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In this work, we consider the combined action of torsion and magnetic field on the massive spinor
field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor
has two components. The equations have mixed terms between the two components. The torsion
field is described by the field Sµ . The main purpose of the work is to get an explicit form to
the equation of motion that shows the possible interactions between the external fields and the
spinor in a Hamiltonian that is independent to each component. We consider that S0 is constant
and is the unique non-vanishing term of Sµ . This simplification is taken just to simplify the
algebra, as our main point is not to describe the torsion field itself. We perform the Exact Foldy-
Wouthuysen transformation and a transformed Hamiltonian that describes a half spin field in the
presence of electromagnetic and torsion external fields is presented. We get an explicit form to the
equation of motion that shows the possible interactions between the external fields and the spinor
in a Hamiltonian that is independent to each component. In order to get a possible experimental
perspective, we perform the calculation of the bound state in the last part of the work.
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1. Introduction

Our starting point is the action of a Dirac fermion theory, including the complete set of
CPT-Lorentz symmetry breaking terms presented in [1]. In order to condense the text we do not
present this action here. In such work the authors present a complete table which contains the
80 cases of CPT-Lorentz violating terms in the modified Dirac equation that admits Exact Foldy
Wouthuysen Transformation (EFWT) [2, 3]. However, in the present work we are interested only
in the torsion field case and we shall perform, in this situation, the corresponding EFWT as well as
the calculation of the equations of motion and the bound state. The corresponding Hamiltonian is
given by the following relation

H = c−→α ·−→p − e−→α ·−→A +η1γ5S0 +mc2β . (1.1)

Here we used notations Aµ = (Φ,A) and Sµ = (S0,S). We consider the magnetic and torsion
fields which can only vary with time, but do not depend on the space coordinates. As one can
check, the Hamiltonian described by (1.1) obeys the relation JH +HJ = 0. Such relation is a
condition to perform EFWT [2, 3, 4]. The quantity J is known as the involution operator. For the
sake of completeness, we detach that relation (1.1) does not contain a term of the kind η1

−→α −→S γ5

which represents the Dirac field interaction with the vector torsion part. It is possible to note that
with this additional term the corresponding Hamiltonian would not obey the above mentioned anti
commutation relation. However the main point in discarding the Si-term is the fact that we are
interested in finding the possible experiment by the bound state (see [5]) that would enable the
measure of this field. Therefore, the S0 part of torsion can describe the interaction with the Dirac
particle.

Furthermore, due to the weakness of the torsion field, we are really interested only in the linear
order in torsion while the magnetic field should be treated exactly. For this reason we consider that
S0 is constant and is the unique non-vanishing term of Sµ .

2. Exact Foldy-Wouthuysen transformation for scalar Torsion

Now, according to the standard prescription [2], the next step is to obtain H2. Direct
calculations give the result

H2 = (c−→p − e−→A −η1
−→Σ S0)

2 +m2c4 + h̄ce−→Σ ·−→B . (2.1)

In order to get the transformed Hamiltonian Htr we rewrite H2 as H2 = A2 +B with A being
m-dependent terms in H2 and B the ones that do not depend on mass. In this case we present
A = mc2. Then, we search for an operator K in the form

K = A+
1
A

K1 +K1
1
A
+ϑ(

1
A2 ) , (2.2)

such that K2 = A2. Finally, using (2.1) and the fact that

Htr = UHU∗ = β [
√

H2]EV EN + J[
√

H2]ODD , (2.3)
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where the even (odd) terms in (2.3) are the ones that commute (anti-commute) with the matrix β ,
we get

Htr = βmc2 +
β

2mc2 (c
−→p − e−→A −η1

−→Σ S0)
2 + β

h̄e
2mc

−→Σ ·−→B −β
(η1)

2

mc2 (S0)
2 . (2.4)

The next step is to present the Dirac fermion ψ in the bi-spinor (described by φ and χ) form
with the kinetic term −imc2 h̄−1 t and use the equation ih̄∂tψ = Hψ to derive the Hamiltonian
for the two-spinor φ . Inserting the first into the second, we obtain the two-component equation.
Using the fact that the transformed Hamiltonian is an even function, we obtain, in the φ sector, the
nonrelativistic Hamiltonian

Htr
φ =

1
2m

(
−→Π)2 +B0 +

−→σ ·−→Q ,

−→Π =−→p − e
c
−→A − η1

c
S0
−→σ , B0 =−(η1)

mc2

2

(S0)
2 ,

−→Q =
h̄e

2mc
−→B . (2.5)

The expressions above are exactly the same as derived in [6] and in [7] through the usual perturba-
tive Foldy-Wouthuysen transformation.

