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Cosmic-ray heating of molecular cloud cores
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Cosmic rays are an important source of heating in the interstellar medium, in particular in dense
molecular cloud cores shielded from the external ultraviolet radiation field. The limits placed on
the cosmic-ray ionization rate from measurements of the gas temperature in dense clouds are unaf-
fected by the uncertainties associated to the traditional methods based on the analysis of molecular
abundances. However, high-resolution data are required to determine with sufficient accuracy the
spatial temperature distribution within prestellar cores. In this contribution we illustrate in detail
the case of the well-studied prestellar core L1544, showing that both its thermal structure and
chemical composition are consistent with a cosmic ray ionization rate of ∼ 10−17 s−1, signifi-
cantly smaller than the value measured in the diffuse interstellar medium. We also briefly discuss
possible applications of this method to the molecular clouds of other galaxies.
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1. Introduction

The recent discovery of significant amounts of H+
3 in diffuse molecular clouds (e.g., Indriolo

et al. 2007, 2009 and references therein) has spurred a significant increase of interest in the study
of the propagation and ionization rate of low-energy cosmic rays (hereafter CRs) in the interstel-
lar medium. A straightforward analysis of the observations of Indriolo et al. (2007) extended by
Indriolo & McCall (2012) to a sample of 50 diffuse molecular clouds, yields values of the ion-
ization rate ζ for H2 in the range ∼ (2− 11)× 10−16 s−1, significantly larger than the “standard”
value ζ ≈ 10−17 s−1 that had been in use since the pioneering works of Hayakawa et al. (1961)
and Spitzer & Tomasko (1968). This unexpected result has led to the reconsideration of how CR
protons and electrons propagate in the interstellar medium (e.g., Indriolo et al. 2009, Padovani et
al. 2009, Padovani & Galli 2011, Everett & Zweibel 2011, Rimmer et al. 2012). CR ionization
rates have also been measured in dense molecular clouds and massive stellar envelopes, by mod-
eling the observed abundance of molecular ions like HCO+ and DCO+. The values of ζ in these
environments show considerable scatter, either intrinsic or due to uncertainties in the chemical
modeling of the primary data. In any case the average value of ζ in dense molecular clouds is
between one or two orders of magnitude smaller than in diffuse clouds. Fig. 1 shows a summary of
the observational determination of ζ in clouds of column density N(H2) ranging from 1020 cm−2

to 1024 cm−2. In addition to a considerable scatter, the data suggest a general trend of ζ decreasing
with increasing N(H2), as expected in simple 1-D models of CR attenuation (Padovani et al. 2009).
Understanding the dependence of ζ on the physical characteristics of the environment (density,
column density, magnetic fields, etc.) is a fundamental step for modeling the ionization fraction
in the interstellar medium and the coupling of the gas with the magnetic field. This, in turn, has
important consequences on theoretical models of cloud collapse and disk formation (Padovani et
al. 2103, 2014).

2. Cosmic-ray heating

In addition to ionization, another process relating to the interaction of CRs with the interstellar
medium is their role in heating the atomic and the molecular gas. CRs are an efficient (often domi-
nant) source of heating in various environments, from the dense gas in molecular clouds (Goldsmith
& Langer 1978), both in normal and starbust galaxies (Suchkov et al. 1993), to photodissociation
regions (Shaw et al. 2009), and possibly even in the primordial gas (Jasche et al. 2007).

Considering only molecular clouds in our Galaxy, the available observational data are consis-
tent with a picture in which the dust temperature of prestellar cores (i.e. cores without any internal
stellar energy source) in general decreases toward the center (Ward-Thompson et al. 2002, Bianchi
et al. 2003). Observations in the mid-IR (Bacmann et al. 2000) and in the far-IR (Ward-Thompson
et al. 2002) suggest dust temperature gradients consistent with heating from the external interstel-
lar radiation field. Recent results obtained by the sub-mm satellite Herschel (e.g. Palmeirim et
al. 2013) have confirmed these trends with a high degree of accuracy. On the theoretical side, avail-
able radiative transfer models predict a factor of ∼ 2 increase in dust temperature from center to
edge (Zucconi et al. 2001, Evans et al. 2001, Stematellos & Whitworth 2003), with the gradient
dependent on the cloud structure.
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Figure 1: Values of the CR ionization rate of H2 in diffuse clouds (green dots), molecular cloud cores (red
circles) and massive protostellar envelopes (black diamonds) as function of the cloud’s column density. For
references, see Padovani et al. (2009).

