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Figure 1: The allowed |V L
ub|−εR regions. The black ellipse in the left (right) plot shows the result of a χ2 fit

using the first three (four, excluding ω) measurements in Table 1. The fainter ellipse in the right plot is the
same as that in the left plot.

1. Introduction

In the determination of the Cabbibo-Kobayashi-Maskawa (CKM) matrix element |Vub| a ten-
sion of almost 3σ persists between the extraction using leptonic, inclusive and exclusive semilep-
tonic decay channels already for a long time. A precise determination of this quantity is crucial
for testing the unitarity properties of the CKM matrix and also for improving tests of the Standard
Model (SM), in particular to increase sensitivity to New Physics (NP) in B0− B̄0 mixing [1].

It is possible that this tension is related to not sufficiently understood theoretical or experi-
mental details, and the larger dataset of Belle II may resolve this issue. Another possibility which
would ease this tension, is to allow for a right-handed current [2, 3, 4]. For the purpose of testing
this Ansatz, we consider the effective Lagrangian with only one new parameter εR,

Leff =−
4GF√

2
V L

ub
(
ūγµPLb+ εR ūγµPRb

)
(ν̄γ

µPL`)+h.c., (1.1)

where PL,R = (1∓ γ5)/2. The SM is recovered as εR→ 0.
The current measurements of |Vub| are summarized in Table 1. We indicate their dependence

on εR in the simple cases. In case of a final state vector meson this is not as easy, and it depends

Decay |Vub|×103 εR dependence
B→ π `ν̄ 3.23±0.30 1+ εR

B→ Xu`ν̄ 4.39±0.21
√

1+ ε2
R

B→ τ ν̄τ 4.32±0.42 1− εR

Decay B×104

B→ ρ `ν̄ 1.97±0.16 (q2 < 12 GeV2)
B→ ω `ν̄ 0.61±0.11 (q2 < 12 GeV2)

Table 1: The |Vub| measurements [9] used in the fit shown in Fig. 1 and their dependence on εR. The
branching fractions are taken from Ref. [10]
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on the considered q2 interval. In the endpoint phase-space limits q2 → 0,q2
max the axial-vector

dominates and hence we would have a simple 1− εR dependence. However such an extraction,
similar to B→ D(∗) [5], is currently not performed, because only a partially integrated width is
experimentally determined, which mixes both vector and axial(vector) in a non-trivial way. In [6]
this limit has been used with a |Vub| value extracted over the full range of q2 assuming Standard
Model (SM). This explains the differences in the εR dependence in comparison to our Fig. 1 and
their conclusion. The experimental |Vub| measurements do not need to be corrected for the ρ

lineshape, as initially suggested in [7].
Details about the used experimental measurements can be found in [8]. The result of the χ2 fit

for |V L
ub|− εR without and with the B→ ρ `ν̄ measurement are shown in Fig. 1.

The results presented here base on the work [8]. In Section 2 we derive the possible observ-
ables and discuss the form factors and their theoretical uncertainties in Section 3. The numerical
predictions for the observables are presented in Section 4 and these are included for a global fit in
the |V L

ub|− εR plane in Sect. 5.

2. Possible Observables

For obtaining maximal information about the parameter εR, we derive the fully differential four
body decay rate for the decay B→ ρ[→ ππ]`ν̄ . In order to describe the right-handed admixture
given by the Lagrangian in Eq. (1.1), we need to replace in the matrix element the vector (V ) and
the three axial-vector (A0,1,2) form factors via

V → (1+ εR)V , Ai→ (1− εR)Ai . (2.1)

With the additional assumption ImεR = 0 it can be done directly in the decay rate. In this talk
we focus only on this case, further information on complex εR can be found in the corresponding
article [8].

The decay rate can be written in terms of four variables. Conventionally we choose three
angles, which describe the relative orientation of the final state particles. θV is the angle of the
π+ in the ρ restframe with respect to the ρ direction in the B restframe. Similarly, θ` is the
angle of the `− in the dilepton restframe with respect to the direction of the virtual W− in the B
restframe. Finally χ is the angle between the decay planes of the hadronic and leptonic systems
in the B restframe. Additionally we have the momentum transfer q2 to the lepton system, while
the invariant mass of the hadronic system is fixed by examine the on-shell decay, only. The fully
differential rate, where the on-shell ρ meson is a pure P-wave, for massless leptons is written as

dΓ

dq2 dcosθV dcosθ` dχ
=

G2
F |V L

ub|2m3
B

2π4

×
{

J1s sin2
θV + J1c cos2

θV

+(J2s sin2
θV + J2c cos2

θV )cos2θ`

+ J3 sin2
θV sin2

θ` cos2χ

+ J4 sin2θV sin2θ` cos χ + J5 sin2θV sinθ` cos χ

3



P
o
S
(
H
Q
L
2
0
1
4
)
0
0
6

Right-handed currents in B→ ρ`ν̄ Sascha Turczyk

+ J6s sin2
θV cosθ`+ J7 sin2θV sinθ` sin χ

+ J8 sin2θV sin2θ` sin χ + J9 sin2
θV sin2

θ` sin2χ

}
. (2.2)

