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Introduction

At the end of the sixties, last century, coming from different points of view, Kostant, Kirillov and
Souriau showed that a symplectic manifold (M,ω), homogeneous under the action of a Lie group,
is isomorphic — up to a covering — to a coadjoint orbit [Kos70] [Sou70] [Kir74]. Souriau’s proof
was based on the moment map which he introduced during the same period. Now, the group of
automorphisms Diff(M,ω) of a connected symplectic manifold1 (M,ω), is transitive on M. It is
then tempting to look for an analogous of the Kostant-Kirillov-Souriau (KKS) theorem, relative to
Diff(M,ω), even if this groups is not, strictly speaking, a Lie group.

This is what we present in this paper: considering a symplectic manifold (M,ω) and its group of
symplectomorphisms Diff(M,ω) as diffeological object, we show that the universal moment map
[Piz10] identifies the manifold M with a coadjoint orbit, linear or affine, of its group of symplec-
tomorphisms, for an extended version of the moment map involving possibly the holonomy of the
symplectic form:

THEOREM 1. — Let (M,ω) be a Hausdorff symplectic Manifold. Then the universal moment map
µω : M→ G ∗ω/Γω is a diffeomorphism onto its image, equipped with the quotient diffeology of the
group of symplectomorphisms.

The space of momenta G ∗ω , the holonomy group Γω , the universal moment map µω , are defined
always, for every diffeological space equiped with a closed 2-form, independently of their specific
nature. Their definitions are recalled in the first section below.

The idea that every symplectic manifold is a coadjoint orbit2, of its group of symplectomorphisms
(or Hamiltonian diffeomorphisms), is not new. It appeared already at an early age of symplectic
mechanics, a few decades ago. It is mentionned for example, in a functional analysis context, by
Marsden & Weinstein in their paper on Vlasov equation [MW82, Note 3, p. 398], Taken up later by
Omohundro, Weinstein’s student, in his book on geometric perturbation theory in physics [Omo86,
p. 364].

This is why it may be necessary to emphasise what makes our statement original compared with
the previous approaches of the subject. It is obviously the gain in technicalities by using diffeology
versus functional analysis, but not only. It is the role of the moment map in diffeology, for diffe-
ological groups preserving a closed 2-form, which is at the center of this construction. Let us be
more specific: there is a general consent to regard, by analogy, the moment map of Ham(M,ω) on
a symplectic manifold as the mapping that associates with each point m in M, the Dirac distribution
at m. That comes from the commonly accepted identification of the “Lie algebra” of the group of
Hamiltonian diffeomorphisms with the algebra of smooth real functions (modulo constants). In
our approach there is no freedom of choice, our results are founded on a precise axiomatic that
pre-exists the various heuristics, which are made in general to force fitting the sentence into a box.
The diffeology framework turns, by its own internal logic, heuristics into theorems.

In particular, there is no need of any presumptive Lie algebra. The moment map takes its values
directly in the vector space of left-invariant 1-form on the group of automorphisms — or its quotient

1The group of symplectomorphisms.
2Which was the original title of this paper.
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by the holonomy group — and these differential forms are defined categorically, and not by duality
with some supplemental, unnecessary3, “tangent space”. It is worth mentioning too that, building a
heuristic for the moment map of the whole group of symplectomorphisms is less easy than for the
group of hamiltonian diffeomorphisms. The diffeology way, being at the same time conceptually
more satisfactory, is easier and a rest for the mind.

Let us add also that, not only the universal moment map identifies each point of the manifold with
some momentum of the goup of symplectomorphisms, but it pushes forward the smooth structure
of the manifold onto the coadjoint orbit, for the quotient diffeology of the group of symplectomor-
phisms.

It is worth also mentioning that the theorem remains true replacing the group Diff(M,ω) by the
subgroup Ham(M,ω) of Hamiltonian diffeomorphisms, which is the biggest group of automor-
phisms that has no holonomy. In this case the moment map takes its values in H ∗

ω , the space of
momenta of Ham(M,ω).