One can also perform the canonical quantization of the theory in a way similar to [6]. In order
to do this we introduce the operators of coordinate x̂i, momenta p̂i and spin σ̂i and implement the
equal-time commutation relations of the following form

[x̂i, p̂ j] = ih̄δi j , [x̂i, σ̂ j] = [p̂i, σ̂ j] = 0 , [σ̂i, σ̂ j] = 2iεi jkσ̂k . (2.6)

The Hamiltonian operator Ĥ which corresponds to the energy (2.5) is easily constructed in terms
of the operators x̂i, p̂i, σ̂i and then these operators yield the equations of motion

ih̄
dx̂i

dt
= [x̂i,H] , ih̄

d p̂i

dt
= [p̂i,H] , ih̄

dσ̂i

dt
= [σ̂i,H] . (2.7)

The straightforward calculations lead to the equations 1

dxi

dt
=

1
m

(
pi −

e
c

Ai −
η1

c
σiS0

)
= vi ,

d pi

dt
=

1
m

(
p j − e

c
A j − η1

c
σ jS0

) e
c

∂A j

∂xi ,

dσi

dt
=
[−→R ×−→σ

]
i

,
−→R =

2η1

h̄

[
−1

c
−→v S0

]
+

e
mc

−→B . (2.8)

Using the first and second of equations (2.8) it is possible to obtain

m
dvi

dt
=−e

c
∂Ai

∂ t
+

e
c

[
−→v ×−→B

]
i
− η1

c
σi

∂S0

∂ t
− η1

c
S0

dσi

dt
. (2.9)

This equation is the correction to the very well known expression or the Lorentz force. Un-
fortunately, it doesn’t show us an explicit interaction between the torsion and electromagnetic field
(as for the gravitational waves, for example, [8]), the last two terms in the right hand side of the
equation shows the possible interaction of scalar field torsion with the Dirac particle.

1At this point we can omit all the terms which vanish when h̄ → 0.
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3. Possible experimental tests

The main point in the experimental tests involving torsion field is the weakness of the this
external field. A natural question arises here. Is it possible to get a torsion field experimental data?
In order to get some indication about the possibility of such experimental data it is necessary to
know, first of all, the bound state of this theory [9]. Such bound gives an indication about which
atomic experiment should be performed in order to get possible measurements of the space time
torsion field. In order to calculate the bound state, the starting point is the transformed Hamiltonian,
given by the equation (2.5).

In order to calculate the bound state associated with the torsion field in the Dirac Theory, let
us take into account the Lorentz violating potential V , which obeys the relation presented in [5],
that is V = −b̃ jσ j, where σ represents the spin matrices. After some algebra, one can write the
corresponding bound in the following way

b̃ j = b j +
eh̄

2mc
B j −

η1S0

mc

(
p j −

e
c

A j

)
. (3.1)

The bound in the last equation enables us to consider the possibility about getting an indication
of possible atomic experiments on the table presented in [5].

4. Conclusions and discussions

The EFWT was here considered and performed in the context of all the scalar torsion field,
in the Dirac equation. The first result of the work is given by the equation (2.4), which presents the
diagonal transformed Hamiltonian, for this case. We also derived the semi-classical equations of
motion for x̂i, p̂i and σ̂i. We have shown that it is possible to combine equations of motion to get a
generalized Lorentz force corrected by the scalar Torsion term, given by the equation (2.9).

In the last section we have highlighted that the bound state equation is important in order to
get a better understanding about which kind of atomic experiments should be performed in order
to try to measure the possible modification in the physical trajectory of the Dirac particle that the
interaction with torsion could possible cause.
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