Our convention for the ranges of the angular variables are χ ∈ [0,2π], θ` ∈ [0,π], θV ∈ [0,π].
A fully differential analysis in four-dimensions in order to determine the Ji in bins of q2 is ex-

perimentally challenging. In the following we propose to use observables in one, two and all three
angles simultaneously. As we have shown in [8], these amount to simple counting experiments in
different regions of phase space. All of these observables are constructed such that the dependence
on |Vub| drops out. To improve the statistical precision, we integrate over a suitably chosen interval
of q2. Given the available constraints on the form factors, we integrate over 0 ≤ q2 ≤ 12GeV2 to
balance between experimental and theoretical uncertainties.

As we will see, it is important to estimate a reliable theoretical uncertainty for these observ-
ables. Especially the considered q2 region is sizable, and hence we need to treat the uncertainties
reliably in ratios of binned quantities. We develop a model for the uncertainties and correlations
among the binned rates, using available calculations of the form factors.

2.1 One- dimensional asymmetries

The forward-backward asymmetry of the charged lepton is sensitive to the chiral structure of
currents contributing to a decay,

AFB =

∫ 0
−1 dcosθ`(dΓ/dcosθ`)−

∫ 1
0 dcosθ`(dΓ/dcosθ`)∫ 1

−1 dcosθ` (dΓ/dcosθ`)
. (2.3)

We study the sensitivity of this variable to εR in Sec. 4, after discussing the form factor inputs
used. The one-dimensional distributions in χ and θV are symmetric, and hence it is not possible
to construct asymmetry-type observables with good sensitivity to εR from these one-dimensional
distributions.

2.2 Generalized Two- dimensional asymmetries

We found that if one integrates over one of the angles and defines two distinct regions in
the remaining two angles, then integrating over χ results in the best sensitivity. To optimize the
sensitivity from this class of measurements, we introduce new observables,

S =
A−B
A+B

, (2.4)

where A and B are the decay rates in two regions in the {cosθ`, cosθV} parameter space, chosen
such that S ' 0 in the SM. This is a generalization of the forward-backward asymmetry, which
may have increased sensitivity to εR. The optimal separation which discriminates between the two
regions, A and B, depends on this choice of the q2 range. Thus it is crucial to test the sensitivity of
the result to nonperturbative uncertainties.
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2.3 Three-dimensional Asymmetries

The previous approaches have the limitations of not allowing to chose the numerator and
denominator arbitrarily in terms of the Ji functions, the extraction of the full set of these coefficients
is experimentally challenging. By allowing multiple regions in fairly large, π/2 size, bins , we can
extract each individual Ji by considering generalized asymmetries in multiple regions of all three
angles. This method has been developed in [8]

Ji =
1
Ni

8

∑
j=1

4

∑
k,l=1

η
χ

i, j η
θ`
i,k η

θV
i,l

[
χ
( j)⊗θ

( j)
` ⊗θ

(k)
V

]
. (2.5)

Since some bin-boundaries need to be at half-integer multiples of π/2, we use a notation where
χ( j), θ

( j)
` and θ

(k)
V denote the 8 and 4 equal bins of size π/4, respectively. The corresponding

normalization factors Ni and weighting factors η
χ,θ
i, j can be found in [8]. Using this, we investigate

the sensitivity of arbitrary ratios of the Ji in the following. This can be used for the extraction of
observables in B→ K∗`` in the same way, and in analogy with Ref. [15, 16, 17], we define

〈P1〉bin =
1
2

∫
∆q2 dq2J3∫
∆q2 dq2J2s

, (2.6)

〈P′5〉bin =
1
2

∫
∆q2 dq2J5√

−
∫

∆q2 dq2J2s
∫

∆q2 dq2J2c

, (2.7)

which are, taking into account theoretical uncertainties, the most sensitive observables to a possible
right-handed current. Furthermore, we find that we get best sensitivity for simple ratios, defined as

〈Pi, j〉bin =

∫
∆q2 dq2Ji∫
∆q2 dq2J j

. (2.8)

In particular, coefficients which depend on all three angles have good sensitivities, 〈P3,4〉, 〈P3,5〉,
and 〈P5,4〉.

