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The lore paradigm for solving so-called horizon and flatness problems in cosmology is the primor-
dial inflation. Plethora of inflationary models have been built in last decades and first esperimental
probes seem to appear in favor of the inflationary paradigm. We will focus here on one of them,
the Higgs inflation, and show the combined constraint required for such a model at cosmological
as well as gravitational scales, i.e. for compact objects. We will show that Higgs inflation model
gives rise to particlelike solutions around compact objects, dubbed Higgs monopoles, character-
ized by the nonminimal coupling parameter as well as the mass and the compactness of the object.
For large values of the nonminimal coupling constant and specific compactness, the amplitude of
the Higgs field inside the matter distribution can be arbitrarily large.
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1. Introduction

If we look at the Universe history, we notice a series of puzzling mysteries like coincidence is-
sues, dark matter effects and fine-tuning of the initial conditions in the primordial Universe. Such
features cannot be explained satisfactorily by general relativity (GR) and standard model of par-
ticle physics (SM). On the other hand, GR and SM have never been faulted by observations and
experiments as well. In order to encompass these issues, plethora of modified gravity models like
scalar-tensor theories, f (R), massive gravity and extra dimensions, have been built in last decades.
Such GR modifications are a dangerous business since deviations from GR are rather well con-
strained: in the solar-system, e.g. by Cassini probe, at astrophysical scales, e.g. through binary
pulsars observations, and thanks to experimental tests like torsion balance. So, modified gravity
models have to pass all these constraints. We will focus here on a scalar-tensor theory, the Higgs
inflation [1], and we will show that Higgs distribution around compact objects predicted by this
theory is non trivial and and that it leads to an amplification mechanism of the scalar charge.

Higgs inflation is appealing since we know that the Higgs field is a fundamental scalar field
ruling the inertial mass of elementary particles and as such it could be a partner of the metric in
scalar-tensor theory of gravitation. This idea is not new: first inflationary models assumed that
the Higgs field could be the inflaton. However, when introducing Higgs field in cosmology, some
simplifications have been assumed so far. First, cosmologists always assume that Higgs field can
be written in the unitary gauge, i.e.

φ(x) =
1√
2

(
0

v+h(x)

)
,

where v is the vacuum expectation value (vev) of the Higgs field φ and h is the excitation
around the vev, while we cannot safely assume such a propertie in modified gravity models [2, 3].
Furthermore, up to now, no coupling have been considered between the Higgs and matter fields,
like baryonic matter surrounding compact objects. Such a coupling, appearing in SM through the
Yukawa terms, lead to a weak equivalence principle breaking in Higgs inflation.

In the following, we will focus on observational constraint of Higgs inflation in cosmology,
thanks to CMB observations by Planck, and in astrophysics. We will show that Higgs inflation
predicts particlelike solutions around compact objects, which we dubbed Higgs monopoles [4, 5]
since it consists in isolated compact objects charged under the Higgs field.

2. Cosmological constraints on Higgs inflation

As mentioned previously, minimally coupled Higgs field to gravity was considered in very early
inflationary model, the action being given by

S =
∫

d4x
√
−g
[

R
2κ
− 1

2
(∂φ)2−V (φ)

]
, (2.1)

where R is the Ricci scalar, φ is the Higgs field in unitary gauge, κ = 8π/m2
p, mp being the

Planck mass, and V is the Higgs potential coming from the SM,
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V (φ) =
λ

4
(
φ

2− v2)2
, (2.2)

where the vev v = 246 GeV and the self-coupling parameter λ ∼ 0.1 come from SM. The
scalar field rolls slowly down its potential like for usual inflationary models. Unfortunately, this
model is not viable since it does not give rise to a sufficient e-folds number for solving the horizon
and flatness problems. Therefore, the idea that Higgs field can be the inflaton has been considered
in the framework of modified gravity [1],

S =
∫

d4x
√
−g

[
R

2κ

(
1+

ξ φ 2

m2
p

)
− 1

2
(∂φ)2−V (φ)

]
, (2.3)

ξ being the nonminimal coupling parameter. The nonminimal coupling leads to a flattening of
the effective potential Veff defined by

�φ =−dVeff

dφ
with Veff =−V +

ξ φ 2R
16π

, (2.4)

so Higgs inflation is a viable model, provided that ξ > 104 for appropriate slow-rolling of
the field during inflation. It appears to be favoured by Planck data [6] and is however ruled out
by controversial BICEP2 experiment results since no tensor modes are generated [7]. In the next
section, we will study the same model at astrophysical scales in order to conclude if such a deviation
from GR passes astrophysical tests of gravity.

