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We show that Padmanabhan’s conjecture [arXiv:1206.4916] for the emergence of cosmic space
holds for the flat Friedmann-Robertson-Walker universe in Einstein gravity, but not for the non-
flat case if one uses the proper volume. We check the validity of various works extending Pad-
manabhan’s conjecture to non-Einstein and non-flat cases, and find serious shortfalls in most of
them. The analysis is done using the Friedmann equation with the assumptions of the holographic
principle and the equipartition rule of energy.
If we accept that Padmanabhan’s conjecture is right, then we may interpret our result as follows.
The holography of our nature imposes (spatial) flatness on our universe.
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1. Introduction

Recently, Padmanabhan proposed a governing equation that would control the expansion of
cosmic space [1]. It has been known that the universe of pure de Sitter type satisfies the holo-
graphic equipartition, Nsur = Nbulk, where Nsur and Nbulk are the degrees of freedom (DOF)
of the boundary surface and of the bulk, respectively. Under the assumption that our universe
is asymptotically de Sitter, Padmanabhan considered that the expansion of the universe is being
driven towards holographic equipartition. Thus, he conjectured that the governing equation for the
expansion of cosmic space is given by

dV
dt

= L2
p(Nsur−Nbulk), (1.1)

where V is the volume of cosmic space enclosed by the apparent horizon r̃A, and Lp is the Planck
length. Using the above relation and with further assumptions of the holographic principle and
the equipartition rule of energy, he succeeded in obtaining the Friedmann equation of the (3+1)-
dimensional flat Friedmann-Robertson-Walker (FRW) universe in Einstein gravity.

Cai then obtained the Friedmann equations for an (n+1)-dimensional flat FRW universe in the
Einstein, Gauss-Bonnet, and Lovelock gravity cases using Padmanabhan’s conjecture [2]. How-
ever, in the Gauss-Bonnet and Lovelock cases, Cai used an effective volume for the volume change
but used the plain ordinary volume for the bulk DOF.

In order to avoid this discrepancy, the plain ordinary volume was used both for the volume
change and for the bulk DOF in Ref. [3]. But it was not free. In order to obtain the Friedmann
equation, Padmanabhan’s relation (1.1) had to be severely modified in both Gauss-Bonnet and
Lovelock cases.

Extension to the non-flat case was first done in Ref. [4] with a slight modification of Padman-
abhan’s conjecture. However, the aerial volume was used instead of the proper invariant volume.

Ref. [5] tried to make up for this shortcoming by using the proper invariant volume in the
non-flat Einstein case. They introduced the ‘effective Planck length’ solely to contain all the com-
plications of the time dependence in ‘the proportionality factor’, so that the original form of Pad-
manabhan’s conjecture could be maintained. This severe modification could cast strong doubt on
the very validity of the conjecture.

In this work, we show that Padmanabhan’s original conjecture and its various modified ver-
sions can be obtained from the Friedmann equation for the flat FRW universe in the Einstein,
Gauss-Bonnet, and Lovelock gravity cases. We extend the same analysis for the non-flat case in
(3+1)-dimensions. Throughout the paper, we use the natural units kB = c = h̄ = 1.

2. Emergence of cosmic space for a flat FRW universe

Here, we show that the Friedmann equation of the flat FRW universe yields Padmanabhan’s
relation when the holographic principle and the equipartition rule of energy are assumed.

For later reference, we consider an (n+1)-dimensional FRW universe with the metric

ds2 =−dt2 +a2(t)
(

dr2

1− kr2 + r2dΩ
2
n−1

)
, (2.1)
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where dΩ2
n−1 denotes the line element of the (n−1)-dimensional unit sphere. Here, the spatial cur-

vature constant k corresponds to a closed, flat and open universe for k =+1,0, and−1, respectively.
The metric (2.1) can be rewritten as

ds2 = habdxadxb + r̃2dΩ
2
n−1, a,b = 0,1, (2.2)

where r̃ = a(t)r, hab = diag(−1,a2/1− kr2), and (x0,x1) = (t,r). The apparent horizon in (2.2)
is defined as the marginally trapped surface with vanishing expansion and is determined by the
relation hab∂ar̃∂br̃ = 0. Thus, the radius of the apparent horizon is given by

r̃A =
1√

H2 + k/a2
, (2.3)

where H ≡ ȧ/a is the Hubble parameter. The Hawking temperature associated with the apparent
horizon is given by

TH =
1

2π r̃A
. (2.4)

In this work, we will only consider the case in which the distribution of matter and energy takes the
form of a perfect fluid. Then the Friedmann equations in the (n+1)-dimensional Einstein gravity
are given by [6]:

H2 +
k
a2 =

16πLn−1
p

n(n−1)
ρ, (2.5)