3. Form Factor Fit

We use a series expansion, also known as the z expansion, to describe the form factor shape
over the full range of the dilepton invariant mass [18]. In this paper we expand the form factors
directly, instead of the helicity amplitudes. The series expansion uses unitarity to constrain the
shape of the form factors, and implies a simple and well-motivated analytic parameterization over
the full range of q2. Defining q2

± = (mB±mρ)
2, the form factors are written as

V (q2) =
1

BV (q2)ΦV (q2)

K

∑
k=0

α
V
k z(q2, q2

0)
k ,

Ai(q2) =
1

BAi(q2)ΦAi(q2)

K

∑
k=0

α
Ai
k z(q2, q2

0)
k , (3.1)
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and the real q2 axis is mapped onto the unit circle

z(q2,q2
0) =

√
q2
+−q2−

√
q2
+−q2

0√
q2
+−q2 +

√
q2
+−q2

0

. (3.2)

The free parameter q2
0 is chosen as q2

0 = (mB +mρ)(
√

mB−
√mρ)

2, so that for the physical q2

range of B→ ρ`ν̄ decay the expansion parameter is minimal, |z(q2,q2
0)| . 0.1. The so-called

Blaschke factors in Eq. (3.1) for each form factor are BF(q2)≡∏RF z(q2, m2
RF
) , where RF are the

sub-threshold resonances (q2
− < m2

RF
< q2

+) with the quantum numbers appropriate for each form
factor. By construction, BF(m2

RF
) = 0 and |BF(q2)| = 1 for q2 > q2

+. The main shape information
is given by the functions [18]

ΦF(q2) =

√
1

32πχF(n)
q2−q2

+

(q2
+−q2

0)
1/4

[
z(q2,0)
−q2

](n+3)/2

×
[

z(q2,q2
0)

q2
0−q2

]−1/2[z(q2,q2
−)

q2
−−q2

]−3/4

. (3.3)

The only form factor dependent quantity is χF(n), which is related to the polarization tensor
Πµν(q2) at q2 = 0, and n is the number of derivatives (subtractions) necessary to render the disper-
sion relation finite. This function is calculable in an operator product expansion. For the longitudi-
nal part, involving A0, one subtraction is necessary, while for the transverse part of the vector and
axialvector current, involving the form factors A1, A2, and V , two subtractions are needed [18].

3.1 Correlation assumptions for the form factors

Unfortunately correlation information are currently not available from either lattice QCD or
model calculations. We estimate these correlations in the light-cone QCD sum rule (LCSR) re-
sults [11, 19]. We distinguish two different kinds of correlations, (i) correlations among the differ-
ent form factors at the same value of q2; and (ii) correlations between different values of q2, for the
same form factors.

In Ref. [11], the uncertainties at q2 = 0 are grouped into four sources, presumed uncorrelated:
∆7P, ∆mb , ∆L, and ∆T . The values evaluated for q2 = 0 are used in the following as an estimate
of the uncertainties over a larger range of q2. We investigate the individual contributions to these
uncertainties and estimate the correlation among the form factors.

From these considerations, we can assess the correlated uncertainties in each contribution. In
the following a model is tested to predict the correlations between the form factors. For this model,
according to the list above, the correlations between the Ai, and between the Ai and V are assumed
to be

{
ρ

Ai
7P, ρAi

mb
, ρ

Ai
L , ρ

Ai
T

}
=
{

ρ
V,Ai
7P , ρ

V,Ai
mb , ρ

V,Ai
L , ρ

V,Ai
T

}
= {0.6, 1.0, 1.0, 1.0}. A full calculation

of the form factors and the complete determination of the correlations is beyond the scope of this
paper. Hence our estimate relies on the results given in that paper, and on our assumptions. This
results in the correlation matrix for {V,A0,A1,A2} given by

C =


1. 0.65 0.71 0.72

0.65 1. 0.64 0.62
0.71 0.64 1. 0.72
0.72 0.62 0.72 1.

 . (3.4)
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This estimate is derived at q2 = 0, and we use it for q2 > 0 as well. Because of the constraints on
the shapes of the form factors, no large change is expected far from maximal q2.

The form factors at different values of q2 are obtained from the same sum rule, however, the
various contributions are weighted differently by q2. For values of q2 farther from one another, the
correlation should decrease. Using the leading order results of [11], we found that the correlation
for different values of q2 only mildly depends on the separation, which we use below. Thus,
uncertainties of a given form factor, Ai or V , for different q2 are estimated to be 80% correlated,
and we use a 1 GeV2 binning in our analysis).