3. Higgs monopole solutions

In order to study the Higgs distribution around compact objects like the Sun, neutron stars and black
holes, predicted by Higgs inflation, we study the same model in a static and spherically spacetime,
i.e. in Schwarzschild coordinates. In the minimally coupled case, the Higgs field is settled to its vev
everywhere, a solution which is unrealistic since it would require strict homogeneity everywhere.
We start from the same action (2.3)

S =
∫

d4x
√
−g

[
R

2κ

(
1+

ξ φ 2

m2
p

)
− 1

2
(∂φ)2−V (φ)

]
+Smat

[
ψm,gµν

]
, (3.1)

where we only added Smat which describes baryonic matter fields ψm which constitute the com-
pact object. In the following, we will assume a top-hat density profile for matter fields for the sake
of simplicity. We also introduce a convenient notation, φ(x) = mpṽh(x) with ṽ the dimensionless
vev and h, the deviation of the Higgs field around the vev.

Before deriving the numerical solution, let us take a look at the effective dynamics. During
inflation, the Higgs field rolls slowly down its effective potential from high energy values and
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stabilizes at its vev during reheating. The scalar field dynamics is given by the Klein-Gordon
equation (2.4) for a Friedmann-Lemaître-Robertson-Walker spacetime, i.e.

d2h
dt2 +

3
a

da
dt

dh
dt

=
dVeff

dh
. (3.2)

with a(t), the scale factor. The role of the nonminimal coupling consists in flattening the ef-
fective potential, so the e-folds number is now sufficient to solve both horizon and flatness problem
provided that ξ > 104.

For a static and spherically symmetric spacetime, the Klein-Gordon equation becomes

h′′−h′
(

λ
′−ν

′− 2
r

)
= −dVeff

dh
, (3.3)

where a prime denotes a derivative with respect to the radial coordinate, λ and ν being the
metric fields. Because of the metric signature, the effective potential seems to be inverted (see
the minus sign) with respect to the cosmological case. We plot the effective potential on Fig.1.
We see that the effective potential differs in the interior and the exterior of the compact object
because of the presence of matter (cf. the Ricci scalar R appearing in Veff). The Higgs field has to
stabilize at its vev at spatial infinity since it is its observed value in vacuum, which is a maximum
of the effective potential in the static case. Actually, the vev is the only asymptotic possible value
since it guarantees that the Higgs potential vanishes at spatial infinity and so, the spacetime is
asymptotically flat and the solution of finite energy. We have to find a solution which interpolates
between a value at the center of the compact object hc and the vev at spatial infinity. If we now
look at the solution inside the compact object, we see that if hc > hin

eq, then the solution diverges
and the distribution cannot interpolate between hc and the vev. On the other hand, if hc < hin

eq, the
Higgs field tends to oscillate around h = 0, a solution which is not satisfactory since the potential
does not vanish at spatial infinity. So, we have to find out a solution between both these regimes.
Notice that the presence of baryonic matter inside the compact object is essential in the presence of
the nonminimal coupling since, then, the effective potential differs inside and outside the compact
objects. In the absence of matter, the only solution is the GR one: h = 1 everywhere.

On Fig.2, we plot the numerical Higgs profile around a compact object. This solution is the
only one which is globally regular, of finite energy and asymptotically flat and which converges to
the vev at spatial infinity, i.e. a particlelike solution. It is more realistic than the GR one, since it is
no more homogeneous. The family of particlelike solution is labelled by the nonminimal coupling
parameter, the compactness s, i.e. the ratio of the Schwarzschild radius and the body radius and
the baryonic mass of the compact object m. We recover the dynamics predicted by the effective
dynamics: if h(0) > hc, the Higgs field diverges at spatial infinity while if h(0) < hc, it oscillates
around h = 0.
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h=1

Figure 1: Effective dynamics associated to
Higgs monopole: the effective potential dif-
fers inside (solid line) and outside (dasehd
line) the compact object. Equilibrium points
are labelled hin

eq and hout
eq respectively [5].
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Figure 2: Higgs field distribution around a
compact object of compactness s = 0.75 and
mass m = 106 kg for various central values of
the Higgs field. Monopole solution is plotted
in blue and interpolates between hc and v [5].

