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In the scenario with degenerate neutrino masses at tree-level, we show how threshold corrections
with either non-trivial or trivial mixing at tree-level have the power to generate the observed
deviations from a degenerate spectrum. Moreover, it is possible to also generate the mixing fully
radiatively when there is trivial mixing at tree-level.
We give a brief overview over the topic and discuss the outcome of threshold corrections for
degenerate neutrino masses in a supersymmetric model. A detailed description can be found
in [1].
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1. Introduction

The origin of neutrino masses and mixings hints to new physics beyond the Standard Model.
Measurements of neutrino oscillations in the last years completed our picture of neutrino flavour in
a sense that now all the mixing angles are quite precisely measured. What is still unknown is the
mass scale of the lightest neutrino, whereas the squared mass differences are known. The masses
are then to be easily calculated:

m1 = m0 , m2 =
√

m2
0 +∆m2

21 , m3 =
√

m2
0 +∆m2

31, (1.1)

where ∆m2
i j = m2

i −m2
j and we constrained ourselves to a normal ordering in neutrino masses

(m3 > m2 > m1). The precise values can be determined via a global fit on neutrino oscillation
data [2]:

∆m2
21 = 7.50+0.19

−0.17×10−5 eV2

∆m2
31 = 2.457±0.047×10−3 eV2.

(1.2)

In a world with m0� ∆m2, we live in the quasi-degenerate scenario m1 ≈ m2 ≈ m3. This situation
immediately evolves as soon as a direct mass search experiment like KATRIN reports a positive
result, which would be in this case m0 ≈ 0.35eV [3]. Cosmology also prefers degenerate neutrino
masses, where the anticipated scale is a bit below the KATRIN limit [4] (m0 ≈ 0.1eV) and still
compatible with the recent 95% upper limit on the sum of the three light neutrino masses obtained
by the Planck collaboration [5] (∑mν < 0.24eV).

It is well known that quantum corrections become important for any type of quasi-degenerate
spectrum—renormalization group (RG) corrections [6, 7, 8, 9, 10, 11, 12, 13] as well as low-energy
threshold corrections [14, 15, 16, 17, 18]. In general, both contributions from the RG as well as the
threshold corrections are to be added to the effective neutrino mass matrix and change the flavour
alignment as long as they are not flavour universal:

mν
AB = m(0)

AB +m(0)
AC ICB + IACm(0)

CB, (1.3)

where IAB = IRG
AB + Ith

AB are the quantum corrections and m(0)
AB is the neutrino mass matrix at tree-

level. Capital indices count interaction eigenstates, where in the following small indices represent
the mass basis. By means of a unitary transformation U (0), we arrive at the unperturbed mass
eigenbasis, where m(0) is diagonal

mν
ab = m(0)

a δab +
(

m(0)
a +m(0)

b

)
Iab, (1.4)

and Iab = ∑AB IABU (0)
Aa U (0)

Bb . In the following, we focus on the influence of the threshold corrections
and take only I = Ith.

2. Degenerate masses and threshold corrections

Eq. (1.4) let us appreciate the advantage of degenerate masses: either m1 = m2 = m3 and the
mixing at tree-level is trivial (U (0) = 1), or when the masses have opposite signs (e.g. m1 =−m2 =

m3) the corrected mass matrix gets tremendously simplified.
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The case of Majorana neutrinos does not allow to rotate away as many CP phases as for Dirac
fermions. In general, there are two more phases left, such that the complete diagonalisation matrix
can be written as a product of a unitary matrix with three angles and one phase and a phase matrix:
Uν = U (0)P with P = diag(eiα1 ,eiα2 ,1). The Majorana phases α1,2 can then be absorbed in a
redefinition of the masses instead of a redefinition of the fields:

m(0)→ PTU (0)T m(0)U (0)P = m0 diag(e−2iα1 ,e−2iα2 ,1).

We have chosen the phases in a particular way to have a real and positive m3.
Under the assumption of CP conservation in the Majorana phases, we take α1,2 ∈ {0,±π

2 } and
get e.g. m1 =−m2 = m3. Eq. (1.4) simplifies to

mν = m0

1+2Uα1Uβ1Iαβ 0 2Uα1Uβ3Iαβ

0 −1−2Uα2Uβ2Iαβ 0
2Uα1Uβ3Iαβ 0 1+2Uα3Uβ3Iαβ .

