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The acceleration of the expansion of the Universe may be due to either a new matter component,
dark energy, or a modification of gravity on large scales. In fact, modifying gravity always in-
volves a scalar degree of freedom which can lead to dark energy. Locally, in the solar system,
gravity is extremely well described by General Relativity. Hence any modification of gravity
must have screened effects in our local environment. We review the known screening mecha-
nisms: chameleon, K-mouflage and Vainshtein. For the chameleon mechanism as exemplified by
f (R) models, the local tests imply that the effective equation of state of dark energy is very close
to -1 in the late time Universe. For Galileons with the Vainshtein mechanism, self-acceleration is
possible with a varying equation of state. In both cases, modifications of gravity are accompanied
by a change in the growth of structure.
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1. Introduction

Since the discovery of the acceleration of the expansion of the Universe [1], dark energy [2]
and modified gravity [3] have been studied as a possible theoretical framework for the description
of the late time Universe. In the last few years, it has become clearer and clearer that dark energy
and modified gravity mostly involve the physics of very light scalar fields [4]. In dark energy
models, this is by-product of the requirement that the equation of state must be close to −1. For
modified gravity, massive gravitons always involve a scalar polarisation out of their 5 helicity
states. However, the existence of light scalar fields is extremely constrained by local solar system
experiments on fifth forces (Cassini) [5] or the strong equivalence principle (Lunar ranging) [6].
In this environment, the scalar field must be screened and see its effects on matter largely reduced.
This is feasible is three different ways: chameleon [7–9], K-mouflage [10] and Vainshtein [11].
In this paper, we will review how these mechanisms operate and we will give typical examples of
models realising the chameleon and Vainshtein properties. For the chameleons, the f (R) theories
in the large curvature limit [12] allow one to envisage models where large scalar structure are
altered whereas the background cosmology is essentially the one of Λ-CDM. On the other hand
Galileons [13], and herein the cubic ones, are amenable to self-acceleration with a varying equation
of state and also modifications of the growth of structure.

2. Screening Mechanisms

2.1 Background effects

Screening mechanisms [4,14]can be described by considering theories with second order equa-
tions of motion only. In a given environment where the scalar field takes a background value φ0(t)
and expanding to second order the Lagrangian of the fluctuations compared to the background
δφ = φ −φ0(t), we obtain

L =−Z(φ0)

2
(∂δφ)2 − m2(φ0)

2
(δφ)2 −β (φ0)

δφ
MPl

δρm (2.1)

where δρm is the change of the matter density compared to the background value. Test particles
follow the geodesics of the total potential Ψ = ΨN +β (φ0)

δφ
MPl

, where the Newtonian potential ΨN

satisfies the Poisson equation ∇2ΨN = 4πA(φ0)GNδρm and δφ is due to the presence of matter
overdensities. Big Bang Nucleosynthesis imposes that the overall variation of particles masses is
less than ten percent since BBN, i.e |∆A

A | ≤ 0.1 where ∆A is the variation of A. implying that A ≃ 1.
Screening corresponds to the reduction of the effect of the scalar field from the linear case of a
point particle coupled with a strength β (φ0) to matter, i.e. Ψ is smaller than (1+2β 2(φ0))ΨN.

2.2 Chameleon

For canonically normalised scalars and at the linear level [9], the equations of motion give that

Ψ =

[
1+

2β 2(φ0)

1+m2(φ0)a2/k2

]
ΨN. (2.2)
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where k is the comoving wave number of interest. General Relativity is recovered on very large
scales outside the Compton wavelength, k/a . m(φ0), and changes to gravity occur inside the
Compton wavelength, k/a & m(φ0), with a strength (1+ 2β 2(φ0)). When overdensities become
greater, the linear approximation is not valid anymore and screening occurs. The condition for the
onset of nonlinear screening, |δφ | ∼ |φ0|, can also be written

|2β (φ0)ΨN|&
∣∣∣∣ φ0

MPl

∣∣∣∣ . (2.3)

Viable f (R) models are chameleons which we will present in the following section.

