
P
o
S
(
H
Q
L
2
0
1
4
)
0
2
0

Experimental Searches on Sterile Neutrinos

Michael Wurm∗
Institute of Physics and Excellence Cluster PRISMA, Johannes-Gutenberg University Mainz
E-mail: michael.wurm@uni-mainz.de

While neutrino oscillations among the three active neutrino flavors are by now well established,
several anomalies observed at relatively short baselines in oscillation experiments hint towards
the existence of one or more additional sterile neutrino flavors. As a consequence, several exper-
iments are in preparation that are dedicated to test the sterile neutrino hypothesis.
The present contribution gives an overview of the on-going experimental efforts, highlighting the
two projects that are foreseen to start in 2015: SOX deploying a radioactive neutrino source at
short distance from the BOREXINO detector at LNGS, and STEREO searching for sterile neu-
trino oscillations at short distance from the ILL reactor core.
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Since the discovery of neutrino oscillations around the year 2000, the existence of oscillations
between the three active neutrino flavors as well as the basic oscillation parameters (mixing angles
θi j and mass squared differences ∆m2

ji with i, j = 1,2,3) have been well established. However, there
are in fact several experimental hints that there might be oscillation phenomena reaching beyond
the standard three-flavor scenario. Due to the LEP bound on the number of active1 light neutrinos,
any new neutrino flavor added would necessarily be sterile. Therefore, a direct detection of these
neutrinos via Standard Model processes is basically excluded. However, additional sterile neutrino
(νs) states may become visible in oscillation experiments via their mixing with the active flavors,
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where the additional mixing coefficients in the expanded PMNS matrix are denoted as Usi. In
addition, one or several new mass eigenstates ν4 etc. are introduced, corresponding to the number
of additional sterile neutrino states n. Such models are commonly denoted as (3+n) scenarios.

In the minimal (3+1) scenario, the existence of the additional sterile neutrino can be deduced
from two kinds of oscillation phenomena: In disappearance experiments, oscillations from active
to sterile neutrinos (e.g. νe → νs) will result in a deficit in the observed neutrino rates. A useful
expression for the oscillation probability as a function of baseline L and neutrino energy E is

P(νe→ νe) = 1−P(νe→ νs) = 1− sin2 (2θee)sin2
(

∆m2
41L

4E

)
, (2)

with θee the effective mixing angle. This approximation holds as long as the value of ∆m2
41 �

∆m2
31 and therefore the oscillation length `41� `31 (as implied by the current anomalies, sec. 1).

Alternatively, the appearance of additional oscillations between the active flavors can be observed
at the novel oscillation baseline `41 = 4π h̄c ·E/∆m2

41, `42 etc., e.g. denoted by

P(νµ → νe) = sin2 (2θeµ

)
sin2

(
∆m2

41L
4E

)
. (3)

Independently of oscillations, the existence of a fourth mass eigenstate and the size of its admixture
to the νe flavor state can also be approached by experiments scrutinizing the endpoint region of β -
decay spectra. Compared to the standard three-flavor scenario, the new mass eigenstate will cause
a distortion of the decay spectrum.

In the following, the case for a possible fourth sterile neutrino state will be made based on
the anomalies in present oscillation data (sec. 1). New experimental ideas for an unambiguous
verification or rejection of this hypothesis will be presented in secs. 2-4, highlighting in particular
the short-baseline reactor and source experiments STEREO and SOX. Finally, the alternative ap-
proach of investigating the tritium decay spectrum in KATRIN will be introduced in sec. 5 before
concluding in sec. 6.

1i.e. coupling to weak interaction via Z0,W±.
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1. Motivation for sterile neutrino searches

The possible evidence for the existence of sterile neutrinos results from the data of several oscilla-
tion experiments that are in tension with the standard three-flavor picture:

Gallium anomaly. The anomaly arises from the calibration tuns performed in the solar radio-
chemical experiments Gallex/GNO and SAGE. In order to validate the cross-sections and extraction
efficiencies that are at the heart of the translation of observed event rates to solar neutrino fluxes,
both collaborations performed calibration measurements with strong radioactive neutrino sources.
The sources used for this purpose were based on the isotopes 51Cr and 37Ar and provided activities
of about 1 MCi. Both radioisotopes undergo electron capture (EC), emitting a mono-energetic νe

of about 0.8 MeV. In a total of four runs, the sources were placed inside the respective experimental
setups and therefore at very short distance from the neutrino target. The resulting rates have been
evaluated to be on average only 0.86±0.05 of the expectation (deviating at 2.8σ from unity) [1].

