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A study of the "horn" in the particle ratio K+/π+ for central heavy-ion collisions as a function
of the collision energy

√
s is presented. We analyse two different interpretations: the onset of

deconfinement and the transition from a baryon- to a meson-dominated hadron gas. We use a
realistic equation of state (EOS), which includes both hadron and quark degrees-of-freedom. The
Taub-adiabate procedure is followed to determine the system at the early stage. Our results do not
support an explanation of the horn as due to the onset of deconfinement. Using only hadronic EOS
we reproduced the energy dependence of the K+/π+ and Λ/π− ratios employing an experimental
parametrisation of the freeze-out curve. We observe a transition between a baryon- and a meson-
dominated regime; however, the reproduction of the K+/π+ and Λ/π− ratios as a function of
√

s is not completely satisfying. We finally propose a new idea for the interpretation of the data,
the roll-over scheme, in which the scalar meson field σ has not reached the thermal equilibrium
at freeze-out. The rool-over scheme for the equilibration of the σ -field is based on the inflation
mechanism. The non-equilibrium evolution of the scalar field influences the particle production,
e.g. K+/π+, however, the fixing of the free parameters in this model is still an open issue.
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1. Introduction

High energy collisions are the unique experimental way to study the Equation of State (EOS)
of strongly interacting matter. New experiments on this topic are currently in preparation such as
the CBM at FAIR and the MPD at NICA. In order to extract information about the behaviour of
matter, one has to analyse the data with respect to the production of various hadronic particles, both
mesons and baryons. This analysis is highly non-trivial, since at these energy regimes the baryon
chemical potential of matter cannot be neglected and, unfortunately, the EOS of the matter at finite
baryon chemical potential is still uncertain. The possibility to investigate the deconfinement phase
transition at high density and temperature is one of the main goals of the scienific community in
the recent years. Assuming that the system at the early-stage of the heavy-ion collisions enters
the Quark-Gluon-Plasma (QGP) phase, during the expansion of the fireball the system cools down
so that the produced strong matter hadronizes into confined states. A transition of this kind, from
QGP phase to hadron phase, probably occurred during the expansion of the early universe about one
microsecond after the Big Bang. But, even if the system reaches the deconfined phase, the life time
of the fireball is extremely short (∼ 10−22seconds). Among the suggested experimental signatures
of the QGP formation, the production of strange particles is one of the most investigated. Indeed,
in the data on the collision energy dependence of the ratio between the K+ and the π+ mesons a
"horn" structure appears at

√
sNN of about 7GeV , whose origin is still unclear. In this contribution,

we aim at reanalysing the two main scenarios for the explanation of the "horn" [1], [2] using an
up-to-date EOS. In addition, we propose a new idea to describe particle production in heavy-ion
collisions. In section 2 we describe the EOS used for the calculations; in section 3 we present
the main features of the three models, while in section 4 we show our results achieved for each
approach. In section 5 we draw our conclusions.

2. Equation of state

A reliable modeling of the equation of state is essential to describe the system produced in
heavy-ion collisions. In this section we are going to draw only the main features of the EOS used;
for a detailed description we address the reader to reference [3]. The considered EOS includes
hadron degrees-of-freedom, a hadron-quark mixed phase and quark degrees-of-freedom at small,
intermediate and high baryon densities, respectively. The system is characterized by 3 conserved
charges: baryon number, electric charge Z/A = 0.4, zero strangeness. The hadronic part of the EOS
is built according to the relativistic mean-field model based on a Walecka Lagrangian, with the in-
clusion of the baryon octet and of the ∆-isobars. The interactions between hadrons are included via
meson exchange whose mediators are σ , π , ω , ρ meson fields. The values of the mass, energy and
chemical potential of each baryon are modified by the interaction. The Walecka model in the rela-
tivistic mean-field approximation allows to describe the properties of finite nuclei and of dense and
finite-temperature nuclear matter [4]. We include in the model also the lightest pseudo-scalar and
vector mesons. We take into account the one-body meson contribution simply by considering the
mesons as an ideal Bose gas with effective chemical potentials, which ensures the self-consistent
interaction of the mesons. The introduction of the effective chemical potential for the mesons can
be compared with the excluded volume approximation of the hadron resonance gas [5]. In the
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deconfined state the EOS is given by the MIT bag model. We include the u, d and s quarks as rela-
tivistic Fermi particles. The u and d quarks are assumed massless, while the s-quark mass is finite
and is fixed to 95MeV . The gluons are considered as massless Bose particles with zero chemical
potential. Finally, the mixed phase is realized by imposing the Gibbs conditions for a system with
three conserved charges, which are baryon number, electric charge and strangeness number. We
mention that our equation of state does not satisfy chiral symmetry.