3.2 The χ2 fit for the SE parameters

A simultaneous χ2 fit to all sum rule points of Ref. [11] assuming the discussed correlations
is performed. We verified the central values and uncertainties of the fit with ensembles of pseudo-
experiments. The fit results can be found in [8].

The LCSR calculation result of the form factors is valid only for small q2. However, the form
factor shape changes by less than 1% when fitted in the region q2 < 7GeV2 or q2 < 14GeV2 [11].
Since the measurements in Ref. [10] are in 4 GeV bins, we restrict ourselves to fitting the data in
the range q2 < 12GeV2 to balance between statistical sensitivity and theoretical validity.

4. Numerical Predictions of the Observables

In the following the theoretical predictions using the form factor input and uncertainties from
the last section are discussed. The achievable sensitivity of the observables is estimated for 1 ab−1

and 50 ab−1 of integrated luminosity, corresponding to the available BABAR and Belle data sets and
the anticipated Belle II data. The treatment of their expected systematic and statistical uncertainty
for the Neyman belt construction is explained in [8]. Experimental and theoretical uncertainties are
assumed to be independent, and addition in quadrature is used to combine them. The sensitivity
to a possible right-handed admixture is assessed by the interception of the uncertainty bands with
the predicted SM value. In practice, every experiment will have to properly take into account all
uncertainties for each value of εR.

4.1 Forward-backward asymmetry and the two-dimensional asymmetry, S

The prediction of AFB including uncertainty estimates are shown in the left panel of Fig. 2.
The central value is indicated by dotted lines and the blue band shows the theory uncertainty, as
derived in the previous section. The red and green band show the total uncertainties for 1ab−1

and 50ab−1 of integrated luminosity, and the dashed vertical lines show the expected sensitivities
assuming the SM. The theoretical and experimental uncertainties for 1ab−1 integrated luminosity
are expected to be of similar size. For 50ab−1 integrated luminosity the dominant uncertainty will
come from the B→ ρ form factor.

The generalized two-dimensional asymmetry, S, requires to find a non-trivial dividing curve to
define two distinct regions. The optimal contour in terms of sensitivity to right-handed admixtures
is devised in [8]. The resulting curve most sensitive for εR, separating regions A and B, can be

7
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Figure 2: Predictions for the forward-backward asymmetry (left) and S (right), including theoretical uncer-
tainties (blue band), and theory and experimental uncertainties combined in quadrature for 50 ab−1 (orange)
and 1 ab−1 (green).
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Figure 3: The most sensitive angular observables to ReεR. The blue bands show the theoretical uncertain-
ties, while the orange [dark-green] bands show theory and experimental uncertainties combined in quadra-
ture, for 50 ab−1 [1 ab−1] of B-factory data. The observables, 〈P1〉 (left), 〈P′5〉 (center), 〈P5,4〉 (right), are
defined in Eqs. (2.6)–(2.8).

numerically approximated by

cosθV =±

√
0.8472cos2 θ`+1.9038cosθ`+0.8472
−1.1484cos2 θ`+1.9038cosθ`+2.8429

. (4.1)

This choice depends on nonperturbative input quantities as well as the considered q2 interval.
The Neyman belt of S and sensitivities are shown in Fig. 2, the theoretical uncertainties are

larger than for AFB. The overall sensitivity on NP for 1ab−1 of integrated luminosity, however, is
better due to the increased dependence on εR, and for 50ab−1 of data the sensitivity is comparable.

4.2 Simple generalized ratios

We have given a set of simple generalized observables, Pi, in Eq. (2.6-2.8), from which one
expects the best theoretical sensitivity. The most sensitive observables in the context of real right-
handed currents, are 〈P1〉, 〈P′5〉 and 〈P5,4〉. The corresponding predictions and sensitivities are
shown in Fig. 3. The statistical correlations between the numerator and denominator in the ob-
servables was estimated using Monte Carlo methods, neglecting any influence from background.
The three-dimensional observables reduce the theoretical uncertainties with respect to the one-
dimensional or two-dimensional asymmetries. Their experimental uncertainties, however, are
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larger due to the great number of free parameters that need to be determined from the same data.
The most precise observable for 1ab−1 of integrated luminosity is 〈P5,4〉.

5. Global Fit

The estimated sensitivities on εR in the previous section can be used to add an orthogonal
constraint to the global fit performed in Section 1. The gain in overall sensitivity on |V L

ub| and εR is
estimated by extrapolating the experimental uncertainties to 1ab−1 and 50ab−1.

