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1. Chiral symmetry and conformal symmetry in QCD with many flavours

In this talk, at a variance with the phase diagram in the temperature, chemical potential plane
much discussed at this meeting, we will explore the phases of QCD varying the temperature and
the number of flavours. This is of course a vast subject[1], and here we will limit ourselves to the
presentation of some of our recent results [2, 3].

In general, we know that framing a theory in a larger parameter space often adds to our under-
standing. More specifically, if the new axis is the number of light flavours, we have the chance to
access a new regime of strong interactions: when the number of flavours exceeds a critical number,
an infra-red fixed point (IRFP) appears and prevents the coupling from growing large enough to
break chiral symmetry. The theory is then conformal invariant, and this remains true till asymptotic
freedom is lost: the range of flavours between the onset of conformality and the loss of asymptotic
freedom is known as the conformal window of strong interactions. Inside the conformal window
the running of the coupling is regulated by two fixed point: the familiar UV fixed point at large
momentum scales, and this novel IRFP for small momenta. Very interestingly, the coupling at
the IRFP can still be largish: we can learn about strongly interacting conformal theories, and we
can assess up to which extent such theories might offer a guidance to the physics of the strongly
interactive quark gluon plasma.

Let us remind ourselves that (near)conformality plays quite an important role in the modelling
of the plasma: bulk viscosity is set to zero by fiat in many hydrodynamics study, and in general
AdS/CFT predictions have been widely scrutinised and contrasted with experimental observations
and numerical results– a significant example of these predictions is the low value of the viscosity to
entropy ratio, η

S ' 1/4π , which appears to describe well the hydrodynamic evolution of the plasma
after the collisions. To make more transparent a possible connection, let us then consider that both
physics intuition and phenomenological analysis based on functional renormalisation group [4]
and finite temperature holographic QCD [5]– [9] indicate that the conformal phase of cold, many
flavour QCD and the high temperature chirally symmetric phase are continuously connected. In
particular, the onset of the conformal window coincides with the vanishing of the transition tem-
perature, and the conformal window appears as a zero temperature limit of a possibly strongly
interacting QGP.

From a general field theory viewpoint, the analysis of the phase diagram of strong interactions
as a function of the number of flavours adds to our knowledge of strong interactions and their
fundamental mechanisms. From a particle phenomenology viewpoint, this study deals with a class
of models which might play a relevant role in model building beyond the standard model, which
explain the origin of mass using strong coupling mechanisms.

A simplified view of the phase diagram which we will consider here is sketched Figure 1:
the axis is simply the number of light flavours. Ordinary QCD belongs to the hadronic phase. The
conformal region is on the right hand side, and is separated by an essential singularity from the
hadronic phase. Clearly, as in any system undergoing a phase transition, the nature and extent
of the critical window are purely dynamical questions whose answer cannot be guessed a priori.
Since the underlying dynamics is completely non-perturbative, lattice calculations are the only tool
to perform an ab initio, rigorous study of these phenomena[12]–[46].

We now turn to the presentation of our results. The following Section is a concise summary
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Figure 1: A sketch of the phase diagram of QCD-like theories in the temperature (T ), flavour number (N f )
and bare coupling (g) space. In the T-N f plane, the critical line is a phase boundary between the chirally
broken hadronic phase and the chirally symmetric quark gluon plasma, the zero temperature end point of
which is the onset of the conformal window. The zero temperature projected plane is inspired by the scenario
in Refs. [47].

of our most recent paper Ref.[3] devoted to the analysis of the conformal phase for a fixed value of
N f = 12. Then, following the presentation of our recent review Ref.[2], we concentrate on the pre-
conformal phase, discussing first some of its general features, and then focussing on the strength
of the coupling of the Quark Gluon Plasma as a function of N f . We close with a brief summary.

2. The cold conformal phase

We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental repre-
sentation as a possible realisation of a conformal theory. Following the phase diagram sketched
in Figure 1, we consider the Coulomb phase which appears for lattice couplings larger than the
one where the beta function vanishes. Our main result here is to show that the spectrum in the
Coulomb phase of the system can be described in the context of a universal conformal scaling
analysis. We then provide the nonperturbative determination of the fermion mass anomalous di-
mension γ∗ = 0.235(46) at the infrared fixed point. Our recent work discusses in detail how the
ideal conformal scaling law should be modified by finite volume and other lattice artefacts. The
remarkable outcome is that all the results from different groups indicate the same anomalous di-
mension once such corrections are properly taken into account.