Additional observational constraints on the thermal structure of prestellar cores are given by
spatially resolved measurements of the gas temperature that has been accurately traced by inter-
ferometric observations of molecular emission (in particular of NH3) in prestellar cores (Crapsi et
al. 2007, Pagani et al. 2007) and dark globules (Pineda & Bensch 2007). Low-mass cores show
fairly uniform gas temperature (e.g. Tafalla et al. 2002 for L1517B and L1498), whereas massive
quiescent cores in Orion show significant temperature drops from edge to center (Li et al. 2003), as
predicted by theoretical models of dense, UV-shielded interstellar clouds (Falgarone & Puget 1985,
Galli et al. 2002). Thus, measurements of the gas temperature in prestellar cores can be used to con-
strain the CR ionization rate if radiative transfer models are also able to predict the gas temperature
distribution resulting from the balance of the relevant heating and cooling mechanisms.

In general, the dust and gas temperatures Td and Tg in a molecular cloud can be computed by
solving simultaneously the equations of thermal balance of the gas and the dust

Γext = Λd(Td)−Λgd(Td,Tg), (2.1)

and
ΓCR = Λg(Tg)+Λgd(Td,Tg), (2.2)

where Γext is the dust heating rate per unit volume from the external radiation field, Λd is the dust
cooling rate by infrared emission, ΓCR is the CR heating rate of the gas, Λg the gas cooling rate by
molecular and atomic transitions, and Λgd the gas-dust energy transfer rate. Notice that we have
ignored processes such as the photoelectric heating since we are interested in regions shielded by
the external UV radiation field. For a detailed discussion of the heating and cooling functions that
enter in the thermal balance equations see e.g. Goldsmith (2001) and Galli et al. (2002).

The CR heating ΓCR is usually parametrized as

ΓCR = n(H2)ζ Q, (2.3)
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Figure 2: Average heat input per ionization Q as function of the density of the environment for various
astrophysical conditions (from Glassgold et al. 2012). Here n(H) the density of hydrogen in all forms.

where n(H2) is the H2 density and Q is the mean heat input per ionization. Estimates of Q available
in the literature range over a factor of three (Glassgold & Langer 1973a,b, Cravens et al. 1975,
Cravens & Dalgarno 1978, Goldsmith & Langer 1978, Goldsmith 2001). Early studies suffered
from the poorly known electron cross sections in the early 70s, the crude estimates of the energy-
loss functions, and ignored the roles of H+ and He+ ions in molecular gas were ignored. A more up
to date and complete analysis was carried out by Dalgarno et al. (1999) who considered carefully all
of the energy loss channels for electron energies up to 1 keV in various mixtures of H, H2 and He.
They showed how the energy expended to make an ion pair is partitioned among elastic and several
non-elastic processes, but they did not fully treat the heating. This was accomplished by Glassgold
et al. (2012), who used the results of Dalgarno et al. (1999) to compute Q with an accuracy of
∼ 20% in a mixture of H2 (or H) and He for various astrophysical conditions (diffuse clouds,
molecular clouds, dense molecular cloud cores and protostellar disks). As shown by Glassgold
et al. (2012), in dense molecular regions about 50% of the energy of the ejected electron can go
into heating. In addition, CRs also produce ions and excited molecules that can interact with
the dominant neutral atomic or molecular gas. The products of these reactions deposit in the gas
a significant amount of the available energy in the form of chemical heating, that represents a
significant part of the CR heating. The average heat input per ionization (including the chemical
heating), computed by Glassgold et al. (2012) is shown schematically in Fig. 2

Notice that a similar process arises in the X-ray irradiation of molecular regions. In fact, X-ray
and CR ionization are closely related because the energy of the photon is almost entirely converted
into energy of the primary photoelectron, and therefore the interactions of photons or CR electrons
and nuclei with dense gas are largely determined by the many fast supra-thermal electrons they
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produce. Of course there are differences: X-ray ionization is accompanied by fast Auger electrons
as well as secondaries, and CRs have an electron as well a nuclear component.

3. A specific example: L1544

As a specific example, we compare the results of the modelling described in the previous sec-
tion with the gas temperature profile inferred from NH3 observations of the starless core L1544, a
well-studied low-mass core in Taurus, which presents a large central density (nc(H2)> 106 cm−3).
Several observational characteristics make this core a good candidate for being on the point of
becoming unstable (Crapsi et al. 2005) and collapse to form stars.

