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Astrophysical plasmas such as the solar wind often exhibit characteristics of imbalanced magne-
tohydrodynamic (MHD) turbulence, in which the fluctuations of the bulk velocity and the mag-
netic field are strongly correlated. As a result, turbulent heating is less efficient than in the more
commonly studied case of balanced turbulence.
We study the transport and acceleration properties of charged particles in imbalanced MHD tur-
bulence by performing test-particle simulations. The cross-helicity level, measuring the degree
of imbalance of the MHD steady-state, is controlled by using a correlated forcing scheme for ve-
locity and magnetic fields. We discuss the decrease of the turbulent heating rate in systems with
non-zero cross-helicity and compare its scaling with theoretical predictions, and show the pitch-
angle asymmetry of the scattering coefficient in cross-helical turbulence. Our results are relevant
for any plasma in which turbulent heating is important, for example the heating of dust particles in
the interstellar medium or the injection of thermal protons into the Fermi-II acceleration process
in supernova remnant shocks.

Cosmic Rays and the InterStellar Medium - CRISM 2014,
24-27 June 2014
Montpellier, France

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:martin.weidl@ipp.mpg.de


P
o
S
(
C
R
I
S
M
2
0
1
4
)
0
4
8

Heating in imbalanced turbulence Martin S. Weidl

1. Introduction

Magnetohydrodynamic turbulence in astrophysical systems is often cross-helical, i.e. the fluc-
tuations of velocity and magnetic fields are strongly correlated. This property, also known as im-
balanced turbulence, is well-known from observations of the solar wind [1] and has been predicted
to be important in the upstream medium of supernova remnant shocks [2] as well as a driving force
of the dynamo effect in accretion disks and young galaxies [3, 4]. Although the influence of cross
helicity on the rate at which turbulent energy is dissipated and transported has been the subject
of many discussions in the astrophysical community [5, 6], the effect which imbalanced turbu-
lence has on the transport and heating of charged particles in the interstellar medium has been only
seldomly investigated in simulations. A notable exception is [7], who performed test-particle sim-
ulations in static snapshots of MHD turbulence and found that spatial diffusion of ultra-relativistic
cosmic-ray particles was not affected by varying the cross helicity. More generally it was conjec-
tured in [8] that the degree of imbalance would barely change the heating rate of charged particles,
in apparent contradiction to earlier results by [9, 10], who had used quasilinear diffusion theory
to calculate the dependence of pitch-angle scattering and the heating rate on cross helicity. In
the following we present simulations of cross-helical MHD turbulence and show how test-particle
transport and heating are affected by the level of imbalance.

2. Theory

2.1 MHD theory

We use the pseudospectral code TURBO [11] to solve the equations of incompressible resistive
forced magnetohydrodynamics (MHD):

∂u
∂ t

= −(u◦∇)u+(b◦∇)u+ν∇
2u+ fu−∇p̃, (2.1)

∂b
∂ t

= −(u◦∇)b+(b◦∇)b+η∇
2b+ fb, (2.2)

where u and b are the velocity and the magnetic field (in Alfvén units), respectively, ν and η denote
the kinematic viscosity and the resistivity, and fu and fb are external forces acting on the velocity
and magnetic fields. The pressure term ∇p̃ is accounted for by imposing ∇◦u = 0. All simulations
are performed in the plasma rest frame (〈u〉 = 0) on cubic grids with a resolution of 5123 and a
physical size of 2π in all three dimensions, and we compare runs without a magnetic mean-field to
others with a constant magnetic mean-field in z-direction. The dissipation coefficients ν and η are
chosen to be equal and sufficiently small that Kolmogorov’s dissipation length `K = (ν3/εinj)

1/4 is
well resolved, where εinj is the energy injection rate (cf. [12]).

In ideal MHD without external forcing, such that ν = η = 0 and fu = fb = 0, three invariant
quantities are conserved in a closed system: the energy E = 〈u2 +b2〉/2, the cross helicity K =

〈u ◦b〉, and the magnetic helicity Hmag = 〈A ◦b〉, where A is the magnetic vector potential and
〈·〉 denotes averaging over a closed volume. The close relation between cross helicity and Alfvén
waves becomes obvious when the former is expressed as K = E +−E −, with the Elsasser energies
E ± = 〈u±b〉2/4 measuring the alignment or anti-alignment of velocity and magnetic field in the
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system. In the presence of a magnetic mean field 〈b〉 = B0 along the z axis, shear Alfvén waves
will propagate at the Alfvén velocity vA = 〈b2〉1/2 along and opposite B0, and the Elsasser energies
indicate how the turbulent energy is distributed among co- and counter-propagating waves: A cross
helicity of K = 0 implies energy equipartition of waves in both direction, whereas the absence
of Alfvén waves in either direction leads to a normalized cross helicity σ c = (E +−E −)/〈(u2 +

δb2)/4〉 of σ c =±1.
In order to control the level of cross helicity in our simulations, we start with random initial

conditions (such that K (0) = Hmag(0) = 0) and drive the system by injecting energy into all
modes with wave vectors in the interval 2.5 < k < 3.5. The forcing algorithm determines the
amplitudes of u and b modes of left- and right-handed circular polarization separately and then
adjusts the forcing amplitudes of each mode [13] so that the total energy injection rate εinj and the
cross-helicity injection rate σinj are constant over time, while the magnetic helicity Hmag is kept
vanishingly small.