2.3 K-mouflage and Vainshtein mechanisms

At the linear level for models dominated by their kinetic term we have that

Ψ =

[
1+

2β 2(φ0)

Z(φ0)

]
ΨN, (2.4)

and screening occurs when
Z(φ0)& 1. (2.5)

Non-linearly, the modification of gravity around an overdensity is still suppressed when Z is large.
We can expand to leading order

Z(φ) = 1+a(φ)
(∂φ)2

M 4 +b(φ)L2�φ
MPl

+ . . . , (2.6)

where M is a suppression scale characterising the model, L a typical length scale, a(φ) and b(φ)
two functions of order one. Cubic and higher order derivatives are forbidden as they would induce
equations of motions of order larger than two.

2.3.1 Vainshtein scenario

When a = 0, the suppression of the scalar field effect is due to the Vainshtein effect when
|∇2φ|
MPl

& L−2, implying that screening occurs when

|∇2ΨN|&
|∇2φ |
2βMPl

& 1
2βL2 (2.7)

when β is a slowly varying function of φ . Therefore the screening criterion depends on the spatial
curvature which must be large enough.

Taking the Newtonian potential around a dense object of mass m, screening occurs inside the
Vainshtein radius

RV =

(
3βL2m
4πM2

Pl

)1/3

. (2.8)

For quasi-linear cosmological structures, with a density constrast of δ , screening occurs when

3A(φ0)Ωm0H2
0 δ & 1

β (φ0)L2 . (2.9)
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When the scale L is the size of the current Universe H−1
0 , screening occurs when

δ & 1
3Ωm0A(φ0)β (φ0)

, (2.10)

which is realised for all overdensities with a density contrast larger than a number of order one
Hence all quasi-linear structures in the Universe are screened in the Vainshtein models.

2.3.2 K-mouflage scenario

When b = 0, the suppression of the scalar field effect is due to the K-mouflage effect when
|∇φ|& M 2, implying that a necessary condition for screening is

|∇ΨN|&
|∇φ |

2βMPl
& M 2

2βMpl
(2.11)

when β is slowly varying function of φ . Therefore we now have a criterion on the gradient of the
gravitational potential, that is, the gravitational acceleration.

Taking the Newtonian potential around a dense object of mass m, we find that screening occurs
inside the K-mouflage radius

RK =

(
βm

4πMPlM 2

)1/2

. (2.12)

For quasi-linear cosmological structures, we find that screening occurs when the wave number k
characterising a given structure satisfies

k . 3Ωm0A(φ0)β (φ0)
H2

0 MPl

M 2 δ (2.13)

Taking M 4 ∼ 3ΩΛ0M2
PlH

2
0 to recover the acceleration of the Universe now, we have that

k
H0

.
√

3
ΩΛ0

Ωm0A(φ0)β (φ0)δ , (2.14)

which corresponds to super-horizon scales if δ ∼ 1. As a result, quasi-linear objects in the Universe
are not screened in K-mouflage models.

3. Chameleon Modified Gravity

3.1 Tomographic theories

In screened objects of the chameleon type, the mass is so large or the coupling so small that
the scalar field is essentially constant. Denoting by ϕc the value inside the object and by ϕ∞ the
value outside and far away from the body, an approximate solution of the Klein-Gordon equation
in the spherical case which describes accurately the outside solution in the screened case [15], is
simply

ϕ(r) = ϕ∞ −2QmPl
GNM

r
(3.1)

where M is the mass of the dense object, R its radius and the scalar charge

Q =
ϕ∞ −ϕc

2mPlΦN
(3.2)
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where ΦN is the value of Newton’s potential at the surface of the body ΦN = GNM
R . The scalar charge

depends on the environment via ϕ∞ and on the properties of the body via ϕc and ΦN . Comparing
to the linear solution for a point-like source, the screening criterion [7] for chameleon theories
becomes

Q . β∞ (3.3)

which requires that the scalar charge of a screened object should be smaller than the coupling to
matter far away from the object.