Figure 2 summarises this study, where we show the collapse on a common universal curve of
data obtained with different lattice actions and lattice couplings, once perturbative corrections to
the universal scaling are divided out. Details on the fits and optimal parameters can be found in
Ref.[2].

This analysis leads to the determination of the mass anomalous dimension γ∗ at the IRFP. We
quote the value

δ = 0.81(3) γ
∗ = 0.235(46) (2.1)

This value is in agreement with the perturbative four-loop prediction, with the best-fit result of [26]
and not far from the first lattice determination of the fermion mass anomalous dimension for the

3



P
o
S
(
C
P
O
D
2
0
1
4
)
0
5
9

Chiral symmetry restoration in QCD with many flavours Maria Paola Lombardo

Figure 2: Collapse of curves for the rescaled pseudoscalar product Lmπ R/(1+bmω), with ω = 0.23 from
4-loop perturbation theory as a function of the universal scaling variable x = Lmδ with δ = 0.81 from this
work. Data are from [32] at β = 2.2 (LH, green crosses), [24] at β = 4.0 (LatKMI, magenta hexagons) and
β = 3.7 (LatKMI, blue triangles), and from this work for L = 24,32 (red squares) and L = 16 (red circles).
From Ref. [2].

N f = 12 system in [17], though the latter was affected by rather large uncertainties.

To summarise, a universal power law with exponent δ = 0.81 describes all would-be hadrons,
with additional perturbative mass corrections of the type 1+∆gmδγ∗g in the vector and axial chan-
nels. The pseudoscalar is the lightest state, but it is not a Goldstone boson. The vector, the scalar,
the axial, and finally the nucleon follow.

The identification of universal contributions dictated by the conformal invariance at the fixed
point and deviations from universal scaling induced in the surroundings of the fixed point has
allowed for the nonperturbative determination of the fermion mass anomalous dimension γ∗ =

0.235(46) and a unified description of all lattice results for the would-be hadron spectrum of the
N f = 12 theory.

3. Near-conformal: exploring scales

In this Section we discuss results for N f = 0, 4, 6, 8, approaching the conformal window from
below. In this case the results have been obtained with a fixed bare quark mass, and no attempt has
been done to extrapolate to the chiral limit. Obviously in this case all the notions of symmetries
are approximate, due the explicit mass (chiral breaking) term.

In order to monitor the behaviour of these theories we had to choose some observables: we
have considered the (pseudo)critical temperature, the ’most UV scale’ available on the lattice
(which will be explained later), the zero temperature string tension, and the w0 scale[48] defined
by the Wilson flow [49] (the preliminary results for this latter observables will not be shown here).
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Figure 3: (Pseudo) critical values of the lattice coupling g c
L =

√
10/β c

L for theories with N f = 6, 8 and
for several values of Nt in the Miransky-Yamawaki phase diagram. We have picked up g c

L at N f = 6 and
8, and considered “constant Nt” lines with Nt = 6, 12. If the system is still described by one parameter
beta-function in this range of coupling, the IRFP could be located at the intersection of the fixed Nt lines –
or equivalently, in the region where the step-scaling function vanishes. To demonstrate the procedure –as a
preliminary example – we have considered the intersection of the Nt = 12 and Nt = 6 lines

3.1 (Pseudo)critical temperature

We consider first the (pseudo)critical lattice couplings β c
L as a function of N f and Nt associated

with the thermal crossover which can be observed also with a finite mass. Let us plot g c
L (N f ,Nt) =√

10/β c
L (N f ,Nt) in the space spanned by the bare coupling gL and the number of flavour N f ,

and consider the lines which connect g c
L with Nt fixed: g c

L (N f )|Nt=fix (see Fig. 3). We consider
the pseudo-critical lines obtained at fixed Nt : the critical number of flavour N∗f can be read off
from their crossing point – simply because this crossing point correspond to a zero of the lattice
beta function. In Fig. 3 we show the pseudo-critical lines obtained for Nt = 6 and Nt = 12 whose
intersection can be estimated at (g c

L ,N
∗
f ) = (1.79± 0.12,11.1± 1.6). We emphasise that this is a

finite mass results, implying that N∗f is an upper limit to the chiral limit critical number of flavours.
Let us now fix N f and consider the pseudo-critical temperatures Tc in physical units:

Tc ≡
1

a(β c
L ) ·Nt

. (3.1)

