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A substantial off-shell Higgs boson signal in the gluon fusion and vector boson fusion H → ZZ

and H → WW channels at the Large Hadron Collider (LHC) facilitates a novel, complementary

approach to constraining the total Higgs width ΓH . With LHC Run 1 data, experimental analyses

by CMS and ATLAS find ΓH < 5.4ΓSM
H and ΓH < [4.5,7.5]ΓSM

H at 95% confidence level, respec-

tively, where ΓSM
H is the expected value in the Standard Model at the measured Higgs boson mass.

I review the theoretical basis of the new approach and discuss its significance in comparison to

other methods to bound and measure the Higgs width at the LHC and future colliders.
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1. Introduction

The fundamental particle predicted by the Standard Model (SM) Higgs mechanism [1], i.e. the

Higgs boson, was discovered at the LHC in 2012 [2]. A thorough examination has since taken place

and its properties have been found to be in agreement with theoretical expectations. No compelling

deviations from the SM have been discovered so far. An important property of the Higgs boson

is its total decay width, with a predicted SM value of ΓSM
H ≈ 4 MeV, which is more than two

orders of magnitude smaller than the experimental Higgs mass resolution at the LHC, which is of

order 1 GeV. At the LHC, any direct Higgs width measurement via the resonance shape is thus

limited to an uncertainty of ∆ΓH ∼ 1 GeV.1 Since the resonant (“on-peak”) Higgs cross section

depends on ΓH , the Higgs couplings and width cannot be determined independently at the LHC

without relying on theoretical assumptions [4,5]. For instance, in models without triplett or higher

SU(2) representations an upper limit for the HWW or HZZ coupling exists and an upper bound

for the Higgs width can be obtained that is of the order of the SM Higgs width [6, 7]. Assuming

no beyond-SM (BSM) Higgs decays, and suggestive Higgs coupling parameterisations, one can fit

the Higgs width to data and finds similar agreement with ΓSM
H [8–12]. At a future e+e− collider,

a largely model-independent indirect determination of the Higgs width will be possible, with a

predicted accuracy of 5–10% at the International Linear Collider [12–14]. A future muon collider

could permit a direct Higgs width measurement via threshold scan with an estimated accuracy

of 4–9% [15]. Two novel, complementary methods to constrain the Higgs width at the LHC are

reviewed in Section 2.

2. Off-shell Higgs signal enabled total width determination at the LHC

The existence of a substantial off-shell Higgs boson signal in the gluon fusion H → ZZ and

H →WW channels at the LHC was first pointed out in Ref. [16].2 In Fig. 1, representative graphs

for the Higgs signal and continuum background processes are shown as well as MVV distributions

that show the enhanced off-shell Higgs signal, which constitutes an O(5–10%) correction to inclu-

sive gg → H →VV production in narrow-width approximation (NWA). With typical experimental

LHC selection cuts this correction increases to O(10–20%). Also shown in Fig. 1 is the sizeable

signal-background interference in the off-shell region, which facilitates unitarity at high energies

and has been calculated in Refs. [16, 18–25]. Note that the interfering gg → VV continuum back-

ground at LO is formally part of the NNLO corrections to pp →VV [26, 27].

A proposal to exploit the Higgs width independence of the off-shell Higgs signal in order to

break the NWA scaling degeneracy

σi→H→ f
NWA
∝

g2
i g2

f

ΓH

, σ invariant if gi → ξ gi, g f → ξ g f , ΓH → ξ 4 ΓH

of the on-peak Higgs signal in gg → H → ZZ → 4ℓ was first made in Ref. [28], which also pro-

vided a proof-of-concept phenomenological analysis which suggested that Higgs width constraints

of ΓH < [20,38]ΓSM
H are feasible. A more detailed phenomenological analysis was subsequently

1For instance, Ref. [3] finds ΓH < 3.4 GeV at 95% confidence level (CL).
2The significance of the off-shell H →VV signal at a linear collider is discussed in Ref. [17].
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Figure 1: Representative Feynman graphs for the gg → H → VV signal process (left) and the qq̄- (centre)

and gg-initiated (right) continuum background processes at LO as well as MVV distributions that show the

enhanced off-shell Higgs signal and sizeable Higgs-continuum interference (from [16]).

S
D

5 4 3 2 1 0 1 2 3 4 5

S
 /

 d
 D

σ
d

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

=10)4ξ (
H

σ

 
C

σ

=10) 4ξ  (
H+C

σ

Figure 2: Results of a detailed phenomenological study of the off-shell Higgs width constraint approach

(from [29]).

carried out in Refs. [29, 30], which optimized the sensitivity of the method by exploiting the full

differential cross section information using the Matrix Element Method [31] (see Fig. 2). After

these phenomenological studies, CMS [32] (see Fig. 3) and ATLAS [33] (see Fig. 4) carried out

full experimental simulations which also took into account the 2ℓ2ν final state, vector boson fu-

sion contributions and higher-order corrections. CMS and ATLAS thus found ΓH < 5.4ΓSM
H and

ΓH < [4.5,7.5]ΓSM
H at 95% CL, respectively. More recently, theorists have demonstrated that

the ZZ+jet channel can be used to improve the obtained constraints [34]. That the off-shell Higgs

width constraint approach is a priori model dependent was first pointed out in Ref. [35] and has

been further studied in Refs. [36, 37].
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Figure 3: CMS study of off-shell Higgs width constraint approach (from [32]).
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Figure 4: ATLAS study of off-shell Higgs width constraint approach (from [33]).

More generally, the off-shell H →VV signal can be used to disentangle degeneracies in para-

metric BSM studies or constrain higher dimensional operators in effective field theory (EFT) stud-

ies [36,38–43]. For instance, Refs. [40,41,43] analyse SM deviations of the effective ggH and Htt̄

coupling strengths in an EFT approach:

L =−ct

mt

v
t̄th+

g2
s

48π2
cg

h

v
GµνGµν

Mgg→ZZ = Mh +Mbkg = ct Mct
+ cg Mcg

+Mbkg

One has: σ ∼ |ct +cg|2. The on-peak degeneracy ct +cg = const is broken by off-shell data. Results

of Ref. [41] are shown in Fig. 5.

An alternative method to constrain the total Higgs width was proposed in Ref. [44]. It exploits

a sizeable asymmetric signal-background interference in the gg → H → γγ channel at the LHC,

which was first pointed out and calculated at LO in Ref. [45].3 A NLO calculation and analysis

was carried out in Ref. [44] (see Fig. 6). This method is expected to yield competitive Higgs width

constraints with 3 ab−1 of LHC14 data.

3Signal-background interference and mass peak shift effects in the qg and qq̄ channels have been analysed at LO in

Refs. [46, 47].
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LHC 8 TeV CMS data LHC 14 TeV 3 ab−1 data

Figure 5: Constraints in (ct ,cg) plane: 68%, 95% and 99% probability contours are shown (from [41]).
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Figure 6: Signal-background interference enabled Higgs width constraints in gg → H → γγ (from [44])

3. Conclusions

Two novel, complementary methods to constrain the total Higgs width at the LHC have been

reviewed. The first method relies on the experimental sensitivity to the Higgs-width-independent

off-shell signal cross section in the gg → H → VV channels, and with LHC Run 1 data yields a

Higgs width constraint of ΓH . 5ΓSM
H . The second method relies on a sizeable asymmetric signal-

background interference in the gg → H → γγ channel that results in a Higgs mass peak shift which

is expected to yield competitive Higgs width constraints with 3 ab−1 of LHC14 data.
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