These models can be described by scalar-tensor theories defined by the Lagrangian

S =

∫
d4x

√
−g(

R
16πGN

− (∂ϕ)2

2
−V (ϕ))+Sm(ψ,A2(ϕ)gµν) (3.4)

where A(ϕ) is an arbitrary function. The coupling to matter is simply given by β (ϕ) = mPl
d lnA(ϕ)

dϕ .

The most important feature of these models is that the scalar field dynamics are determined by an
effective potential which takes into account the presence of the conserved matter density ρ of the
environment

Veff(ϕ) =V (ϕ)+(A(ϕ)−1)ρ. (3.5)

Scalar-tensor theories whose effective potential Veff(ϕ) admits a density dependent minimum ϕ(ρ)
can all be reconstructed tomographically from the sole knowledge of the mass function m(ρ) and
the coupling β (ρ) at the minimum of the potential [15, 16]

ϕ(ρ)−ϕc

mPl
=

1
m2

Pl

∫ ρc

ρ
dρ

β (ρ)A(ρ)
m2(ρ)

, (3.6)

where we have identified the mass as the second derivative m2(ρ) = d2Veff
dϕ 2 |ϕ=ϕ(ρ) and the coupling

β (ρ) = d lnA
dϕ |ϕ=ϕ(ρ). It is simpler to characterise the functions m(ρ) and β (ρ) using the time evo-

lution of the matter density of the Universe ρ(a) = ρ0
a3 where a is the scale factor whose value now

is a0 = 1. This allows one to describe characteristic models in a simple way.
A large class of interesting models with a screening mechanism of the chameleon type consists

of the large curvature f (R) models [12] with the action

S =
∫

d4x
√
−g

f (R)
16πGN

(3.7)

where the function f (R) is expanded in the large curvature regime

f (R) = Λ+R− fR0

n
Rn+1

0
Rn (3.8)

where Λ is a cosmological constant term and R0 is the present day curvature. These models can
be reconstructed using the constant β (a) = 1/

√
6 and the mass function as a function of the scale

factor a ≤ 1

m(a) = m0(
4ΩΛ0 +Ωm0a−3

4ΩΛ0 +Ωm0
)(n+2)/2 (3.9)

where the mass on large cosmological scale is given by m0 = H0

√
4ΩΛ0+Ωm0
(n+1) fR0

, ΩΛ0 ≈ 0.73, Ωm0 ≈
0.27 are the dark energy and matter density fractions now [15]. Apart from for very small redshifts,
the dependence of m(ρ) on a is a power law with an exponent −3(n+2)/2.
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Figure 1: X(z) is represented here for f (R) models with n = 1,2,3 from top to bottom for astrophysical
objects of the galactic type. Local gravitational tests imply that H0/m0 . 10−3 for f (R) models, implying
that unscreened objects must have a Newtonian potential less than 10−6 at low redshift and smaller at higher
redshift.

The tomographic map allows one to refine the screening criterion as

1
m2

Pl

∫ ρc

ρ∞

dρ
β (ρ)
m2(ρ)

. 2β∞ΦN (3.10)

where ρ∞ is the density far away from the object. The necessary condition for astrophysical objects
to be unscreened is that their Newtonian potential satisfies

ΦN . H2
0

m2
0

X(z) (3.11)

where we have introduced the function

X(z) =
9

2 f (a(z))

∫ (z+1)−1

ac

f (a)Ωm(a)H2(a)
ag(a)

da (3.12)

and we have defined the dimensionless functions m2(a) = m2
0g(a) and β (a) = β0 f (a). For the