3. Models

3.1 Statistical Model of the Early Stage (SMES)

The Statistical Model of the Early Stage (SMES) has been introduced by Gazdzicki and Goren-
stein [1], [6]. It is a statistical model describing the heavy-ion collision process, which turns out
to be in good agreement with experimental data for different hadron abundancies. This approach
provides important information about the features of the system created at the early stage of the col-
lision and is able to suggest signatures for the onset of QGP formation. The SMES proposes that the
sharp maximum of K+/π+ at about

√
sNN ≈ 7.5GeV corresponds to the onset of deconfinement.

Moreover, within this approach, the strangeness to entropy ratio (ns + ns̄)/s is strictly connected
to the multiplicity ratio < K+ > / < π+ > and is characterised by an analogous non-monotonic
behaviour. Finally, according to the SMES, the mixed phase is reached for the beam energies of
30A− 60AGeV (

√
sNN = 7− 12GeV ). The SMES deals with a system with vanishing chemical

potentials and baryon density, besides most degrees-of-freedom are taken to be massless. The first
assumption relies on the hypothesis that after the collision process the wounded nuclei go away
from the collision point with velocity close to c, leaving a system with vanishing baryon density.
It is extremely difficult to evaluate the initial conditions of the evolving system, but recent works
suggest that the early system has a non-negligible baryon density [7], [8]. Concerning the second
assumption, the SMES seems to give realistic masses only to the strange degrees-of-freedom, but,
especially at low energies, the temperatures reached by the system in the confined state are not
large enough to neglect the masses of the lightest non-strange particles.

3.2 Hadron Resonance Gas Models

Several Hadron Resonance Gas Models have been developed to explain the particle production
in heavy-ion physics, achieving good results also for the interpretation of the horn ([10], [8] and
[2]). The particle production in heavy-ion collision is described as a thermal hadron production at
the freeze-out stage. The freeze-out represents the final stage of the expansion process, in which
the produced hadrons cease to interact and, as a result, the particle multiplicities are frozen. These
models do not propose a description of the system evolution and they do not need any information
about the initial stage of the collision. The matter produced in the collisions is represented as a
Hadron Resonance Gas, in which all hadrons containing u, d and s quarks are included as free
particles usually up to a mass of about 2− 3GeV . The energy dependence of the particle ratios,
e.g. of K+/π+ and Λ/π−, is provided computing the particle densities along the paremetrisation of
the experimental freeze-out line, fitted to reproduce the yields of non-strange hadrons. In order to
correctly reproduce the data, some models, e.g. the Statistical Hadronization Model (SHM) [11],
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introduce non-equilibrium parameters to modify the expressions of the particle densities. In our
work we follow the approach of Ref. [12] and [2]. These Hadron Resonance Gas models predict a
transition of the hadron gas from a baryon-dominated to a meson-dominated gas at

√
sNN ∼ 8GeV

along the freeze-out curve. The origin of the horn is related to this type of transition.

3.3 Roll Over scheme

Here, we describe a possible mechanism which can give information about the chemical equi-
librium of the system during its expansion after the stage of maximum compression. If the system
is not in full chemical equilibrium, the particle densities and the strangeness production can be af-
fected by large fluctuations. Thus we propose an outlook for the study of the strangeness production
in a partial equilibrium condition.

The heavy-ion collision can be seen as a Little Bang, since the system undergoes a rapid
expansion and it reaches values of the energy density, characteristics of the early Universe. We
can proceed with this parallelism also for the description of the evolution of the fireball. We know
that after the Big Bang the Universe started expanding and during its evolution it cooled down,
similar to the fireball produced at the heavy-ion collision process. The inflation is the exponential
expansion of the universe driven by the dynamical evolution of a scalar field φ [13]. At the origin
of the Universe, this field was not in the minimum of its potential, consequently it began to roll
over towards the equilibrium point. We borrow this pitcure and apply it to the scalar field σ as an
inflaton field. We choose σ for this picture not simply because it is a scalar field, instead of the
other vector mediator fields ω and ρ , but we also take into account the important role that it plays
in the system. In fact, the σ field modifies the baryon masses, consequently a change in the σ field
directly influences the particle composition of the system. The equation of motion for the scalar
field is taken as:

σ̈ +3
1
τ

σ̇ +Ω
′
e f f (σ) = 0, (3.1)

where 1/τ represents the "Hubble parameter" for the expansion of the fireball. We define the rate
of the fireball expansion as V̇/V (with V as the volume of the fireball), which is approximately 1/τ .
Since we are dealing with a system composed not only of the σ field, the potential to be considered
in the equation of motion is the grand-canonical potential Ω of the whole system. In addition, since
the temperature of the system is finite, we have to replace the potential Ω(σ ,T ) with the effective
potential Ωe f f (σ ,T ), obtained as the difference between the grand canonical potential Ω and the
thermal contribution associated to the field Pσ (σ ,T ) (see [14] for details):

Ωe f f (σ ,T ) = Ω(σ ,T )−Pσ (σ ,T ). (3.2)

In Figure 1 we show the behaviour of Ωe f f (σ ,T ) for different values of the baryon chemical
potential at a fixed temperature T = 156MeV . We notice that at a given σ the potential Ωe f f

increases as the baryon chemical potential decreases, reaching positive values at large values of σ

and for small µB. Furthermore, the minimum of the potential shifts towards smaller values of σ

as the baryon chemical potential decreases. The curvature of the potential is larger for high µB,
whereas Ωe f f becomes almost flat for small µB. As a result, the minimum of the potential is well-
defined when the baryon chemical potential of the system is large, while for small µB the minimum
of the potential is situated in a wide flat region. Thus, we can infer that in case of small µB the
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ΜB = 30 MeV
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Figure 1: Ωe f f (σ ,T ) as a function of σ at T =

156MeV ; the green solid line corresponds to the upper
value of baryon chemical potential µB = 1030MeV ,
the red dotted line corresponds to the lower value
of baryon chemical potential µB = 30MeV , the blue
dashed lines correspond to the values of µB between
30MeV and 1030MeV with steps of 100MeV .

Σ2 Σ1
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Μ2
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Figure 2: Roll over picture; the blue-solid
and red-dotted curves represent Ωe f f at T =

156MeV for µ1 = 750MeV and µ2 = 550MeV
respectively; the blue-circle points refer to the
value of the field σ1 associated to the minimum
of the potential for µ1, the red-square point σ2

represents the minimum of the potential for µ2.

field can easily fall into non-equilibrium configurations. The effective potential is characterised by
the same trend as a function of temperature: with decreasing temperature, the Ωe f f becomes larger
and shallower and the minimum of the potential shifts to smaller values of the field.
We know that during the collision the system heats up, reaching large values of T and µB depending
on the beam energy. During the expansion, the system cools down and the associated µB decreases
(3-fluid hydrodynamics [15] is able to display how the system produced by a heavy-ion collision
evolves in the (T,µB) plane). In the present exploratory work, we study the expansion of a fireball
produced in a heavy-ion collision at low energy ELab = 10AGeV . The system does not undergo a
deconfinement transition and during the expansion it evolves from a larger value of baryon chemical
potential µ1 to a smaller value µ2 (Figure 2). We consider in first approximation the temperature to
be constant.

4. Results

4.1 SMES approach

We use our equation of state to follow the main concepts of the SMES: the creation of new
degrees-of-freedom occurs at the early stage as a statistical process; strange and antistrange particle
abundancies are conserved during the expansion of the system. It is very hard to estimate the initial
conditions of the thermodynamical evolution of the system. In this work we choose to address this
issue by following the procedure of the Taub-adiabate [8]. The baryon density, obtained through
this procedure, is plotted in Figure 3 (left panel) as a function of

√
sNN . It exhibits two kinks

when the system enters and leaves the mixed phase. The resulting values for the baryon chemical
potential and baryon density are not small enough to be considered negligible, as supposed by the
SMES. Moreover we can see that the mixed phase provided by our EOS ends at

√
sNN ∼ 3GeV .

Consequently, it is not surprising that at
√

sNN ∼ 7GeV the strangeness to entropy ratio Figure 3
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Figure 3: Left panel: baryon density for the early stage system as a function of the center-of-mass energy;
the arrows point out the kinks of ρB related to the beginning and the end of the mixed phase. Right panel:
the ratio (ns + n̄s)/s as a function of

√
sNN at the early stage in a pure QGP phase for our EOS.

(right panel) does not show a peak associated to the onset of deconfinement. Anyway, the values of
the critical densities are rather uncertain and within our EOS the onset of deconfinement appears at
quite small

√
sNN , so we can not exclude that the SMES mechanism will work with other EOSs.