Reactor anomaly. Nuclear reactors have been identified early as powerful ν̄e sources and have
been used in a multitude of oscillation experiments. When early experiments close to the reactor
cores reported ν̄e rates close to the expectation values, detectors moved further and further away
from the cores and finally discovered oscillations at distances of ∼1 km (θ13) and ∼120 km (θ12).
However, a re-evaluation of the neutrino spectra and fluxes edited by reactors has been performed
based on the state-of-the-art of nuclear data and theory in 2011. The study implies that the formerly
used prediction for the ν̄e event rates was low by 4.5 % [2, 3]. Based on the new results, there arises
a deficit in the rates detected by experiments at distances shorter than ∼100 m from the respective
reactors. The νs white paper [4] places the significance of the rate deficit at the 3σ level.

Accelerator anomalies. There is a long-standing anomaly in the data of the short-baseline os-
cillation experiment LSND at FNAL. LSND searched for oscillation of type ν̄µ → ν̄e at a low
energy ν̄µ source based on stopped-π+-decay. After observing an unexplainable excess in ν̄e-like
events (3.8σ ) [5], the MiniBooNE experiment was devised to cross-check the result at higher en-
ergies and longer baselines (providing the same distance-over-energy L/E ratio) and testing both
neutrino and antineutrino mode. As LSND, MiniBooNE observed anormal appearance signals for
both beam polarities [6].

While the significances of the individual anomalies are relatively weak, a more compelling picture
is arising when all of the experimental results are regarded in combination. They can be consistently
interpreted as oscillations via a novel mass squared difference ∆m2

41 ≈ 1.5eV2. The accompany-
ing light neutrino flavor state must be sterile. In this picture, gallium and reactor anomalies can
be understood as νe → νs disappearance oscillations at an amplitude of sin2 2θee ≈ 0.15 (eq. 2).
The LSND and MiniBooNE νe-like excess would correspond to appearance oscillations ν̄µ → ν̄e

mediated by the new mass eigenstate (eq. 3). Therefore, all anomalies could be explained by a
(3+1) scenario with the known three active plus one additional sterile neutrino. A review of the
evidence in favor of sterile neutrinos can be found in [4], while a global analysis of all available
oscillation data has been performed in [7]. Figure 1 shows the allowed oscillation parameter space
for oscillations between νe, νµ and νs.
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Figure 1: The allowed parameter space for sterile neutrino oscillation as derived by a global analysis of
oscillation data in [7].

2. Reactor experiments

The reactor anomaly describes a distance-independent suppression of the observed event rates at
baselines shorter than 100 m [3]. However, none of the experiments relevant for the anomaly
was close enough to the reactor core to detect a variation of the neutrino rate with either energy or
distance (eq. 2) consistent with the currently preferred νs oscillation parameters2 (sec. 1). To obtain
a definite confirmation of oscillations ν̄e→ ν̄s as the origin of the anomaly, future experiments will
be positioned very close to the reactor core, at baselines of the order of 10 m or less. Moreover, the
detectors have to be sensitive to either the neutrino energy or the vertex of the neutrino interaction
in order to resolve the emerging oscillation pattern in the ν̄e survival probability. The primary
challenge is the very high gamma and neutron background level expected at such short distance
from a reactor core.

Triggered by the discovery of the reactor anomaly in 2011, a large number of sterile neu-
trino projects at reactors started all over the world. Ordered by their hosting countries, the non-
exhaustive list [9] includes the SOLID experiment at BR2 reactor (Belgium), the French NUCIFER
at Osiris reactor (Saclay) and STEREO at ILL Grenoble, three Russian experiments (DANSS at
KNPP Udomlya, NEUTRINO4 at SM-3 Dimitrovgrad, andPOSEIDON at PIK Gatchina) as well
as PROSPECT at HFIR reactor (ORNL) in the US.