By the way, and not less meaningful, we prove in (art. 6) a second theorem:

THEOREM 2. — The characteristics of a closed 2-form ω defined on a Hausdorff manifold M,
homogeneous under the action of Diff(M,ω), are the connected components of the preimages of
the universal moment map µω .

In that case, µω integrates the characteristic distribution m 7→ ker(ωm). This result will actually
apply to any homogeneous action of a diffeological group, and in particular to the group of Hamil-
tonian diffeomorphisms.

Again, this gives a new interpretation of a symplectic 2-form — in opposition with presymplectic
— as a homogeneous 2-form whose levels of the moment map are (diffeologically) discrete4.

We give two examples: in (art. 7) we compute a classical moment map using the techniques of
diffeology, and in (art. 8) we compute the universal holonomy for the 2-torus.

VOCABULARY. — For the sake of unification we shall call parasymplectic a general closed 2-form,
without any other condition but to be smooth. It can be defined on a manifold or on a diffeological
space. A space equipped with a parasymplectic form will be called a parasymplectic space.

Also, a parasymplectic form ω , on a diffeological space X, will be said to be presymplectic if its
pseudogroup of local automorphisms Diffloc(X,ω) is transitive on X. This is an interpretation of
the (presymplectic) Darboux theorem for manifolds, regarded as a definition in diffeology.

THANKS. — I am grateful to the Hebrew University of Jerusalem Israel, who invited me, and
where I spent the wonderful time in which I elaborated the first version of this article, a few years
ago now.

3That does not mean that there will no case in the future of diffeology where some kind of tangent space will be
useful, but in this case it is not only distracting but wrong.

4Precisely: such that there is an homogeneous action of a diffeological group with discrete level of its moment map.
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Review on the Moment Maps of a Parasymplectic Form

Let G be a diffeological group, we denote by G ∗ its space of momenta5of G, that is, the left-invariant
differential 1-forms on G,

G ∗ = {ε ∈Ω
1(G) | L(g)∗(ε) = ε, for all g ∈ G}.

Now, let (X,ω) be a parasymplectic space with a smooth action of G6, g 7→ gX on X, preserving
ω , that is, g∗X(ω) = ω for all g ∈ G. To understand the essential nature of the moment map, which
is a map from X to G ∗, it is good to consider the simplest case, and use it then as a guide to extend
this simple construction to the general case.

The Simplest Case. Consider the case where X is a manifold, and G is a Lie group. Let us assume
that ω is exact ω = dα , and that α is also invariant by G. Regarding ω , the moment map7 of the
action of G on X is the map

µ : X→ G ∗ defined by µ(x) = x̂∗(α),

where x̂ : G→ X is the orbit map x̂(g) = gX(x).

As we can see, there is no obstacle, in this simple situation, to generalize, mutatis mutandis, the
moment map to a diffeological group acting by symmetries on a diffeological parasymplectic space.
But, as we know, not all closed 2-forms are exact, and even if they are exact, they do not necessarily
have an invariant primitive. We shall see now, how we can generally come to a situation, so close
to the simple case above, that modulo some minor subtleties we can build a good moment map in
all cases.

The General Case. We consider a connected parasymplectic diffeological space (X,ω), and a
diffeological group G acting on X and preserving ω . Let K be the Chain-Homotopy Operator,
defined in [Piz13, §6.83]. We recall that K is a linear operator from Ωk(X) to Ωk−1(Paths(X))

which satisfies the property
d ◦K +K ◦d = 1̂∗− 0̂∗,

where t̂(γ) = γ(t), with t ∈ R and γ ∈ Paths(X). Then, the differential 1-form Kω , defined on
Paths(X), is related to ω by d[Kω] = (1̂∗ − 0̂∗)(ω), and Kω is invariant by G. Considering
ω̄ = (1̂∗− 0̂∗)(ω) and ᾱ = Kω , we are in the simple case: ω̄ = dᾱ and ᾱ invariant by G. We can
apply the construction above and define then the Moment Map of Paths by

Ψ : Paths(X)→ G ∗ with Ψ(γ) = γ̂
∗(Kω),

and γ̂ : G→ Paths(X) is the orbit map γ̂(g) = gX ◦ γ of a path γ . The moment of paths is additive
with respect to the concatenation,

Ψ(γ ∨ γ
′) = Ψ(γ)+Ψ(γ ′).