ä
a
=−

8πLn−1
p

n(n−1)
[(n−2)ρ +np]. (2.6)

We now restrict ourselves to the flat case (k = 0). Since the volume enclosed by the apparent
horizon r̃A in the flat case is given by V = Ωnr̃n

A, where Ωn is the volume of the unit n-sphere, the
rate of volume change is given by

dV
dt

= nΩnr̃n−1
A

˙̃rA. (2.7)

Then with the use of the Friedmann equation (2.6), it is given by

dV
dt

= Ln−1
p

(
A

Ln−1
p

+
8π r̃AV
n−1

[(n−2)ρ +np]
)
, (2.8)

where A= nΩnr̃n−1
A . The bulk Komar energy in an (n+1)-dimensional flat spacetime is given by [7]:

E =
[(n−2)ρ +np]

(n−2)
V. (2.9)

With the use of the equipartition rule of energy, the bulk DOF is given by

Nbulk =
2|E|
TH

=−4π r̃AV
[(n−2)ρ +np]

n−2
. (2.10)

Note that (n−2)ρ +np < 0, since Nbulk > 0.
The surface DOF can be identified as in Ref. [8] by

Nsur = α
A

Ln−1
p

, (2.11)
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where α = (n− 1)/2(n− 2). The inclusion of the coefficient α is necessary to attain the correct
identification with the Newton constant in the higher dimensional case [8]. Eq. (2.8) can then be
written as

dV
dt

= L̃n−1
p (Nsur−Nbulk), (2.12)

where L̃p is defined by
L̃n−1

p ≡ Ln−1
p /α.

This is the relation that used in Ref. [2] to derive the Friedmann equation in the (n+1)-dimensional
flat Einstein case. Note that in the (3+1)-dimensional case, α = 1 and L̃p = Lp, and thus we recover
the relation (1.1) that Padmanabhan conjectured.

Now, we will perform the same analysis in the Gauss-Bonnet and Lovelock gravity cases.
First, we consider the Gauss-Bonnet case. Recall that the apparent horizon and volume are

given by the same formulas as in the Einstein case. The Friedmann equations for the Gauss-Bonnet
gravity are given by [6]:

H2 +
k
a2 + α̃

(
H2 +

k
a2

)2

=
16πLn−1

p

n(n−1)
ρ, (2.13)

(
Ḣ− k

a2

)[
1+2α̃

(
H2 +

k
a2

)]
+

(
H2 +

k
a2

)[
1+ α̃

(
H2 +

k
a2

)]
= −

8πLn−1
p

n(n−1)
[(n−2)ρ +np], (2.14)

where α̃ = (n−2)(n−3)α .
For the flat case (k = 0), the rate of the volume change (2.7) is given by

dV
dt

=
Ln−1

p

(1+2α̃ r̃−2
A )

(
A(1+ α̃ r̃−2

A )

Ln−1
p

+
8π r̃AV
n−1

[(n−2)ρ +np]

)
. (2.15)

In the above we used the Friedmann equation (2.14) with k = 0. The bulk DOF is given by the
same formula as in the Einstein case:

NGB
bulk =−4π r̃AV

[(n−2)ρ +np]
n−2

. (2.16)

If we use the same ansatz for the surface DOF as in Ref. [2],

NGB
sur =

A(1+ α̃ r̃−2
A )

L̃n−1
p

, (2.17)

then Eq. (2.15) can be expressed as

dV
dt

=
L̃n−1

p

(1+2α̃ r̃−2
A )

(NGB
sur−NGB

bulk). (2.18)
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This is still different from Padmanabhan’s relation (1.1) by the factor (1+2α̃ r̃−2
A )−1. To deal with

this, the effective volume related to the effective area, which has been used to deal with the entropy
of black holes in the Gauss-Bonnet gravity case, was introduced in [2]:

Ã = A
(

1+
n−1
n−3

2α̃ r̃−2
A

)
. (2.19)

The effective volume can be obtained using the relation dṼ/dÃ = r̃A/(n−1). In this way, one can
get the relation

dṼ
dt

= L̃n−1
p (NGB

sur−NGB
bulk), (2.20)

which was used in Ref. [2] in the Gauss-Bonnet case. However, there is a catch in this derivation;
in the above equation, on the right-hand side the plain ordinary volume was used for the bulk DOF
(2.16), but on the left-hand side the effective volume was used to calculate the rate of volume
change.

In order to avoid the above discrepancy, Ref. [3] used a severely modified version of Pad-
manabhan conjecture. Now we derive this modified version from the Friedmann equation. Here,
the bulk and surface DOFs are the same as in the flat Einstein case which are given by (2.10) and
(2.11). Then, it is easy to show that the rate of volume change (2.15) can be written as

dV
dt

= Ln−1
p

(Nsur−Nbulk)/α + α̃K(Nsur/α)1+ 2
1−n

1+2α̃K(Nsur/α)
2

1−n
, (2.21)

where K = (nΩn/Ln−1
p )2/(n−1). Indeed Eq. (2.21) is the modified version used in Ref. [3].

