for sufficiently large ω . The negative contribution of this term, however, is canceled out by the last
term; the sum of the fourth and fifth lines is positive. The total dilepton production rate for ω > 0
therefore is positive definite as it should be.

We finally comment on the limiting behaviors of Eq. (3.2). First, in our two-pole ansatz the
quark propagator for massless free quarks is obtained by setting

Z+(p) = 1, Z−(p) = 0, ν+(p) = p. (3.3)

Equation (3.2) thus should reproduce the photon self-energy of the free quark gas, when Eq. (3.3)
is substituted into it. This can be explicitly checked as follows. By substituting Z− = 0, all terms
including Z− vanishes. Since E = −ν− for Z− = 0, the thrid and fourth lines in Eq. (3.2) with-
out including Z− cancel out with each other without constraints on ν−(p). Only the first term in
Eq. (3.2) thus survives, which gives the free quark result. Second, our analysis on the dilepton pro-
duction rate approaches the free quark one in the large ω limit, because the lattice quark propagator
used in this study reproduces Eq. (3.3) at large momenta. This behavior will be checked in the next
section.

4. Numerical results

Now let us examine the numerical results for the dilepton production rate obtained in the
previous section. In Fig. 2(a), we present the ω dependence of the dilepton production rate for
T = 1.5Tc. In the figure, we also plot the result without vertex correction together with the rates
obtained by HTL perturbation [12] and free quark gas. The value of the thermal mass mT is taken
from the one determined on the lattice [16].

Figure 2(a) shows that the production rate with the lattice quark propagator have divergences
at two energies ω/mT = ω1/mT ≃ 1.1 and ω/mT = ω2/mT ≃ 1.8. For ω < ω1, the rate is about
one order larger than the free quark one, and is almost the same order as the HTL result [12].
This large production rate at low ω might explain the enhancement of the experimentally-observed
dilepton spectrum at PHENIX [4]. The rate has a discontinuity at ω = ω1, and is significantly
suppressed compared with the free quark one for ω1 < ω < ω2. The rate has another discontinuity
at ω = ω2, above which the rate is consistent with the free quark one. In the dilepton rate without

8
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Figure 2: Dilepton production rates at zero momentum for T = 1.5Tc and 3Tc. The results without vertex
correction are also plotted. Thin lines represent the HTL and free quark results.

vertex correction, one also finds two divergences at ω = ω1 and ω2, while the rate vanishes for
ω1 < ω < ω2.

In Fig. 2(b), we show the dilepton production rate at T = 3Tc. One sees that the behavior is
qualitatively the same as the result for T = 1.5Tc. In particular, the rate is about one order larger
than the free quark case for ω ≃ mT . This indicates that the large enhancement of the dilepton
production rate around ω ≃ mT is a general result for some range of T . Qualitatively, the gap
between ω1 and ω2 becomes narrower, because of the change of the dispersion relations ν±(p)
obtained on the lattice. One also finds that the rate takes a finite value at ω = 0, while it diverges
for T = 1.5Tc. This limiting behavior strongly depends on the extrapolations of ν±(p) to large
momenta.

In this study we have investigated the dilepton production rate using a quark propagator ob-
tained on the lattice with the two-pole ansatz. The Schwinger-Dyson equation (SDE) for the photon
self-energy is solved with the lattice quark propagator and the photon-quark vertex satisfying the
Ward-Takahashi identity. Our numerical result shows that the dilepton production rate with the lat-
tice quark propagator is larger by the about one order at low invariant mass region compared with
the free quark one. To understand the effect of the enhancement of the dilepton rate to the experi-
mental result quantatively, analyses with dynamical models describing the space-time evolution of
the hot medium are needed, which will be performed elsewhere.
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