5I chose to call momentum (plur. momenta) the elements of G ∗.
6A smooth action of a diffeological group G on a diffeological space X is a smooth morhism ρ : G→ Diff(X),

where Diff(X) is equipped with the functionnal diffeology.
7Precisely, one moment map, since they are defined up to a constant.
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This paths moment map Ψ is equivariant by G, acting by composition on Paths(X), and by coad-
joint action on G ∗. Next, defining the Holonomy of the action of G on X by

Γ = {Ψ(`) | ` ∈ Loops(X)} ⊂ G ∗,

the Two-Points Moment Map is defined by pushing Ψ forward on X×X,

ψ(x,x′) = class(Ψ(γ)) ∈ G ∗/Γ,

where γ is a path connecting x to x′, and where class denotes the projection from G ∗ onto its
quotient G ∗/Γ. The holonomy Γ is the obstruction for the action of G to be Hamiltonian. The
additivity of Ψ becomes the Chasles’ cocycle condition

ψ(x,x′)+ψ(x′,x′′) = ψ(x,x′′).

Let Ad : G→ Diff(G) be the adjoint action, Ad(g) : k 7→ gkg−1. That induces on G ∗ a linear
coadjoint action

Ad∗ : G→ L(G ∗) with Ad∗(g) : ε 7→ Ad(g)∗(ε) = Ad(g−1)∗(ε).

Next, the group Γ is made of closed forms, invariant by the linear coadjoint action. Thus, the
coadjoint action passes to the quotient G ∗/Γ, and we denote the quotient action the same way:

Ad∗(g) : class(ε) 7→ class(Ad∗(g)(ε)).

The 2-points moment map ψ is equivariant for the quotient coadjoint action. Note that the quotient
G ∗/Γ is a legit diffeological Abelian group8

Now, because X is connected, there always exists a map

µ : X→ G ∗/Γ such that ψ(x,x′) = µ(x′)−µ(x).

The solutions of this equation are given by

µ(x) = ψ(x0,x)+ c,

where x0 ∈ X is an arbitrary point and c ∈ G ∗/Γ is any constant. But this map is a priori no longer
equivariant with respect to Ad∗ on G ∗/Γ. Its variance introduces a 1-cocycle θ of G with values in
G ∗/Γ such that

µ(g(x)) = Ad∗(g)(µ(x))+θ(g),

with
θ(g) = ψ(x0,g(x0))−∆c(g), and ∆(c) : g 7→ Ad∗(g)(c)− c

is the coboundary due to the constant c in the choice of µ . The cocycle θ defines then a new action
of G on G ∗/Γ, that is, a quotient affine action :

Adθ
∗ (g) : τ 7→ Ad∗(g)(τ)+θ(g) for all τ ∈ G ∗/Γ.

8For the quotient of the functional diffeology of G ∗ ⊂ Ω1(G) by Γ. In particular, for Lie groups, it is always a
product Rk×T`, k, ` ∈ N.

5



P
o
S
(
F
F
P
1
4
)
1
4
1

Every Symplectic Manifold Is A Coadjoint Orbit Patrick Iglesias-Zemmour

The moment map µ is then equivariant with respect to this affine action:

µ(g(x)) = Adθ
∗ (g)(µ(x)).

Note that, in particular, if G is transitive on X, then the image of the moment map µ is an affine
coadjoint orbit in G ∗/Γ.

This construction extends to the category {Diffeology}, the moment map for manifolds introduced
by Souriau in [Sou70]. The remarkable point is that none of the constructions brought up above
involves differential equations, and there is no need of considering a putative Lie algebra either.
That is a very important point. The momenta appear as invariant 1-forms on the group, naturally,
without intermediary, and the moment map as a map in the space of momenta.

The group of all automorphisms of a parasymplectic space is denoted by Diff(X,ω) or by Gω , it
is a legitimate diffeological group. The constructions above give the space of momenta G ∗ω , the
universal path moment map Ψω , the universal holonomy Γω , the universal two-points moment map
ψω , the universal moment maps µω , and the universal Souriau’s cocycles θω .

