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The measurement of cosmic-ray fluxes gives an indirect access to the source spectra, the abun-
dances of different species and to the propagation processes in the Galaxy. Due to the finite
energy resolution of the detectors, the measured fluxes differ from the physical ones. The pro-
cess to compute the true flux from the measured one is called unfolding. The method presented
here was developed in the context of the AMS-02 experiment, in particular for the analysis of the
proton spectrum.
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1. Introduction

Recent measurements [6] of the cosmic ray proton flux at Earth show a power-law energy
spectrum with a spectral index of 2.8 which results from the combination of the source spectrum
and propagation effects in the Galaxy. Any structure or change of the flux spectral index can be
understood as a new feature in those causes.

The AMS-02 detector is a particle physics detector installed on the ISS since may 2011. It is
composed of several instruments including a magnet which makes possible the separation between
negative and positive particles. The trajectory of particles passing through the detector is measured
and some physical properties can be deduced, like the rigidity (R = pc

Ze ) or the absolute value of the
charge of the particle. Its sign is determined by the orientation of the curvature of the trajectory in
the magnetic field. As with all detectors, it has a finite rigidity resolution. Therefore, every particle
detected has a measured rigidity, Rmeas, which is different from the true one, Rtrue.

The number of particles having Rmeas lower than Rtrue is the same as the number of particles
with Rmeas higher than Rtrue. Given the power-law shape of cosmic-ray fluxes, migration to higher
energy has a more important impact than migration to lower energy. This is illustrated by figure 1,
where migration leads to a distorted measured flux which needs to be corrected.
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Figure 1: Sketch of the impact of the limited rigidity resolution on the flux. The arrows show that for every
rigidity, events can migrate left or right, but due to the power-low shape of the flux the effect is much more
important on the high rigidity side. The folding effect tends to decrease the spectral index.

Figure 2 illustrates this effect with a simulated flux (taken as a power law with a slope of 2.7)
and the measured associated flux. The folding effect could lead to strong bias in the measurement
of the fluxes (local structures and change of the spectral index). The goal of the unfolding process
is to inverse the problem and to compute the true flux given the measured one.

2. Unfolding and regularisation

The AMS-02 chain of analysis is composed of several steps. First, the events to analyse have
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Figure 2: Shown are the toy flux (pure power law, black squares) and the associated measured flux (black
dots) as a function of the rigidity of the measured particles (R =

pc
Ze

). The measured flux is the product of
a migration matrix and the true flux. The matrix corresponds to the probability for a particle to be detected
at a rigidity given the true one. This matrix (see 3) has been taken from the Monte-Carlo simulation of the
AMS-02 experiment.

to be correctly selected using the physical properties measured by the detector (e.g. Z =+1 for
protons). Then the number of events must be corrected with the effiencies of the different selections
applied. The geometric acceptance has to be estimated using a Monte-Carlo simulation. The final
step is to deconvolve the response of the detector; this is the unfolding. Here, we focus on this last
step.

2.1 The unfolding algorithm

To perform the unfolding and compute the true flux, a migration matrix is needed. It makes
the link between the measured flux and the true one. It is usually computed from a Monte-Carlo
simulation of the detector. It corresponds to the probability for a particle with a true rigidity Rtrue

to be detected at a given measured one Rmeas.

If we consider a measured flux Fm, an unfolded one Uunf and a migration matrix M, the link
between all those quantities is:

Fm = M×Uunf. (2.1)

A first naive idea to unfold Fm could be to invert M, such as M−1Fm = Uunf. Due to the statistical
fluctuations in Fm, the unfolded flux obtained this way usually presents some unacceptable struc-
tures [1]. Therefore, some methods with regularisation have been developed [2, 3, 4, 7] to unfold
the measured fluxes. The method described here is iterative and a regularisation process is also
proposed.

The process consists of applying several times the matrix M to a flux U, corrected each time
by a weighting factor (since the process is iterative the index k will denotes the iteration we are
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considering): 

Fk = M×Uk;

W k =
Fk

Uk ;

Uk+1 =
Fm

W̃ k .