Of these proposed projects, the STEREO experiments at the ILL research reactor is one of
the most advanced [9]. Due to the compact reactor core geometry, the neutrino emission region is
limited to less than 1 m diameter, mitigating the smear-out of the oscillation signature and allowing
for a detector very close to the source (distance of 9 to 11 m). The chosen target medium is a

2With the noteworthy exception of the ILL experiment that was positioned about 9 m from the Grenoble reactor
core and observed a signal compatible with short-baseline oscillations [8].
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gadolinium-doped liquid scintillator in which ν̄e are detected by the inverse beta decay on free
protons, ν̄e + p→ e+ + n. While the prompt positron signals provides precise information on
the neutrino energy, the delayed capture of neutrons on gadolinium provides a delayed signal that
can be used for an efficient reduction of single-event background. Moreover, spatial resolution
is assured by segmenting the detector in six optically separated sub-modules. The target cells are
surrounded by passive shielding and active veto layers, the latter allowing to study and reject events
induced by external backgrounds.

Figure 2: Sensitivity of the STEREO reactor experiment:The oscillation parameter space to be excluded by
the experiment fully covers the best-fit region of the reactor antineutrino anomaly [9].

The STEREO collaboration projects the start of measurement for 2015. The expected neutrino
rate is ∼400 ν̄e events per day at a distance of 10 m from the reactor core. Figure 2 reproduces the
experimental sensitivity that has been calculated based on 300 days detector life time, a 2 % relative
error on the energy scale and a signal-to-background ratio of 1.5 [9]. Under these assumptions, the
best-fit region of the reactor anomaly will be fully covered.

3. Radioactive source experiments

As in the case of the reactor anomaly, the source calibration data of the radiochemical experiments
at the base of the gallium anomaly do not provide energy or distance information. However, β -
decay or EC isotopes are considered an attractive neutrino source as they are mobile and can be
integrated into the setups of already existing neutrino detectors. Moreover, the background pro-
duced by the sources is easier to shield than the intense radiation present in immediate proximity
of a reactor core. Finally, these experiments offer the possibility to investigate oscillations both in
the neutrino (β+) and antineutrino (β−) sector.

One of the proposed ideas is to re-check the gallium calibration results based on a segmented
detector providing spatial sensitivity. For this, the proposed BEST experiment would re-arrange
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the setup of the SAGE experiment at Baksan (Russia), placing a 51Cr νe source at the center of the
detector assembly. However, most of the source experiments have been discussed in the context of
the major low-energy neutrino observatories based on the liquid-scintillator technology. These de-
tectors provide both precise energy and spatial information and will allow to test a large fraction of
the preferred parameter space. The list of proposed experiments includes running detectors (Daya
Bay, KamLAND, Borexino) as well as projects planned for the near or medium future (SNO+,
LENS, JUNO, LENA).

Of these proposals, the closest to completion is the SOX experiment in which the neutrino
source will be positioned outside but very close to the Borexino detector at the Gran Sasso Na-
tional Laboratory (LNGS) [10]. A suitable pit located below the spherical detection volume at
8.25 m distance from the detector center offers the possibility to host either a mono-energetic νe-
source based on 51Cr (Eν ≈ 750keV, A = 10 MCi, produced by n-irradiation of 50Cr) or a ν̄e-source
relying on the short decay chain of the radioisotopes 144Ce−144Pr (Eν ≤ 3.0MeV, A = 100 kCi, ex-
tracted from spent nuclear fuel). Preparations for the latter option are by now far progressed and a
deployment of the source is foreseen for end of 2015.

Figure 3: The energy and distance-dependent oscillation pattern in SOX with a 144Ce ν̄e-source.

The signature for sterile neutrinos in SOX is the emergence of a disappearance oscillation
pattern in the position and energy of the ∼104 νe/ν̄e events reconstructed in the detection volume
(figure 3). As in the case of reactor antineutrinos, the relevant detection reaction for the Ce source
is the inverse beta decay, limiting the range of detectable neutrino energies to 1.8− 3.0 MeV. For
the preferred value of ∆m2

41 ≈ 1.5eV2, the corresponding oscillation lengths range from 3 m to 5 m
and are therefore well contained within the target volume of 8.5 m diameter. The delayed neutron
capture signal on hydrogen provides a powerful tagging signature and reduces the background from
single-event radioactivity to a negligible level. The background from antineutrino(-like) signals of
reactor and geoneutrinos as well as cosmogenic backgrounds will be virtually negligible.