 (2.1)

The two-fold degeneracy reveals an initial mixing matrix at tree-level that can be whatever it may,
generated by some underlying flavour symmetry. However, the two-fold degeneracy leaves one
freedom of rotation in the plane of degeneracy, i.e. the 1-3 plane: U (0)→U (0)R13 that can be used
to rotate away the off-diagonal entries in Eq. (2.1) by requiring

∑
AB

U (0)
A1 U (0)

B3 IAB = 0. (2.2)

Note that Majorana masses are symmetric mAB = mBA as are the corrections IAB = IBA. It is generi-
cally difficult to accommodate for the present value of sinθ13 and the two ∆m2 with a minimal set
of flavour-diagonal threshold corrections. More details on an update of this scenario can be found
in [1]. We now shall discuss the case where there is trivial mixing at tree-level and we generate the
mixing genuinely by threshold effects.

The case of exact degeneracy is characterized by no mixing at the tree-level: mass and in-
teraction eigenstates can be arbitrarily interchanged and the fields redefined. We have three free
rotations. Therefore the observed non-trivial mixing has to be generated via the quantum correc-
tions only:

mν = m01+m0

I11 I12 I13

I12 I22 I23

I13 I23 I33,

 (2.3)

which means that we need flavour off-diagonal corrections. How can we constrain those? The
observed neutrino mixing angles allow to first work in some approximations and then see, whether
small deviations from the approximation help to get a better fit to data. First of all, one mixing
angle is close to maximal, θ23 ≈ π

2 , which allows to perform the rotation in the 2-3 plane with
I33 = I22 and I23 = I22 and we obtain

I′ =UT
23IU23 =

 I11
I12+I13√

2
− I12−I13√

2
I12+I13√

2
2I22 0

− I12−I13√
2

0 0

 , (2.4)
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which, together with the observation that one mixing angle is small1 θ13 ≈ 0 allows for the approx-
imation I13 ≈ I12 and the last rotation is done with

θ12 ≈
1
2

arctan

(
2
√

2I12

2I22− I11

)
. (2.5)

In this way, there is one free mixing angle θ12 and the two ∆m2 to be determined by three corrections
I11, I22 and I12, which is good in the approximation but obviously not sufficient to fit all the data.
The deviation of θ23 from π

2 can be obtained by a splitting I33 = I22+ε and θ13 6= 0 with I13 = I12+

δ . We then have five parameters I11, I12, I22,ε and δ to determine three mixing angles θ12,θ13,θ23

and two mass splittings ∆m2
21 and ∆m2

31.
m0 √

m2
0 +∆m2

21 √
m2

0 +∆m2
31

= (2.6)

mU(θ12,θ13,θ23)
T

1+ I11 I12 I12 +δ

I12 1+ I22 I22

I12 +δ I22 1+ I22 + ε

U(θ12,θ13,θ23),

the degenerate mass parameter m can be identified with m0. Using the possible KATRIN discovery,
m0 = 0.35eV, we get

I =

0.976 1.03 1.05
1.03 4.75 4.75
1.05 4.75 6.74

×10−3. (2.7)

3. Threshold corrections in the νMSSM

The generic threshold corrections given in the previous section have the property of large
flavour off-diagonal contributions. One viable model to produce such corrections is the Minimal
Supersymmetric Standard Model with right-handed neutrinos (νMSSM) that generate small neu-
trino masses via a see-saw mechanism.

The superpotential of the model is given by

W ⊃ µH1 ·H2 +Y ν
i j H2 ·LL,iNR, j−Y `

i j H1 ·LL,iER, j +
1
2

MR
i jNR,iNR, j, (3.1)

and the soft breaking terms

V ν̃
soft =

(
m2

L̃

)
i j ν̃
∗
L,iν̃L, j +

(
m2

R̃

)
i j ν̃R,iν̃

∗
R, j +

(
Aν

i j h0
2 ν̃L,iν̃

∗
R, j +

(
B2)

i j ν̃
∗
R,iν̃

∗
R, j +h. c.

)
, (3.2)

that have the power to introduce flavour-changing self-energies. We take the soft masses universal,
m2

L̃ = m2
R̃ = MSUSY1, and determine values of Aν

i j to give corrections like Eq. (2.7). The results are
shown in Fig. 1, details on the calculation of threshold corrections in the νMSSM are given in [1].

1Recent data tell us rather θ13 ≈ 9◦.For the moment, we stick to θ13 = 0◦.
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Figure 1: Results of the fit for a scan over several free parameters (details in [1]). The left plot shows the
correlation between Aν

12 and Aν
13 which similar to the generic results of Sec. 2. On the right side the typical

size of Aν
i j is shown with respect to the soft breaking mass MSUSY.

4. Conclusions

We have discussed degenerate neutrino masses at tree-level and investigated threshold cor-
rections to two different mass patterns. In the scenario with one mass of a different sign, the
minimal set of threshold corrections cannot produce the necessary deviation from degeneracy for
the masses. On the other hand, generic threshold corrections can simultaneously generate all three
mixing angles and the mass differences in the case of exactly degenerate masses and trivial mixing
at tree-level. These findings have been applied to a supersymmetric model where the soft breaking
terms carry the flavour information.
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