2.2 Quasilinear theory

The stochastic evolution of a distribution of charged particles in MHD turbulence with a mag-
netic mean-field is generally described by the Fokker-Planck equation [14]

∂ f
∂ t

=
∂

∂ µ
Dµµ

∂

∂ µ
f +

∂

∂ µ
Dµ p

∂

∂ p
f + p−2 ∂

∂ p
p2

(
Dµ p

∂

∂ µ
f +Dpp

∂

∂ p
f
)
, (2.3)

where f (µ, p; t) is the distribution of particles in the phase-space spanned by the pitch-angle cosine
µ = vz/v and the momentum p. The diffusion coefficients Dµµ , Dµ p, and Dpp depend on the prop-
erties of the specific turbulence realization and in particular on the normalized cross helicity σ c. In
the simple case of isospectral slab turbulence with a spectral density P(k) ∝ k−s

z , the momentum
diffusion coefficient for an isotropic charged-particle distribution is [10]

Dpp = πωg p2 v2
A

v2
s−1

s(s+2)
〈δb2〉

B2
0

(rgkmin)
s−1 (1−σ

c2), (2.4)

where ωg = q|B0| is the gyrofrequency of the particles with charge-to-mass ratio q and kmin =

2π/Linj is the wave number corresponding to the correlation length of the turbulence.

3. Results

3.1 MHD results

Before we inject test-particles into the turbulence runs, we allow each simulation first to settle
into a steady-state as characterized by an approximately constant energy E = 〈u2 + b2〉/2 and
normalized cross helicity σ c (fig. 1). Depending on the rate of cross-helicity injection chosen for
the forcing of each run, the steady-states exhibit different levels of normalized cross helicity σ c,
from balanced turbulence with σ c = 0.0 with zero cross-helicity injection, to strongly imbalanced
MHD turbulence with σ c ∼ 0.9 for a cross-helicity injection of σinj = 0.8. As our forcing scheme
injects equal amounts of energy into modes with left- and right-handed polarization, the normalized
magnetic helicity remains close to its initial value of zero in each case.
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Figure 1: Evolution of magnetic energy Emag = b2/2, normalized to its value at t = 0, and normalized cross
helicity σ c = K /E for runs a),b) without and c),d) with a order-unity magnetic mean-field, for different
cross-helicity injection rates: σinj = 0.0 (black, dotted), σinj = 0.3 (cyan, dash-dotted), σinj = 0.5 (blue,
dashed), and σinj = 0.8 (red, solid)

Figure 2: Spatial distribution of magnetic and velocity field intensity with zero magnetic mean-field (top
row) and order-unity magnetic mean-field (bottom row). Shown are the norms of velocity u and magnetic
field b in balanced turbulence (a-d) and in strongly cross-helical turbulence (e-h)

Snapshots of the norm of the velocity and the magnetic fields in the steady-states are shown in
fig. 2. The presence of a magnetic mean-field B2

0 ∼ δb2 along the z axis introduces a small level of
anisotropy in its direction, while the turbulent fields remain isotropic in the x-y plane. Even in the
balanced cases (σ c ∼ 0.0) regions of peak values of the magnetic field often exhibit high values of
the velocity field intensity as well, so that both fields appear correlated in each pair of field plots,
although the correlation is visibly more pronounced in the strongly cross-helical runs.

The role of cross helicity becomes more obvious in an analysis of the alignment of velocity and
magnetic field, cos[∠(u,b)] (fig. 3). The cross-helical cases exhibit an increasingly positive level
of alignment by definition, whereas the balanced cases contain regions of positive and negative
alignment in equal measure. As observed in other simulations of balanced turbulence [15], the
alignment histograms of both σ c = 0.0 runs are peaked at the extremal values cos[∠(u,b)] = ±1.
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Figure 3: Alignment of velocity and magnetic fields in balanced (top row) and strongly cross-helical (bottom
row) turbulence. a,b) cos∠(u,b) for zero-mean-field. c,d) cos∠(u,δb) for order-unity mean-field. e,f)
cos∠(u,b) for order-unity mean-field. g,h) Histograms of distributions of cos∠(u,b) in zero-mean-field
(dotted), and of cos∠(u,b) (solid) and cos∠(u,δb) (dashed) in order-unity mean-field

