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1. Introduction

Conventional thermal perturbation theory breaks down at the (chromo)magnetic scale g7 due
to the Linde problem [1, 2]. The nonperturbative nature of the magnetic scale is intimately related
to the confining property of the dimensionally reduced Yang-Mills theory at high temperature. This
suggests that a confinement mechanism should be incorporated within perturbative expansions even
when dealing with the deconfined quark-gluon plasma (QGP) phase. Color confinement is deeply
related to positivity violation of the spectral function: if the spectral function of a particle is not
positive semi-definite, no Killén-Lehmann representation exists, it is then not part of the physical
spectrum and thus confined (see Refs. [3, 4] for reviews). Conventional thermal field approaches
to hot QCD are based on massive quasiparticles which only generate short-range correlations (see
Refs. [5, 6, 7] for reviews). In order to describe a strongly coupled QGP as produced in heavy-
ion collision experiments, long-range correlations, whose carriers are light and/or massless modes,
are a crucial ingredient. In the following, I briefly discuss the first study on massless modes in
hot QCD using confining gluons recently reported in Ref. [8] which shows genuine non-Abelian
features such as positivity violation.

A formalism to tackle the issue is the Gribov-Zwanziger (GZ) action, which is well-known
from the study of color confinement [9, 10]. It regulates the IR behavior of QCD by fixing the
residual gauge transformations, i.e., Gribov copies, that remain after applying the Faddeev-Popov
procedure. The GZ action is renormalizable, and it thus provides a systematic framework for
perturbative calculations (i.e., g < 1) incorporating confinement effects. The gluon propagator in
general covariant gauge reads
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where & is the gauge parameter. The Gribov parameter y; is solved self-consistently from a gap
equation that is defined to infinite loop orders. The GZ gluon propagator is IR suppressed, manifest-
ing confinement effects, and it is a significant improvement over the one from the Faddeev-Popov
quantization which forms the basis for conventional perturbative calculations. The gap equation at
one-loop order can be solved analytically at asymptotically high 7" and gives [11, 12]
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where D is the space-time dimensions and N, is the number of colors. Eq. (1.2) provides a funda-

mental IR cutoff at the magnetic scale for the finite-7" GZ action.

2. Results and discussions

An important measure for the collective behavior of a QGP is the self-energy of quarks and
gluons, from which thermal masses, dispersion relations, and spectral functions of collective exci-
tations are derived. The Euclidean one-loop quark self-energy reads
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Figure 1: The quark thermal mass m,(};) scaled by the perturbative value m,(0).

where S(P) = 1/P is the quark propagator, and D*V(P) is the gluon propagator which is taken
from Eq. (1.1). It is worth noting that there have been similar studies for the quark self-energy with
nonperturbative gluons at finite density [13, 14] and in strong magnetic fields [15].

Following the systematics of the hard-thermal-loop (HTL) effective theory [16], the gauge-
invariant contribution to Eq. (2.1) reads [8]
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where k = k/k with k = [k|, EQ = \/k2 £ iv2, i+ (k, %) = ng(\/k? £i}2) + np (k) with ng and np
the Bose-Einstein and Fermi-Dirac distributions, and [dQ = fOZ” d¢ [, dcos6.
The quark thermal mass incorporating effects from the magnetic scale reads
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which reduces to the conventional HTL one, mfl(O) = CngT2 /8, for y; = 0. The scaled quark
thermal mass m,(Y;)/mg4(0) is shown in Fig. 1. It is clear from the figure that m, receives negative
contributions from Y, which is a manifestation of anti-screening effects generated by the magnetic
scale. Although the effect is modest in the studied range of couplings, this is a profound signal of
the build-up of long-range correlations in the system and similar anti-screening effects have been
observed on the lattice for the Debye screening mass [17].

The dispersion relation is obtained by analytically continuing the self-energy Eq. (2.2) to
Minkowski space and then solving the poles in the corresponding quark propagator iS~!(P) =
P —X(P) = 0. The resulting dispersion relations and residues of the poles are displayed in the
upper and lower panels of Fig. 2.
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Figure 2: Dispersion relations (upper panel) and the corresponding residues (lower panel) for the particle
(@4), plasmino (w_) and Gribov (@¢) poles.

In contrast to the conventional HTL case, there are three poles in the propagator. Firstly, the
screened quasi-particle excitations are recovered,

O =0 (p;%), O =0_(p;%), (2.4)

the so-called particle @, and plasmino @w_ modes, with @+ (0;7y;) = my(Y;) as expected. Both
o+ /my(Y;) and Z;. are g-independent, and this has been verified explicitly up to g ~ 2 in Ref. [8].
This property is exactly the same as in the conventional HTL effective theory, and it is thus a
non-trivial consistency check of the setup.

In addition to the massive modes, there exists a novel excitation named Gribov pole as in
Ref. [8],

o0 =00:p;Y)- (2.5)

It describes massless fermionic excitations in the plasma with dispersion relation @ = vsp at small
momenta, with vy = 1/4/3 (speed of sound) independent of g for the studied range. The Gribov
mode “grows” in the (@, p)-plane while the magnetic scale is increasing (through increasing g), and
this effectively introduces a new magnetic scaling behavior to the non-Abelian plasma. The vertical
lines in Fig. 2 schematically demonstrate how the Gribov mode grows: at small coupling, e.g.,
g = 0.5, the mode terminates at rather small momentum; as the coupling increases, to e.g., g = 2,
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the permitted momentum range inceases accordingly. At larger momenta than the permitted ones
for each coupling, we are hitting branch cuts and Landau damping takes place as a consequence.
The Gribov pole goes along with a residue Zg(p) < 0 which directly implies positivity violation
of the corresponding spectral functions in the region of space-like momenta. These novel features
are direct manifestations of long-range confinement effects surviving at finite 7" in the non-Abelian
plasma. The results reflect common features of Gribov-like approaches [9, 10, 18], though the
calculation was done via the GZ action.

The uncovering of the massless Gribov mode has been an exciting attempt in exploring the
significance of the magnetic scale to a non-Abelian plasma. It sheds new light on the active degrees
of freedom released in course of a heavy-ion collision through which a strongly coupled QGP
might emerge. It would be extremely tempting and challenging to explore the phenomenological
significance of this new mode in interpreting experimental data.
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