(2.2)

The quantity W̃k denotes the regularised version of Wk (see subsection 2.2).
Since the process is iterative, a convergence criterion is necessary to stop the algorithm. One

possibility is to demand the maximum difference in rigidity between two successive unfolded fluxes
to be lower than a given value ρmin. However, there is no standard value for ρmin: it depends on the
migration matrix and the precision requirements, but also on the initial condition of the unfolding
process. Taking as a starting point an initial flux U0 as close as possible to the true flux (see 2.2)
ensures a rapid convergence of the algorithm.

2.2 The regularisation process

The goal of the regularisation process is to limit the propagation of statistical fluctuations
from Fm into the unfolding process. If no regularisation is applied, the statistical fluctuations will
be considered as fine structures and will be amplified by the unfolding procedure. The different
methods in the literature [2, 3, 4, 7] usually rely on strong hypotheses and can introduce a bias on
the estimation of the true flux. The method proposed here has only one hypothesis which is the
smoothness of the weight factors W. This hypothesis is natural since the weight factors represent
the folding effect at a given iteration which is expected to be smooth (see figure 2).

The principle is to fit W with a spline function before applying it to Fm (see Eq. 2.2). The
spline function used is a cubic interpolation between nodes with a fixed x position. Assuming a
continuity of the three first derivatives, the only degree of freedom left is the y position of the nodes.
One advantage of this regularisation process is that, assuming that U0 is not too different from the
true flux, the unfolding process will be quick and all the Wk will be very similar. Then, fitting them
all with the same procedure will ensure a fast and robust method.

To control the systematic errors due to the regularisation process, the number of nodes and
node positions are varied. The dispersion is calculated from all the resulting unfolded fluxes, which
gives an estimate of the error.

3. Test and example

In this section, we give more details about the unfolding of the toy flux already shown in Fig. 2.
Shown in figure 3 is the migration matrix as provided by the AMS-02 Monte-Carlo simulation of
the detector. This matrix gives some information about the detector resolution. The spread at high
rigidity is typical from magnet working detectors. In AMS-02, a silicon tracker is used to detect the
particle trajectories in the magnetic field of the instrument. High rigidity particles have a trajectory
which is almost a straight line. Since the differentiation of two straight trajectories is very hard, the
resolution of the detector at this rigidity is lower than at low rigidity. Therefore, the spread of the
matrix at 1 TV is bigger than the one at 10 GV.
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Figure 3: Migration matrix. The true rigidity is on the x-axis and the reconstructed one on the y-axis. A
given bin is the probability for a particle to be detected at the corresponding rigidity given a true one.

The test procedure consists of (i) start with a true proton flux of power-law spectral index 2.8;
(ii) compute the measured flux with the matrix and Equation 2.1; (iii) test the unfolding algorithm
on this measured flux using the same matrix. This way, we are able to compare directly the un-
folded flux to the true one. This comparison is only possible with simulated fluxes since in real
measurement, the true flux is unknown. A good quantity to test the method is the ratio between
the unfolded flux and the true one. In order to better see the convergence, this ratio is displayed
for different iterations (see figure 4). In this case, the convergence criterion used is ρmin = 0.01%,
which is a very strong one.
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Figure 4: Ratio between the unfolded flux and the true one for different iterations. The black dots show the
ratio between the measured distribution and the true one.

Figure 4 shows that the algorithm converges quickly where the folding effect is small and
constant (from 3 GV to 500 GV) and takes more iterations to converge at higher rigidity. The
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wave structure is due to the regularisation process. We can see that after 8 iterations (the algo-
rithm stopped after the ninth) the difference between the true flux and the one obtained is always
below 2%.

4. Conclusions and overview

Unfolding processes are important in high energy physics to properly compare the results
from different experiments and from theoretical predictions. The method presented here is inspired
from the convergent weights method [5] for which a regularisation process is proposed. It is easy
to implement and fast. The method relies on only one hypothesis, that is the smoothness of the
folding effect at each iteration, and the regularisation process is done on the weight factors. It does
not suppress any structure from the data, and it keeps the statistical fluctuations at the level present
in the measured fluxes. This unfolding procedure is not sensitive to fine folding effects, happening
at small rigidity scale, but it unfolds global effects (like the change of slope in a measured flux).
This method has been developed and tested for AMS-02 data, and it is one of the methods used in
the forthcoming AMS-02 protons flux analysis.
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