We introduce the normalised critical temperature Tc/ΛL/E (see e.g. [50]) where ΛL (ΛE) repre-
sents the lattice (E-scheme) Lambda-parameter defined in the two-loop perturbation theory with
or without a renormalisation group inspired improvement [51]. We have observed that TC/Λ, re-
gardless the prescription used, approaches a constant by increasing Nt , enabling us (with the due
caveats) to interpret these asymptotic values as continuum estimates. We can then consider their
N f dependence : Tc/Λ apparently increases with N f . This suggests that Λ vanishes faster than Tc

when approaching N∗f , i.e. has a strong sensitivity to the IR dynamics affected by the conformal
threshold.
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Figure 4: The N f dependence of Tc/M where M is determined to be a UV scale corresponding to different,
equivalent, prescriptions and Tc is the pseudocritical temperature for a bare quark mass mq = 0.02.

We would like now to define a UV reference scale for different N f . We have chosen a pertur-
bative value for the coupling and identified – with the help of two loop scaling – a corresponding
mass scale which can be then used to normalise Tc for different temperatures. The outcome of this
procedure is demonstrated in Figure 4. On such UV scale Tc is now a decreasing function of N f ,
as expected. Since these results have been obtained at a finite mass, the critical number of flavours
in the chiral limit is encoded in the appropriate generalisation of the magnetic equation of state,
and at least another mass value would be needed to fix its free parameters (the normalizations). A
semiqualitative extrapolation of the data suggest that Tc(mq) would equal zero for N∗f = 10.4±1.2.
Again this finite mass estimate provides an upper limit to the critical number of flavours in the
chiral limit. A similar reasoning brings to the same conclusion in the case of a first order transition.
We emphasise that the logic of this exercise is not to find a precise estimate of the critical number
of flavours, rather to provide an evidence that such a critical number of flavours does exist, and its
approach can be observed. If and where the critical temperature in the chiral limit reaches zero is
a question obviously beyond the scope of an analysis performed with a fixed value of the quark
mass.

Next, we have measured the zero temperature string tension σ from Wilson Loops. σ has
been evaluated for the same set of pseudocritical couplings we have identified in our thermal study.
Because of this, we can immediately compute Tc/

√
σ (Figure 5): we note that the decreasing trend

becomes less apparent with increasing N f . Interestingly, this behaviour compares nicely with the
findings of a recent holographic study [9].

4. Which is the strongest coupled QGP?

We consider here the coupling g c
T (N f ) at the scale of the (pseudo)critical temperature for each

N f – having established with reasonable confidence asymptotic scaling we use perturbation theory

6
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Figure 5: The Tc/
√

σ as a function of N f . The symbol � (red) represents the present results (N f = 6,8).
For a comparison, we have quoted the Tc/

√
σ from [52] (N f = 0), [53] (N f = 2,3), [54] (N f = 4), shown as

© (blue) symbols. These results are still preliminary.

to evolve the coupling at the scale of the lattice spacing a up to the temperature inverse scale Nta.
The red (�) symbol in Figure 6 shows g c

T as a function of N f . We superimpose a fit obtained
by using the ansatz proposed in Ref. [55]

N f (g c
T ) = A · log

[
B · (g c

T −g c
T |N f =0)+1

]
. (4.1)

with A and B fit parameters, which describes well the data. We note that g c
T is an increasing

function of N f . This indicates that the quark-gluon plasma is more strongly coupled at larger N f ,
as discussed in Ref. [55]. In turn, this observation might provide a clue into the nature of the
strongly interactive quark gluon plasma.

5. Summary

We have described some studies whose ultimate aim is a quantitative characterisation of the
phase diagram in Figure 1. We briefly summarise here a few results: the pseudocritical temperature
Tc as a function of the number of light flavours, once properly normalised by use of a UV scale,
is a decreasing function of N f . The results on Tc/

√
σ show a comparably milder decrease. These

observations are compatible with an (essential?) critical behaviour and scale separation in the
precritical region. The conformal phase is strongly interactive with anomalous dimension, and the
(strongly coupled) Quark Gluon Plasma is smoothly connected with such cold conformal strongly
interacting phase. The latter observation might offer some motivation and guidance for studies
based on AdS/CFT correspondence and related holographic approaches.
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Figure 6: The couplings at Tc (red �) and the fit for them (dashed red line, with the ansatz Eq. (4.1))
and the values of the zero temperature couplings in the conformal phase from different analytic estimates.
The thermal coupling increases with N f and at the critical number of flavours it should equal the coupling
associated with the IRFP.
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