4.2 Hadron Resonance Gas Models approach

In a Hadron Resonance Gas model, as the temperature and baryon chemical potential increase
new particles are produced, which in turn corresponds to a softening of the EOS. Similarly in
our EOS which includes interactions, the effective masses of baryons decrease as functions of the
temperature and µB and this again implies a softening of the EOS. This establishes a connection
between the two EOSs. In this approch we provide results solely at the freeze-out stage, whose
parametrization curve has been computed with our EOS following the standard procedure [16].
As we can see in Figure 4, µB decreases as a function of

√
sNN while the temperature increases,

reaching the saturation value of T ' 160MeV at
√

sNN ∼ 50GeV . In Figure 5 we plot the ratio
between the density of baryons and the numerical particle density, nB/ntot , and the ratio between
the density of mesons and the numerical particle density, nM/ntot , as a function of

√
sNN . Even

with our EOS it is possible to distinguish two regimes of the system at the freeze-out: at very small
centre of mass energies (

√
sNN . 5GeV ) the baryons are the dominating particle species, while at

larger energies the mesons are the most abundant particles. The presence of these two regimes and
the transition between them are strictly connected with the behaviour of the temperature and the
baryon chemical potential as a function of

√
sNN along the freeze-out curve. At small energies the

large µB corresponds to large numerical baryon density, instead at large energies the small values of
µB and the moderate value of the temperature lead to a smaller nB with respect to nM. The change
between the baryon-dominated and the meson-dominated regimes takes place in correspondence of
the steep increase of T and the strong decrease in µB. These features of the freeze-out curves give
rise to the non-monotonic behaviour of the relative number of strange baryons [12], for example of
the ratio Λ/π−. This ratio should exhibit a sharp peak related to the change between the baryon-
dominated and the meson-dominated regimes. Moreover, because of the constraint of the zero-net
strangeness and because of the negligible amount of antibaryons, the relative ratios of the strange
mesons containing s̄-quark, e.g. K+/π+, ought to follow a similar non-monotonic behaviour with

6
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Figure 4: Freeze-out parametrization.
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Figure 5: The ratios between the particle species and
the total particle densities as a function of

√
sNN (in

logarithmic scale) at the freeze-out; the blue-dashed
and red-solid lines refer to nB/ntot and to nM/ntot re-
spectively.

a less pronounced peak. In Figure 6 we plot the ratios K+/π+ (left panel), Λ/π− (right panel) as
a function of

√
sNN along the freeze-out curve. We consider also the contribution on the particle

densities coming from the strong decays of heavier particles included in our hadronic EOS [5]. The

data

with decays

without decays
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Figure 6: The ratios K+/π+ (left panel) and Λ/π− (right panel) derived with our EOS along the freeze-out
curve as a function of

√
sNN ; the blue-dashed and red-solid lines refer to the multiplicity ratios without and

with the decay contributions respectively; the filled points represents the data (see [2] and refences therein).

decay contributions substantially modify the ratios K+/π+ and Λ/π−. The inclusion of the decays
suppresses the ratio K+/π+ by a factor of nearly 10%. The curve associated to Λ/π− with the
decay contributions is characterised by an higher and sharper maximum with respect to the case in
which the decay contributions are not included. Thus, the ratio Λ/π− shows the non-monotonic
behaviour as a function of

√
sNN , with a peak at small energies

√
sNN ∼ 5GeV , as we expected in

a scheme characterised by a transition between a baryon-dominated to a meson-dominated regime.
We notice that the maximum value for Λ/π−∼ 0.16 is comparable to the higher experimental point.
Actually, the position of the peak results to be at slightly smaller energies with respect to the data.
The K+/π+ ratio obtained is not in good agreement with the data and the peak is not very evident.
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Although our results are not in good agreement with the experimental points, we can conclude that
the introduction of the decay contributions allows us to get results which are closer to the data.
We interpret the better result observed for Λ/π− as due to the fact that our model includes only
for the baryons their effective masses, while mesons are included as a free gas with only effective
chemical potentials. It would be interesting to investigate whether the inclusion of effective masses
also for mesons can lead within our model to results closer to the hadron resonance gas ones. In
chiral models, for instance, the modification of the meson masses is a natural consequence of the
restoration of the chiral symmetry at high energy densities. Nonetheless, even the hadron resonance
gas models reproduce the overall behaviour of the horn, but they do not present a perfect agreement
with the data within the whole explored energy range.