Next we consider the Lovelock gravity [9] case. The spacetime can be described by the same
metric (2.1) as in the Gauss-Bonnet case. The Friedmann equations in the Lovelock gravity are
given by [6]:

m

∑
i=1

ĉi

(
H2 +

k
a2

)i

=
16πLn−1

p

n(n−1)
ρ, (2.22)

(
Ḣ− k

a2

) m

∑
i=1

iĉi

(
H2 +

k
a2

)i−1

+
m

∑
i=1

ĉi

(
H2 +

k
a2

)i

=−
8πLn−1

p

n(n−1)
[(n−2)ρ +np], (2.23)

where m = [n/2] and the coefficients are given by

ĉ1 = 1, ĉi = ci

2m

∏
j=3

(n+1− j) for i > 1. (2.24)

For the flat case (k = 0), the rate of volume change (2.7) is given by

dV
dt

=
Ln−1

p

∑
m
i=1 iĉir̃

2(1−i)
A

(
A∑

m
i=1 ĉir̃

2(1−i)
A

Ln−1
p

+
8π r̃AV
(n−1)

[(n−2)ρ +np]

)
, (2.25)
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and the bulk DOF is the same as in the Einstein case,

NL
bulk =−4π r̃AV

[(n−2)ρ +np]
n−2

. (2.26)

If we use the same ansatz for the surface DOF as in Ref. [2],

NL
sur =

A
L̃n−1

p

m

∑
i=1

ĉir̃
2(1−i)
A , (2.27)

then Eq. (2.25) can be written as

dV
dt

=
L̃n−1

p

∑
m
i=1 iĉir̃

2(1−i)
A

(NL
sur−NL

bulk). (2.28)

Here again, we introduce the effective volume related to the effective area, as in [2],

Ã = A
m

∑
i=1

i(n−1)
(n−2i+1)

ĉir̃
2(1−i)
A . (2.29)

Using the relation dṼ/dÃ = r̃A/(n−1), Eq. (2.28) can then be written as

dṼ
dt

= L̃n−1
p (NL

sur−NL
bulk). (2.30)

This is just the relation used in Ref. [2] in the Lovelock case. However, this derivation has the same
problem as in the Gauss-Bonnet case; on the right-hand side the plain ordinary volume was used
for the bulk DOF (2.26), but on the left-hand side the effective volume was used to calculate the
rate of volume change.

To avoid this discrepancy, the same bulk and surface DOFs as in the flat Einstein case, Eqs. (2.10)
and (2.11), were used in Ref. [3]. With these relations one can easily show that the rate of volume
change (2.25) can be written as

dV
dt

= Ln−1
p

(Nsur−Nbulk)/α +∑
m
i=2 c̃iKi(Nsur/α)1+ 2(i−1)

1−n

1+∑
m
i=2 ic̃iKi(Nsur/α)

2(i−1)
1−n

, (2.31)

where Ki = (nΩn/Ln−1
p )2(i−1)/(n−1). This is indeed the modified version used in Ref. [3] in the

Lovelock case.

3. Emergence of cosmic space for a non-flat FRW universe

Now, we check Padmanabhan’s conjecture in the non-flat (3+1)-dimensional case.
The invariant volume of the space enclosed by the apparent horizon r̃A for the (3+1)-dimensional

non-flat FRW universe is given by

Vk = 4πa3
∫ r̃A/a

0

r2
√

1− kr2
dr, (3.1)
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where k =±1. In the limit k→ 0, Vk becomes 4π r̃3
A/3.

Extension to the non-flat case was first done in [4]. However, the aerial volume V = Ωnr̃n
A was

used there instead of the proper invariant volume given above. Thus in Einstein gravity, with the
rate of volume change (2.7), the Friedmann equation (2.6), the relation (2.3), and by adopting the
same definitions of the bulk and surface DOFs as in the flat case, and from Eqs. (2.10) and (2.11),
one can easily check that the rate of volume change is given by

dV
dt

= L̃n−1
p Hr̃A(Nsur−Nbulk), (3.2)

where V = Ωnr̃n
A. This is just the modified version that was used in [4] for the non-flat Einstein

case.
For the Gauss-Bonnet and Lovelock theories, the same tactic as in Ref. [2] was adopted. Using

the same volume as in the Einstein case and with the aid of the Friedmann equations (2.14) and
(2.23), the rates of volume change in the Gauss-Bonnet and Lovelock cases are given by the RHS
of Eqs. (2.15) and (2.25), respectively, with the same additional multiplication factor, Hr̃A.