We notice that mass and compactness of monopole plotted on Fig.2 do not correspond to a
physical object. Actually, we can show that it is not possible to find a combination of physical
parameters which gives rise to a monopole solution [5] for SM potential parameters. Indeed, for
astrophysical objects, hc −→ 1, so we observe no deviation from GR even for large ξ . This is
due to a kind of "hierarchy" between the vev and the Planck scale. In conclusion, Higgs inflation
predicts Higgs monopole solutions around compact object which are a unique solution depend-
ing on parameters ξ , s and m, different than GR however compatible with current astrophysical
observations.

Monopole solutions exhibit also an amplification mechanism of hc [5]. On Fig.3, we notice
that there exists a critical nonminimal coupling for which hc becomes arbitrarily large for some
compactness - or equivalently for some body radii - the mass being fixed. This is due to the
symmetry h∞ =±1. Indeed, for the first branch of the solution, hc > 0 induces that h∞ =+1 while
for the second branch, hc < 0⇒ h∞ =+1. Such divergencies in the solution lead to a constraint on
ξ : there exist forbidden compactnesses - or equivalently body radii - where no monopole solution
exist, and so, no solution at all. For larger ξ , more and more forbidden compactnesses appear.

4. Conclusion

In summary, we highlight that scalar-tensor theories like Higgs inflation exhibit a new particlelike
solution around compact objects. The monopole solution requires the presence of a potential for the
scalar field and the presence of baryonic matter. However, we observe negligible deviations from
GR because of the difference between the Planck and the vev scale. Furthermore, we highlight a
general amplification mechanism of the scalar field value at the center of the compact object which
leads to forbidden Higgs monopole compactnesses (or radii).
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Figure 3: Higgs field values at the cen-
ter of the compact object (m = 103 kg) in
function of the compactness. Divergencies
appear upper a critical value of nonmin-
imal coupling: ξ = 64.6 (solid line) and
ξ = 64.7 (dasehd line) [5].

Several open questions are still to be developed.
Higgs field in scalar-tensor theories has been studied
with some simplifications so far: we should consider
an explicit coupling between the Higgs field and mat-
ter like Yukawa terms of SM and generalize our results
for other gauge than the unitary one. Another crucial
question is the stability of the monopole. We know
the only possible solutions are the monopole ones since
they are of finite energy, but we have no idea if this so-
lution is stable nor if they could form during a gravita-
tional collapse process. Eventually, we can generalize
the monopole results to various potentials and nonmin-
imal couplings appearing in the framework of modified
gravity.

Acknowledgments

All computations were performed at the "Plate-forme
technologique en calcul intensif" of UNamur (Bel-
gium) with the financial support of the FRS-FNRS and
S.S. is a FRIA Research Fellow.

References

[1] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and
generalisations, JHEP 1101 (2011) 016, [hep-ph/1008.5157]; F. L. Bezrukov, A. Magnin and
M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88,
[hep-ph/0812.4950]; F. L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as
the inflaton, Phys. Lett. B 659 (2008) 703, [hep-th/0710.3755]; R. Fakir and W. G. Unruh,
Improvement on cosmological chaotic inflation through nonminimal coupling, Phys.Rev. D 41, 1783
(1990).

[2] M. Rinaldi, The dark aftermath of Higgs inflation, Eur. Phys. J. Plus 129 (2014) 56;
[gr-qc/1309.7332]; M. Rinaldi, Inflation, Dark Energy and the Higgs,
[astro-ph.CO/1404.0532].

[3] R. N. Greenwood, D. I. Kaiser and E. I. Sfakianakis, Multifield Dynamics of Higgs Inflation, Phys.
Rev. D 87, 064021 (2013) [hep-ph/1210.8190].

[4] A. Füzfa, M. Rinaldi and S. Schlögel, Particlelike distributions of the Higgs field nonminimally
coupled to gravity, Phys. Rev. Lett. 111, 121103 (2013). [gr-qc/1305.2640].

[5] S. Schlögel, M. Rinaldi, F. Staelens and A. Füzfa, Particlelike solutions in modified gravity: the Higgs
monopole, Phys. Rev. D 90, 044056 (2014) [gr-qc/1405.5476].

[6] P.A.R. Ade et al. [Planck Collaboration], Planck 2013 results. XXII. Constraints on inflation,
[astro-ph.CO/1303.5082]

[7] J. Martin, C. Ringeval and V. Vennin, Encyclopedia Inflationaris, Phys. Dark Univ. (2014)
[astro-ph.CO/1303.3787].

6