The group of Hamiltonian diffeomorphisms is denoted by Ham(X,ω) or by Hω , it is the biggest
group that has no holonomy [Piz10]. Its space of momenta and the universal moment maps objects
associated are denoted by: H ∗

ω , Ψ̄ω , ψ̄ω , µ̄ω , and θ̄ω .

A parasymplectic action of a diffeological group G is any smooth morphism h : G→ Gω . For a
Hamiltonian action, h will be with values in Hω . The various moment maps objects associated with
the actions of G, are naturally subordinate to their universal counterparts.

The Universal Moment Maps of a Symplectic Manifold

In this section we established the particular expression of the universal moment map, and associated
objects, for a parasymplectic manifold.

1. THE MOMENT MAPS FOR PARASYMPLECTIC MANIFOLDS — Let M be a connected man-
ifold equipped with a closed 2-form ω . The value of the paths moment map Ψω at the point
p ∈ Paths(M) = C∞(R,M), evaluated on the n-plot F : U→ Gω is given by

Ψω(p)(F)r(δ r) =
∫ 1

0
ωp(t)(ṗ(t),δ p(t))dt (♦)

where r ∈ U and δ r ∈ Rn, δ p denotes the lifting in the tangent space TM of the path p, defined by

δ p(t) = [D(F(r))(p(t))]−1 ∂F(r)(p(t))
∂ r

(δ r) for all t ∈ R. (♥)

NOTE 1 — Let us remind that if a differential 1-form is defined by its values on all the plots, it
is however characterized by the values it takes on the 1-plots. Moreover, any momentum of a
diffeological group is characterized by its values on the 1-plots pointed at the identity. Thus, in
order to characterize Ψ(p), it is sufficient, in the formula above, to consider F as a 1-plot pointed
at the identity, F(0) = 1M, to choose r = 0 and δ r = 1.
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NOTE 2 — The same formula (♦) gives the paths moment map associated with the group of Hamil-
tonian diffeomorphisms. For any plot F in Hω ⊂ Gω and any path p in M we have

Ψ̄ω(p)(F)r(δ r) = Ψω(p)(F)r(δ r).

Now, since by construction the holonomy of Hω is trivial, this expression gives also the values of
the 2-points moment map and we have, for any pair m,m′ ∈M

ψ̄ω(m,m′)(F) = Ψ̄ω(p)(F),

where p is a path in M such that m = p(0) and m′ = p(1). And, we get also the values of the
moment maps

µ̄ω : m 7→ ψ̄ω(m0,m)+ c,

where m0 is any base point of M and some c ∈H ∗
ω . I

Proof. By definition, Ψω(p)(F) = p̂∗(Kω)(F) = Kω(p̂◦F), where p̂ is the orbit map ϕ 7→ ϕ ◦ p,
from Gω to Paths(M). The expression of the Chain-Homotopy operator K , given in [Piz10],
applied to the plot p̂◦F : r 7→ F(r)◦ p of Paths(M) gives

(Kω)(p̂◦F)r(δ r) =
∫ 1

0
ω

[(
s
u

)
7→ (p̂◦F)(u)(s+ t)

]
(s=0

u=r)

(
1
0

)(
0

δ r

)
dt.

But (p̂◦F)(u)(s+ t) = F(u)(p(s+ t)), let us denote temporarily by Φt the plot (s,u) 7→ F(u)(p(s+
t)), then F(u)(p(s+ t)) writes Φt(s,u). Thus, by definition of differential forms, the integrand

(I ) = ω

[(
s
r

)
7→Φt(s,r)

]
(0

r)

(
1
0

)(
0

δ r

)
of the right term of this expression writes:

(I ) = Φ
∗
t (ω)(0

r)

(
1
0

)(
0

δ r

)

= ω
Φt(0

r)

(
D(Φt)(0

r)

(
1
0

)
,D(Φt)(0

r)

(
0

δ r

))

= ωF(r)(p(t))

(
∂

∂ s

{
F(r)(p(s+ t))

}
s=0

,
∂

∂ r

{
F(r)(p(t))

}
(δ r)

)
.