Fig. 4 shows the results for the simultaneous fit for |V L
ub| and εR for integrated luminosities of

1ab−1 and 50ab−1. The fits incorporate the expected constraints from either AFB, S, or P′5,4 in the
absence of right-handed currents. For the 1ab−1 scenario, the current experimental central values
are used for |Vub|, whereas for 50ab−1 the SM is assumed, with identical |Vub| from all channels.
For 1ab−1 B-factory data, S results in the largest gain in sensitivity for right-handed currents among
the studied observables. Table 2 lists the reduction of the uncertainty of |V L

ub| and εR with respect to
a fit without any additional orthogonal bound. Although the theoretical uncertainties on S are more
sizable than on P′5,4, the experimental simplicity of the two-dimensional asymmetry results in the
best overall expected sensitivity. The reduction in experimental uncertainties for 50ab−1 statistics
changes this picture: here the theoretical uncertainties on the B→ ρ form factors dominate the
overall uncertainty of all observables and P′5,4 results in the best expected sensitivity.

Fit δ
(∣∣V L

ub

∣∣) [%] δ (εR) [%]
4 modes + AFB (1 ab−1) −0.3 −5

4 modes + S (1 ab−1) −0.5 −9
4 modes + P5,4 (1 ab−1) −0.5 −8

4 modes + AFB (50 ab−1) −0.4 −2
4 modes + S (50 ab−1) −0.5 −2

4 modes + P5,4 (50 ab−1) −3 −10

Table 2: The expected relative reduction in the uncertainty of
∣∣V L

ub

∣∣ and εR for the χ2 fits in Figs. 4. The
improvements are quoted with respect to the expected uncertainties on the 4-mode analysis for 1 ab−1 and
50 ab−1, which are ∆

(∣∣V L
ub

∣∣×103,∆εR
)
= (0.18,0.061) and (0.06,0.016), respectively.

6. Discussion and Conclusions

In this talk, the full decay distribution in semileptonic B→ ρ[→ ππ]`ν̄ decay was analyzed
to explore the consequences of a possible right-handed semileptonic current from physics beyond
the Standard Model. A number of observables was explored, some new and some defined in the
literature. We performed a detailed investigation of the impact of the theoretical uncertainties,
using a model for the correlations, on the sensitivity.

To set a bound on this beyond Standard Model contribution, two approaches are possible: (i)
a full four-dimensional fit for the Ji coefficients or counting experiments that involve determining
the partial branching fraction in several regions of phase space and combining this information
appropriately to project out either the Ji coefficients, or (ii) to construct asymmetries sensitive

9
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Figure 4: The χ2 fits for |V L
ub| and εR assuming 1ab−1 (left) and 50ab−1 (right) of B-factory data. The green

bands show the B→ ρ`ν̄ information, c.f., Fig. 1. The observable used for the expected orthogonal bound
on εR, assuming the SM, is shown in each Figure. Table 2 lists the improvement in uncertainty by including
the orthogonal constraint from the discussed observable on εR with respect to the uncertainty of fitting the
experimental information available by B→ Xu`ν̄ , B→ τν̄ , B→ π`ν̄ , and B→ ρ`ν̄ only.

to NP contributions in two distinct phase-space regions. The latter offer an obvious alternative,
since with the currently available B-factory data, a full four-dimensional fit appears to be a very
challenging endeavor.

The discussed observables exhibit very different theoretical and experimental uncertainties:
besides the usual forward-backward asymmetry, a two-dimensional generalized asymmetry is pro-
posed by integrating out one of the decay angles form the fully differential decay rate. These two
are experimentally the simplest observables. A set of generalized three-dimensional observables is
discussed. These are experimentally more challenging, and the eventual observables involve ratios
of statistically and systematically correlated observables.

A ranking in terms of sensitivity reveals that the balance of experimental and theoretical un-
certainties is important: for the available B-factory statistics of about 1ab−1, the two dimensional
asymmetry S with its simple experimental definition seems to be the most sensitive to the pres-
ence of right-handed currents. For the anticipated 50ab−1 Belle II statistics, the more complicated
three-dimensional observables result in the best expected sensitivity due to the reduction of exper-
imental uncertainties. A direct determination of εR allows to introduce an orthogonal constraint
into the indirect determination involving |Vub| measurements from various decays with different εR

dependencies. Including the most sensitive direct εR constraint for 1ab−1 or 50ab−1, reduces the
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uncertainty of εR by about 10% in such a global analysis. This implies that even with the current
B-factory datasets a useful statement about εR from B→ ρ`ν can be obtained.
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