These peaks are less pronounced in the presence of a global magnetic mean-field, however, due
to the smaller relative fluctuations of the magnetic field. In cross-helical cases, the alignment
histograms of the mean-field runs considering only the fluctuations in the magnetic field, δb =

b−B0, are barely distinguishable from the isotropic runs without a mean-field, as one might expect
from the comparable values of σ c. Using an alignment definition that takes the mean-field into
account yields a histogram with a less pronounced peak (dashed line in fig. 3h), since positively
aligned fluctuations of u and δb are directed opposite to B0 in some regions.

Examining the distribution of energy in spectral space (fig. 4), we find that the balanced
steady-states exhibit equipartition between positive and negative Elsasser energies E ±, whereas the
strongly cross-helical states (σ c = 0.9) show a dominance of E + over E −. The spectral slopes in
the balanced cases are close to their expected values in a steady state (E (k) ∝ k−3/2 in the isotropic
case, E (kz) ∝ k−2

z with B2
0 = 〈δb2〉1/2). In the strongly imbalanced cases the slopes of positive and

negative Elsasser energies differ, with the dominant positive Elsasser energy exhibiting a steeper
dependence on both the perpendicular and parallel wave number with respect to the mean-field
direction (cf. [16].

3.2 Test-particle results

We investigate the transport properties of Alfvénic (v ∼ vA) charged particles in MHD turbu-
lence by injecting test-particles into each simulation once energy and cross-helicity have settled
in a steady-state (as shown in fig. 1). First we analyze the acceleration of charged particles by
propagating 50,000 test-particles with an electric field derived from both the Ohmic electric field
eohm = η∇×b and the motional electric field emot =−u×b:

d
dt

x = v,
d
dt

v = q(eohm + emot +v×b) . (3.1)
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Figure 4: Spectra of positive (thin solid) and negative (thick dashed) Elsasser energies, E ±(k) = [u(k)±
b(k)]2/4, for (a) balanced turbulence and (b) strongly cross-helical turbulence with zero magnetic mean-
field, and turbulence with order-unity magnetic mean-field parallel (c,d) and perpendicular (e,f) to the mean-
field direction
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Figure 5: Energy histograms of test-particle simulations with rg(0) = 3`K for zero-mean-field runs (a,b) and
order-unity mean-field (d,e) in balanced and strongly cross-helical runs, at times t/tA = 0 (black), t/tA = 1
(blue), t/tA = 5 (green), and t/tA = 25 (red). Also shown are momentum pitch-angle diffusion coefficients
in units of v2

A/(2tA), normalized by (1−σ c2), for c) zero-mean-field cases and f) order-unity mean-field,
with cross helicities color-coded as in fig. 1

Here q is the charge of the particles with unit mass, normalized such that rg(0) = vA/(qvA) corre-
sponds to the initial gyroradius of the test-particles, which are injected with a velocity equal to the
Alfvén velocity v(0) = vA and a randomly chosen initial position and momentum direction. Since
the acceleration effect we study occurs over several Alfvén times, we evolve the test-particle tra-
jectories in parallel with the MHD fields to simulate realistic interactions with propagating Alfvén
waves.

The energy histograms (fig. 5)) of the distribution of kinetic energies Ep = v2/2 clearly show
that in all cases test-particles are stochastically accelerated by the random electric fields. Compar-
ing the effect of different turbulence configurations on ensembles with the same normalized charge,
one finds the most efficient acceleration in balanced turbulence (σ c = 0.0). Increasing the level of
cross helicity slows down the acceleration, as we have shown in greater detail in [12].

Qualitatively speaking, of course, this diminished stochastic acceleration in cross-helical tur-
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bulence is what one expects due to the reduced norm of emot = −u×b if velocity and magnetic
fields are aligned. A more quantitative analysis can be performed by computing the momentum dif-
fusion coefficients Dpp = 〈[v(∆t)− vA]

2〉/(2∆t) for each test-particle ensemble and rescaling them
by the cross-helicity dependence as predicted by QLT (eqn. (2.4)) for a simple analytic turbulence
model, Dpp/(1−σ c2) (fig. 5). For gyroradii larger than the dissipation length, rg(0) > `K , the
rescaled curves coincide, confirming that the QLT prediction is also valid in realistic MHD turbu-
lence with three-dimensional spectra. For gyroradii comparable to or smaller than the dissipation
length, however, the matching of the rescaled momentum diffusion coefficients for different cross
helicities becomes increasingly worse. We attribute this effect to a dominance of Ohmic heating
by eohm, the mean amplitude of which is independent of σ c, for test-particles that are so strongly
magnetized that their trajectories do not sample a significant amount of fluctuations of the electric
field in one gyroperiod. The stochastic acceleration by emot is far less important for these particles,
since the energy gain over one half of the gyromotion is approximately cancelled by an energy loss
during the other half. Similar effects have been observed in previous simulations [17, 18].