Milky Way we have ac ≡ aG ∼ 10−2. We have plotted the variation of X(z) as a function of the
redshift z for f (R) models in Fig.1. For low redshift objects, unscreened objects are characterised

by ΦN . H2
0

m2
0
. As the Milky Way, which must be screened to avoid too much disruption in the dy-

namics of satellite galaxies, is such that ΦG ∼ 10−6, the mass of the scalar field in the cosmological
background now m0 must then satisfy [?, 16]

m0

H0
≥ (

3Ωm0

2(n+1)ΦG
)1/2 & 103. (3.13)

for f (R) models. This implies that the cosmological range of the scalar field must be less than a
few Mpc’s now. Unscreened astrophysical objects must necessarily have a low Newtonian potential
ΦN . 10−6 when they are at low redshift, and even smaller when their redshift is z & 1 as X(z)
drops below a few percent for f (R) models.
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Local tests of the strong equivalence principle in the solar system carried out by the Lunar
Ranging experiment [6] imply that [7] Q⊕ ≤ 10−7 and the Newtonian potential on earth is Φ⊕ ∼
10−9. This implies that

9
2

∫ aG

a⊕

β (a)Ωm(a)H2(a)
am2(a)

da = Q⊕Φ⊕ . 10−16. (3.14)

and for large curvature f (R) models, we get that

m0

H0
≥

√
3β0Ωm0

2(n+1)
105−3n. (3.15)

This is a weaker condition than the screening of the Milky Way when n & 1 and corresponds to
fR0 . 10−4 for n = 1.

For such models, the equation of state at late time is constrained to be [15]

wϕ +1 ∼ 3β 2
0 Ωm0

Ωm0

ΩΛ

H2
0

m2
0

(3.16)

which is the one of Λ-CDM at the 10−6 level due to the screening of the Milky Way. This implies
that such models are essentially equivalent to Λ-CDM at the background level at late time and
acceleration is due to an effective cosmological constant in the potential V (ϕ). This is not the case
for the growth of structure where the density contrast δ satisfies the growth equation in conformal
time where H = ȧ

a

δ̈ +H δ̇ − 3
2

ΩmH 2(1+ ε(k, t))δ = 0 (3.17)

where ε(k, t) = 2β 2(a)

1+m2(a)a2

k2

. The growth of structure in the linear regime is modified from the δ ∼ a

behaviour in the matter dominated era to a k- dependent evolution. On large scale outside the
Compton wavelength k & am(a) the growth is similar to the one for Λ-CDM. On the other hand,
inside the Compton scale k . am(a) growth is modified due to a rescaling of Newton’s constant by
a factor of 1+2β 2(a). For f (R) models in the large curvature regime, this enhacement by a factor
of 4/3 could be detectable by future surveys such as EUCLID provided the cosmological range of
the scalar field m−1

0 is not well below 1 Mpc where non-linear and baryonic effects could take over
modified gravity. With current bounds on fR0 . 10−7 [17] coming from the astrophysics of stars,
the eventual detection of these effects on the growth of structure seems marginal.

4. Galileons

Galileons are scalar field theories which have equations of motion that are at most second order
in derivatives [13]. They are interesting dark energy candidates where an explicit cosmological
constant is not compulsory. The Lagrangian in the cubic case reads

L =−c2

2
(∂ϕ)2 − c3

Λ3�ϕ(∂ϕ)2 . (4.1)

and depends on two constants c2 and c3. The common scale Λ3 = H2
0 mPl is chosen to reproduce

the acceleration of the late Universe. In a Friedmann-Robertson-Walker background, the equations

7
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Figure 2: The equation of state w(z) for the cubic Galileon model with c̄2 =−4.3.

of motion can be simplified using x = ϕ ′/mPl where a prime denotes ′ = d/d lna =−d/d ln(1+ z)
where a is the scale factor and z the redshift. Defining x̄ = x/x0 and H̄ = H/H0 where H is the
Hubble rate, and the rescaled couplings c̄i = cixi