4.3 Roll Over scheme

We solve Eq. (3.1) according to the dynamical scheme in Figure 2. The parameters of the
system in a pure hadron phase are τ = 2 f m, µ1 = 750MeV , µ2 = 550MeV , T = 156MeV (the
temperature does not change significantly and we consider it to be constant). During the expansion
the field σ develops from σ1 to σ2, which are the minima of the effective potential in case of µ1

and µ2 respectively. Since the equation of motion (3.1) is a second order differential equation, we
need two initial conditions in order to determine a unique solution. Obviously, the condition on the
initial position of the field is σ(t = 0) = σ1. Instead, it is not so trivial to fix the initial condition on
the first time derivative of the field, σ̇ . Thus, we investigate different values for the initial velocity
v0 = σ̇ = 0,−σ1/τ,−2 ·σ1/τ and the solution σ(t) is shown in Figure 7 (left panel). The fields

v0 = 0

v0 = -Σ1 � Τ

v0 = -2 Σ1 � Τ

0 2 4 6 8 10

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

t Hfm L

Σ
�Σ

2

v0 = 0

v0 = -Σ1 � Τ

v0 = -2 Σ1 � Τ

0 2 4 6 8 10
0.225

0.230

0.235

0.240

0.245

0.250

t Hfm L

K
+

�Π
+

Figure 7: The ratio σ(t)/σ2 (left panel) and K+/π+ (right panel) as a function of time; the red-dotted line
refers to v0 = 0; the blue-solid line refers to v0 =−σ1/τ; the green-dashed line refers to v0 =−2 ·σ1/τ .

oscillates around the equilibrium position until t ∼ 6 f m, time at which the ratio σ(t)/σ2 becomes
equal to 1 with an error of ∼ 10%. Due to the friction term the amplitude of the oscillation of
σ(t)/σ2 decreases with time. There are no relevant differences between the three plotted curves
associated to different value of v0. The non-equilibrium of the scalar field produces consequences
on the particle production and in Figure 7 (right panel) we show the effect on the ratio K+/π+.
The scheme we have presented is just a simple model, which has to be improved in future. In fact,
we know that there are some parameters to be fixed, namely the initial velocity v0 of the field and
the expansion rate of the fireball, which enters in the equation of motion as a coefficient of the
friction term. The estimate of both parameters is quite uncertain, but this initial velocity actually
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does not influence the formal result. Moreover, during the expansion of the fireball both µB and
T vary, hence we need to apply the scheme to a system evolving from a configuration (µ1,T1) to
a configuration (µ2,T2). In conclusion, this scheme would represent a new idea to describe the
particle production in heavy-ion collisions, since clearly the described mechanism can modify the
particle ratios.

5. Conclusions

We have presented a detailed study of the strangeness production in heavy-ion collisions,
analysing three alternative interpretations of the horn structure of the K+/π+ ratio: the onset of
deconfinement as suggested by the Statistical Model of the Early Stage (SMES), the transition
from a baryon-dominated to a meson-dominated hadron gas and the partial chemical equilibrium
of the equation of state (EOS) during the fireball expansion. We use for the analysis an EOS, which
includes hadron degrees-of-freedom, a hadron-quark mixed phase and quark degrees-of-freedom.
In the confined phase interactions between hadrons are included via meson exchange within a rel-
ativistic mean-field model. The baryon chemical potential and baryon density of the system at the
early stage, evaluated through the Taub-adiabate procedure, are not negligible and, with the used
model for the EOS, we can not explain the horn structure as due to the onset of the deconfinement.
On the other hand, using the hadronic EOS we reproduce the energy dependence of the K+/π+ and
Λ/π− ratios employing the experimental parametrisation of the freeze-out curve. We find that the
data on Λ/π− can be understood by a transition from a baryon-dominated to a meson-dominated
regime. However, the K+/π+ ratio also within this approach could not be reproduced. Finally, we
propose a new idea, the roll-over scheme. We find that the scalar meson field σ has not reached
the minimum of the thermodynamical potential at the end of the hydrodynamical expansion of the
fireball. The σ plays a crucial role in the particle densities, since the corresponding interaction
modifies the effective mass of the hadrons. Consequently the partial equilibrium of the σ affects
the particle production and hadron abundancies as well.
We are aware that statistical models provide only a partial description of the collision process, while
transport approches [17] are able to describe the whole dynamics and thus achieve more solid pre-
dictions on the the strangeness production. Such models may also serve to fix the free parameters
of our roll-over scheme.
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