Figure 4 displays the expected sensitivity of SOX both for the 144Ce ν̄e and the 51Cr νe sources
[11]. Sensitivity is greatest around the preferred range of ∆m2

41 where the oscillation lengths are of
the order of magnitude of the detector diameter. Sensitivity vanishes for lower values of ∆m2

41 if
`41 greatly exceeds the detector dimenions, while the sensitivity is also somewhat reduced for high
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values of ∆m2
41 where `41 falls below the spatial resolution of BOREXINO (∼10 cm at a visible

energy of 1 MeV). The most important systematic uncertainties are related to the normalization of
the (non-oscillated) event rate: The definition of the fiducial volume by spatial reconstruction (to
be determined in a dedicated calibration campaign) and the decay rate of the Ce source (measured
by calorimetry of its thermal power). For the projected uncertainty of ∼1 % for both quantities,
SOX will be able to exclude the 95 % preferred region of the anomalies at 95 % C.L. (fig. 4).
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Figure 4: Sensitivity of the SOX source experiment:The oscillation parameter space to be excluded by the
experiment covers the best-fit region of the anomalies [11].

4. Accelerator experiments

As neutrino beam experiments allow for an accurate adjustment of energy spectra, baselines and
detector performance as well as the search for sterile neutrino oscillations in both appearance and
disappearance modes, many interesting proposals for precision tests of the νs anomalies are cur-
rently discussed.

Compared to LSND and MiniBooNE, new projects aim to improve the knowledge of the
initial beam spectrum, the involved neutrino detection cross sections as well as the definition of
the energy scale. For these ends, a next-generation experiment will most likely be equipped with
a near detector for measuring the un-oscillated neutrino signal. As both LSND and MiniBooNE
suffered from relatively high backgrounds in the region of interest for the appearance signal, future
experiments will try to reduce backgrounds: In this context, liquid-argon time projection chambers
(LAr-TPCs) are currently discussed for both near and far detectors. Finally, event statistics can be
improved by both increasing the beam power and enlarging the detection volumes.

Current time scales for the proposed experiments can be expected to be substantially longer
than for the reactor and source experiments. While the MicroBooNE LAr-TPC is already running
at FNAL and will provide both a test on the feasibility of future detectors and valuable information
on neutrino cross-sections [12], statistics will most likely not be sufficient to shed new light on
the sterile neutrino anomalies. Far greater sensitivity might be reached in a recurringly discussed
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project with two large LAr-TPCs at FNAL [13]. For this, one or both of the ICARUS T-300
modules would be transported from LNGS to FNAL to serve as a far detector, while the place of
the near detector could be taken by the planned LAr1 experiment.

5. Beta-decay endpoint measurement

A further and quite complementary approach to search for a fourth eV-scale neutrino state is the
investigation of the end-point region of β decay spectra. The current best limits on the electron
neutrino mass from laboratory experiments stem from experiments studying the shape of the tritium
decay endpoint. The up-coming KATRIN experiment is expected to further improve the current
limit of mβ ≤ 2eV2 to the regime of 200 meV [14].

Recent studies indicate that this sensitivity might be sufficient to resolve the the fourth mass
state ν4 by its admixture to the νe flavor state. For the predicted values of ∆m2

41 and sin2(2θee),
the corresponding deformation of the β decay spectrum close to the endpoint will be right on the
verge of the experimental sensitivity. Figure 5 shows the results of an analysis performed in [14]
that takes only statistical uncertainties into account. In a (3+1) scenario, the depicted parameters
∆m2

s and sin2(2θs) can be directly associated ∆m2
41 resp. sin2(2θee).

Figure 5: Sensitivity of the KATRIN experiment to an admixture of the mass eigenstate ν4 to the flavor state
νe:The oscillation parameter space to be excluded by the experiment reaches well into the best-fit region of
the anomalies [14]. Lines of different colors indicate the confidence levels of the exclusion.

6. Conclusions

While the oscillations between the three active neutrino flavors are by now well established, sev-
eral experiments have provided hints that the active neutrinos might be mixing with at least one
further light sterile neutrino flavor. A multitude of experiments has been proposed to test the sterile
neutrino hypothesis, either by finding the un-ambiguous evidence of a neutrino oscillation pattern
at short baselines or by refuting the currently allowed parameter region. The two projects that are
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by now the most advanced are the STEREO experiment at the ILL reactor in Grenoble and the
SOX source experiment at the BOREXINO detector at Gran Sasso. Both experiments are foreseen
to start during 2015 and to provide first data the year after. The KATRIN experiment will provide
complementary data by searching for a deformation of the tritium β -decay endpoint region.
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