0, i = 2,3, where x0 is the value of x now, the
cosmological evolution satisfies [18]

x̄′ =−x̄+
αλ −σγ
σβ −αω

, H̄ ′ =−λ
σ
+

ω
σ
(

σγ −αλ
σβ −αω

) (4.2)

where we have introduced

α =−3c̄3H̄3x̄2 +
c̄2H̄x̄

6

β =−2c̄3H̄4x̄+
c̄2H̄2

6

γ =−c̄3H̄4x̄2 +
c̄2H̄2x̄

3
σ = 2H̄ +2c̄3H̄3x̄3

λ = 3H̄2 −2c̄3H̄4x̄3 +
c̄2H̄2x̄2

2
+

Ωr0

a4

ω = 2c̄3H̄4x̄2. (4.3)

It is important to notice that the intrinsic values of the ci coefficients cannot be probed cosmologi-
cally. Only the various combinations of the ci’s and x0 are relevant. The Friedmann equation which
governs the evolution of the Hubble rate can be written in a similar way

H̄2 =
Ωm0

a3 +
Ωr0

a4 +
c̄2H̄2x̄2

6
−2c̄3H̄4x̄3 (4.4)

where the scalar energy density is ρϕ
H2

0 m2
Pl
= c̄2H̄2x̄2

2 −6c̄3H̄4x̄3 and the scalar pressure pϕ
H2

0 m2
Pl
= c̄2

2 H̄2x̄2+

2c3H̄3x̄2(H̄x̄)′ from which we define the equation of state ωϕ =
pϕ
ρϕ

. The Friedmann equation gives

the constraint on the parameters 1 = Ωm0 +Ωr0 +
c̄2
6 −2c̄3 which determines c̄3 as a function of c̄2.
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Figure 3: The rescaled Newton constant ge f f (z) for the cubic Galileon model with c̄2 =−4.3.

The cubic Galileon models admit a long time attractor where both x̄′ and H̄ ′ vanish. This leads to
self-acceleration with no cosmological constant in the model. The variation of the equation of state
as a function of the redshift is shown in Figure 2.

The Galileon models modify gravity and in particular the growth of structure is altered. Defin-
ing by δ the density contrast of Cold Dark Matter (CDM), the growth equation becomes

δ ′′+

(
2+

H̄ ′

H̄

)
δ ′− 3

2
Ωmge f f δ = 0 (4.5)

where we have introduce the effective Newton constant in the FRW background

ge f f ≡
Ge f f

GN
=

4(κ3κ6 −κ2
1 )

κ5(κ4κ1 −κ5κ3)−κ4(κ4κ6 −κ5κ1)
. (4.6)

where the various κi’s are defined by

κ1 = 0, κ2 =− c̄2

2
+6c̄3H̄3x̄, κ3 =−1

κ4 =−2, κ5 = 2c̄3H̄2x̄2, κ6 =
c̄2

2
−2c̄3(H̄(H̄x̄)′+2H̄2x̄) (4.7)

It is convenient to introduce the growth factor f = δ ′ which measures the growth of structure and
its deviation from the pure Einstein-de Sitter case where f ≡ 1. Deviations of growth from Λ-CDM
are sizeable when ge f f is very different from one as in Figure 3.

The parameter space of Galileon models has been scanned and compared to data [19], showing
a preference for models with c2 < 0 as we have in Figures 2 and 3. Although the models are ghost-
free in the FRW background which solves the Galileon equations, Minkowski space is not a stable
background of these models [20].

5. Conclusion

We have described the screening mechanisms of modified gravity. We have considered chameleons
theories such as f (R) in the large curvature limit for which the background evolution mimics Λ-
CDM. These models do not address the dark energy issue as they require to include a cosmological
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constant in their potential in order to lead to the acceleration of the Universe. On the other hand,
they lead to interesting features on the growth of structure such as a scale dependent growth factor
in the linear regime and deviations on scales smaller than 1 Mpc. Galileons offer the possibility
of self-generating the acceleration of the Universe with no cosmological constant. They modify
the growth of structure in a scale-independent way, the price to pay being that this happens when
Minkowski space is not a stable background of the theory.
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