Then using the same definitions of the bulk and surface DOFs for the flat case, one can get the
rate of change of the effective volume as

dṼ
dt

= L̃n−1
p Hr̃A(NGB

sur−NGB
bulk) (3.3)

in the Gauss-Bonnet case, and

dṼ
dt

= L̃n−1
p Hr̃A(NL

sur−NL
bulk) (3.4)

in the Lovelock case. These two relations are the ones used in [4] in the Gauss-Bonnet and Lovelock
cases. Obviously these results have the same problem that plagued [2]; namely the discordance
between the effective volume for the volume change and the ordinary volume for the bulk DOF.

Finally, we will check the conjecture when the proper volume is used, and see how the mod-
ified version of [5] emerges. By applying the Friedmann equation (2.6) and with the use of the
relation (3.1), the rate of the change of the invariant volume is given by

dVk

dt
= 4π r̃2

A

( ˙̃rA

Hr̃A
−1+Hr̃A

Vk

V̄k

)
= L2

p

[ A
L2

p
Hr̃A

Vk

V̄k
+

V̄k

Vk
4π r̃A(ρ +3p)Vk

]
(3.5)

where V̄k = 4π r̃3
A/3 and A = 4π r̃2

A.
Since the bulk Komar energy in the non-flat case is given by [7]

Ek = (ρ +3p)Vk, (3.6)

the bulk DOF with the assumption of the equipartition rule of energy is given by

Nbulk =
2|Ek|
TH

=−4π r̃A(ρ +3p)Vk. (3.7)
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Here ρ +3p < 0, since Nbulk > 0. Applying the holographic principle, the surface DOF is given
by

Nsur = A/L2
p. (3.8)

Now, the rate of volume change (3.5) can be written as

dVk

dt
= L2

p

(
Hr̃A

Vk

V̄k
Nsur−

V̄k

Vk
Nbulk

)
≡ L2

p∆N . (3.9)

Here, we introduce ∆N for later use.
Obviously, the above result indicates that Padmanabhan’s conjecture does not hold in the non-

flat case if one uses the proper invariant volume. In order to sidestep this stumbling block, new
‘effective Planck length’ which is a complicated function of time was introduece in [5]. Now we
will see how this ‘effective Planck length’ is obtained.

From Eqs. (3.7) and (3.8) and using the Friedmann equation (2.6), one can write the following
relation:

Nsur−Nbulk =
4π r̃2

A
L2

p

Vk

V̄k

[( ˙̃rA

Hr̃A
−1+

V̄k

Vk

)]
≡ ∆N. (3.10)

Using this, one can now rewrite Eq. (3.9) in the following form:

dVk

dt
≡ L2

p fk(t)∆N, (3.11)

where

fk(t)≡
∆N

∆N
=

L2
p

4π r̃2
A

V̄k

Vk

(
Hr̃A

Vk
V̄k

Nsur− V̄k
Vk

Nbulk

)
(

˙̃rA
Hr̃A
−1+ V̄k

Vk

) . (3.12)

Relation (3.11) is what was used in Ref. [5], and
√

L2
p fk(t) was dubbed there as ‘effective Planck

length’. Nonetheless, due to the complicated time dependence of the function fk(t) one cannot say
that the rate of volume change is simply proportional to ∆N = Nsur−Nbulk, the crux of Padman-
abhan’s conjecture.

4. Conclusion

In this work we have shown that how Padmanabhan’s original conjecture on the evolution
of cosmic space and its modified versions in various cases can be obtained from the Friedmann
equation.

Padmanabhan’s original relation emerges without difficulty from the Friedmann equation in
the flat Einstein case. However, in the non-flat Einstein case, the Friedmann equation emerges only
when one uses the aerial volume instead of the proper volume. Furthermore, in the Gauss-Bonnet
and Lovelock cases, Padmanabhan’s conjecture has to be severely modified even for the flat case,
jeopardizing its original intention.
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In the non-flat Einstein case, a simply modified version was used at first in Ref. [4]. However,
the aerial volume was used there instead of the proper invariant volume. Tried to make up for
this shortcoming, the proper invariant volume was used in Ref. [5]. However, Padmanabhan’s
conjecture has to be modified so severely to lose its original meaning.

The idea behind Padmanabhan’s conjecture that the expansion of the universe is being driven
towards holographic equipartition seems quite reasonable and very attractive. Nevertheless, our
analysis shows that the conjecture is applicable to the non-flat case only when the aerial volume is
used in Einstein gravity.

On the other hand, if we assume that Padmanabhan’s conjecture is right, then we may interpret
this result as follows. The (spatial) flatness of our universe is dictated by the holography of nature,
since Padmanabhan’s conjecture whose backbone is holography is only compatible with (spatially)
flat geometry.
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