The difference between small and large gyroradii is visible in the evolution of the squared
pitch-angle cosine with respect to the mean-field, (cosα)2 = v2

z/v2, as well (fig. 6a-d). Ohmic
acceleration, which mainly affects test-particles with rg(0)< `K , is directed parallel to the current
density vector j = ∇× b. In the presence of a magnetic mean-field current sheets, in which the
large current density accelerates particles coherently, are predominantly aligned with the mean-
field. Hence Ohmic acceleration of an initally isotropic ensemble of strongly magnetized test-
particles will have a net component along the z direction (dashed lines in fig. 6a-d). Once particles
have gained sufficient energy that their gyroradius exceeds the width of the current sheets, the
net effect of Ohmic acceleration becomes less efficient and pitch-angle scattering and stochastic
acceleration due to emot re-isotropize the momentum distribution. Since the latter effect is reduced
in cross-helical turbulence, the decrease in the parallel velocity component that eventually leads to
isotropization is visibly slower for σ c 6= 0 than in balanced turbulence runs.

Test-particles whose initial gyroradius is larger than the dissipation length are less suscepti-
ble to Ohmic acceleration along the mean-field. On the contrary, stochastic acceleration, always
perpendicular to the mean-field, is so much stronger that the kinetic energy in the perpendicular
directions grows initially faster than the parallel energy and v2

z < v2/3 for rg(0)� `K (solid lines
in fig. 6a-d).

Although the qualitative effect which cross helicity has on an isotropic particle distribution
is minor, the picture changes for anisotropic distributions. To confirm this, we have injected
ensembles of 1,000 test-particles into each of the cases with a magnetic mean-field, at random
positions but with a clearly defined initial pitch-angle with respect to the z direction, while keep-
ing the initial velocity equal to the Alfvén velocity. The normalized charge is chosen such that
rg(0) = 2`K . As we have found Ohmic acceleration to be subdominant in this regime, we neglect
eohm in the Lorentz equation for these simulations. Fig. 6e-h shows the pitch-angle diffusion coef-
ficient Dµµ = 〈[µ(∆t)−µ(0)]2/(2∆t) calculated over ∆t = 0.01vA/rg(0) as a function of the initial
pitch-angle cosine µ0 = vz(0)/vA, both for static snapshots (solid circles) and evolving MHD tur-
bulence (crosses). In balanced-turbulence runs the graphs are symmetric, Dµµ(µ) ∼ Dµµ(−µ).
Since scattering is enhanced by particles resonating with Alfvén waves, cross-helical turbulence,
with more energy in Alfvén waves traveling in one direction with respect to the mean field than
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Figure 6: a)-d) Evolution of the parallel energy in units of the total kinetic energy, v2
z/v2, for an initially

isotropic test-particle distribution with v(0) = vA and rg(0) = 0.1`K (dashed) and rg(0) = 3`K (solid), for
increasing levels of cross helicity. e)-h) Pitch-angle diffusion coefficient after ∆t = 0.01/ωg ≈ 0.01tA, for
static-MHD (dots) and evolving-MHD (crosses) runs

in the opposite direction, scatters particles with a velocity component in the mean-field direction
more efficiently. Although the structure of the electric fields leads to scattering that is asymmetric
with respect to the pitch-angle cosine µ even in static simulations, in which no traveling waves are
present which particles could resonate with, the asymmetry is greatly enhanced if the turbulence
is evolved in parallel with the particle trajectories. This is a clear indication that the asymmetric
scattering we observe is indeed due to resonance with the dominating wave population, as we will
further demonstrate in a forthcoming publication.

4. Conclusions

We have presented numerical simulations showing how the stochastic heating of charged par-
ticles is inhibited in cross-helical MHD turbulence. The results of (Dung 90) for a simple analytic
turbulence model are clearly also valid for realistic three-dimensional turbulence. However, as
the stochastic heating rate is a decreasing function of the particle gyroradius, we also agree with
the conclusion of [7] that the degree of imbalance is not important for the turbulent transport of
high-energy cosmic-ray particles.

In addition, we have presented the first numerical observations of resonant pitch-angle scat-
tering in imbalanced turbulence. A more detailed analysis of how the pitch-angle asymmetry of
scattering depends on acceleration by turbulent electric fields and the actual propagation of waves
in time-dependent turbulence is currently in preparation.
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