But,

∂

∂ s

{
F(r)(p(s+ t))

}
s=0

= D(F(r))(p(t))
(

∂ p(s+ t)
∂ s

∣∣∣∣
s=0

)
= D(F(r))(p(t))(ṗ(t)).

Then, using this expression and the fact that, for all r in U, F(r)∗(ω) = ω , we have:

(I ) = ωF(r)(p(t))

(
D(F(r))(p(t))(ṗ(t)),

∂F(r)(p(t))
∂ r

(δ r)
)

= ωp(t)

(
ṗ(t), [D(F(r))(p(t))]−1 ∂F(r)(p(t))

∂ r
(δ r)

)
= ωp(t)(ṗ(t),δ p(t)).

7
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Therefore,

Ψω(p)(F)r(δ r) := Kω(p̂◦F)r(δ r) =
∫ 1

0
ωp(t)(ṗ(t),δ p(t)) dt,

with δ p given by (♥), is the expression announced above. �

2. THE CASE OF SYMPLECTIC MANIFOLDS — Let (M,ω) be a Hausdorff symplectic manifold.
Let m0 and m1 be two points of M connected by a path p, m0 = p(0) and m1 = p(1). Let f ∈
C∞(M,R) with compact support. Let

F : t 7→ etgradω ( f )

be the exponential of the symplectic gradient of the f . Then, F is a 1-parameter group of Hω and
the Hamiltonian moment map Ψ̄ω , computed at the path p, evaluated to the 1-plot F, is the constant
1-form

Ψ̄ω(p)(F) = [ f (m1)− f (m0)]×dt,

where dt is the standard 1-form of R. I

Proof. Let us remark that, in our case, the lifting δ p defined by (♥) of (art. 1) writes simply, with
ξ = gradω( f ),

δ p(t) = [D(esξ )(p(t))]−1 ∂esξ (p(t))
∂ s

(δ s) = ξ (p(t))×δ s,

where s and δ s are real numbers. Then, the expression (♦) of (art. 1) becomes

Ψω(p)(F)s(δ s) =
∫ 1

0
ωp(t)(ṗ(t),ξ (p(t)) dt×δ s

=
∫ 1

0
ωp(t)(ṗ(t),gradω( f )(p(t)) dt×δ s

=
∫ 1

0
d f
(

d p(t)
dt

)
dt×δ s

= [ f (p(1))− f (p(0))]×δ s

We remind that, by definition, gradω( f ) = −ω−1(d f ). Now, it is clear that for all loop ` of M,
Ψω(`)(F) = 0, thus, F is a plot of Hω . And therefore, Ψ̄ω(p)(F) = Ψω(p)(F) = [ f (m1)− f (m0)]×
dt. �

The Universal Model for Symplectic Manifolds

In this section we show that every symplectic manifold is a coadjoint orbit of its group of auto-
mophisms.

3. SYMPLECTIC MANIFOLDS — Let M be a connected Hausdorff manifold. A closed 2-form ω

on M is symplectic if and only if:

1. The manifold M is homogeneous under the action of Gω .

2. The universal moment map µω : M→ G ∗ω/Γω is injective.

8
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Hence, the moment map identifies M with a (Γω ,θω)-coadjoint orbit Oω of Gω ,

µω(M) = Oω ⊂ G ∗ω/Γω .

Remember that G ∗ω/Γω is regarded here as an Abelian diffeological group.

We can replace the group of automorphisms Diff(M,ω) by the group of Hamiltonian diffeomor-
phisms Hω , and the the universal moment map µω by the universal Hamiltonian moment map
µ̄ω : M→H ∗

ω . Also, the Hamiltonian moment map µ̄ω identifies M with a θ̄ω -coadjoint orbit
Ōω of Hω , µ̄ω(M) = Ōω ⊂H ∗

ω . This is what we summarize by the sentence: Every symplectic
manifold is a coadjoint orbit.