To model the thermal structure of L1544, we adopt the parameters derived by Galli et al. (2002)
to match the thermal dust emission map obtained by Ward-Thompson et al. (1999). To compute the
gas temperature, we notice that the energy deposited in the gas by CR ionization is negligible when
compared to the energy absorbed by the dust, so that the energy transfer between gas and dust will
not significantly affect the grain temperature. Therefore, it is only necessary to solve the equation
of thermal equilibrium of the gas. According to these models, in the inner part of L1544 (densities
above 105 cm−3 ), the gas temperature is coupled to that of the dust and thus decreases gradually
toward the core center, where Tg ≈ Td ≈ 6 K. For ζ > 10−18 s−1 the gas is slightly hotter than
the dust due to CR heating and this difference increases as the density decreases. In outer regions
where the density is below ∼ 105 cm−3 and where shielding from the external radiation field is
much less, the gas and dust temperatures become uncoupled and one may find gas temperatures
higher or lower than that of the dust, depending on the value of the CR ionization rate.

Fig. 3 shows the dust and gas temperature of our model, whereas the black and red points are
the gas temperature determined from NH3 by Tafalla et al. (2002) with the Effelsberg single-dish
radiotelescope and by Crapsi et al. (2007) with the VLA interferometer array, respectively. Since
the models are spherically symmetric, the model temperature profiles are shown as a function of
radius, whereas the data are plotted as a function of the projected distance from the dust peak.
The interferometer data constrain the gas temperature in the inner regions of the core, showing a
clear evidence of a temperature gradient from ∼ 6 K at the core’s center to ∼ 8 K at a distance of
∼ 5000 AU from the dust peak. The observed gradient is in agreement with theoretical predictions
if the CR ionization rate is ζ ≈ 10−17 s−1 (or lower). Notice that a value of ζ = 10−16 s−1,
typical of diffuse molecular clouds, results in a significantly higher gas temperature profile, and
is inconsistent with the VLA data. These results compare favourably with the analysis of the
chemical abundances of L1544: a best-fit chemical model reproducing the observed molecular
column densities at the dust peak and the observed abundance profiles gives ζ = 1.3× 10−17 s−1

(Vastel et al. 2006).

4. Discussion and conclusions

The example illustrated in the previous section shows how measurements of gas temperature
in molecular cloud cores can be used to infer or constrain the CR ionization rate. This method may
represent an alternative, or a complement, to the traditional approach based on the determination of
abundance ratios of molecular ions (Guelin et al. 1977, Caselli 1998), that suffers from limitations
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Figure 3: Thermal structure of the prestellar core L1544. The curves show the radial profile of the gas and
dust temperature computed with the model of Galli et al. (2002) for different values of the CR ionization
rate. From bottom to top: ζ = 10−18 s−1, 10−17 s−1, and 10−16 s−1 (solid curves, gas temperature; dashed
curve, dust temperature). The data show the gas temperature derived from NH3 observations by Tafalla et
al. (2002) and Crapsi et al. (2007) (black and red points, respectively).

associated to uncertainties in the chemical networks for dense clouds. Of course, as shown by
the case of L1544, high-quality and high-resolution data are needed to determine with sufficient
accuracy the gas temperature profile in molecular cloud cores (compare the Effelsberg and VLA
data in Fig. 3). In addition, the method is applicable to clouds (or cloud regions) of intermediate
density: if the density is too low (say for clouds of visual extinction AV less than about 4), the
heating of the gas is dominated by the photoelectric effect on dust grains (see e.g. Le Bourlot et
al. 1993), whereas for densities larger than ∼ 106 the gas is thermally coupled to the dust. In either
case, in these regimes the gas temperature becomes insensitive to the local CR ionization rate.

The possibility of using measurements of the gas temperature to infer the CR ionization rate
has already been tested on molecular clouds of external galaxies. In fact, heating by CRs has been
invoked to explain the presence of hot H2 in the Galactic center and in starburst galaxies (Güsten
et al. 1985, Lo et al. 1987). In particular, the temperature of molecular clouds in the starburst
galaxy M82, Tg ≈ 50–150 K, is compatible with a CR ionization rate ζ ≈ 4×10−15 s−1 (Suchkov
et al. 1993), much in excess of the Galactic values discussed in Section 1. This CR enhancement,
resulting from the boosted supernova rate typical of a starburst galaxy, in turn implies a synchrotron
emission in M82 about 500 times larger than in the disk of the Milky Way, in agreement with
radio observations (Seaquist et al. 1985) and recent measurements of high-energy gamma-rays
in M82 (VERITAS Collaboration et al. 2009). The idea here is that the nuclear component of
CRs is responsible for heating the molecular gas and producing the gamma-ray emission, while
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the associated low-energy electronic component (primary and/or secondary) is responsible for the
synchrotron radio emission.
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