Gω

M Oω

πM

µω

πO

On this diagram: on the left M ' Gω/St(x0), where x0 is any point in M, and πM : ϕ 7→ ϕ(x0) is
a principal fibration9 with group the stabilizer St(x0) ⊂ Gω . On the right, Oω ' Gω/St(µω(x0)),
where St(µω(x0)) is the stabilizer for the affine coadjoint action on G ∗ω/Γω , with respect to the
universal cocycle θω . The Moment Map µω being then a diffeomorphism.

EXAMPLE. — These two examples show how the two conditions above are necessary. The space
(R2,dx∧dy) satisfies theses condition and is symplectic. However, if the space (R2,(x2 + y2)dx∧
dy) has still an injective universal moment map, as one can check it easily, its group of automr-
phisms is not transitive, since (0,0) is fixed. And of course, this space is not symplectic. I

Proof. A) Let us assume that ω is symplectic, that is, nondegenerate. Then, the group Gω is
transitive on M [Boo69]. Moreover, for every m ∈M, the orbit map m̂ : ϕ 7→ ϕ(m) is a subduction
[Don84]. Thus, the image of moment moment map µω is one orbit Oω of the affine coadjoint
action of Gω on G ∗ω/Γω , associated with the cocycle θω . Hence, for the orbit Oω , equipped with
the quotient diffeology of Gω , the moment map µω is a subduction.

Now, let m0 and m1 be two different points of M such that µω(m0) = µω(m1), that is, ψω(m0,m1) =

µω(m1)− µω(m0) = 0 with m1 6= m0. Since M is connected, there exists p ∈ Paths(M) such that
p(0) = m0 and p(1) = m1. Thus, ψω(m0,m1) = class(Ψω(p)), and ψω(m0,m1) = 0 is equivalent
to class(Ψω(p)) = 0, that is, Ψω(p) ∈ Γω . Then, by definition of Γω , there exists a loop ` in M
such that Ψω(p) = Ψω(`). Without loss of generality, we can choose `(0) = `(1) = m0. Since
M is Hausdorff there exists a smooth real function f ∈ C∞(M,R), with compact support, such that
f (m0) = 0 and f (m1) = 1. Let us denote by ξ the symplectic gradient field associated to f and by F
the exponential of ξ . Thanks to (art. 2), we have Ψω(p)(F) = [ f (m1)− f (m0)]dt = dt, on the one
hand, and on the other hand Ψω(p)(F) =Ψω(`)(F) = [ f (m0)− f (m0)]dt = 0. But dt 6= 0, therefore
ψω(m0,m1) 6= 0. But, ψω(m0,m1) = µω(m1)− µω(m0), then µω(m1) 6= µω(m0) and the moment
map µω is injective. Therefore, µω is an injective subduction on Oω , that is, a diffeomorphism.

9In the category {Diffeology}.
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For the group Hω the proof is somewhat simpler.

A’) Let us assume that ω is symplectic. We know that the group of Hamiltonian diffeomorphisms
is transitive. The orbit map m̂ restricted to the group Hω is still a subduction [Don84]. Thus, M is
homogeneous under the action of Hω . Now let m0 and m1 be two different points of M. Let p be
a path connecting m0 to m1, thus µ̄ω(m1)− µ̄ω(m0) = Ψ̄ω(p). Since M is Hausdorff there exists
a smooth real function f ∈ C∞(M,R) with compact support such that f (m0) = 0 and f (m1) = 1.
Let us denote by ξ the symplectic gradient field associated to f and by F the exponential of ξ .
Thus, Ψ̄ω(p)(F) = dt by (art. 2). Hence, (µ̄ω(m1)− µ̄ω(m0))(F) = dt 6= 0 and µ̄ω(m0) 6= µ̄ω(m0).
Therefore µω is injective, that is, an injective subduction on Oω , and thus a diffeomorphism.

The proof of the converse proposition is the same considering Gω or Hω .

B) — B’) Let us assume that M is an homogeneous space of Gω and µω is injective. Let us notice
first that, since Gω is transitive, the rank of ω is constant. Thus, dim(ker(ωm)) = const. Now, let
us assume that ω is degenerate, dim(ker(ωm)) 6= 0. Since m 7→ ker(ωm) is a smooth foliation, for
any point m of M there exists a smooth path p of M such that p(0) = m and for t belonging to a
small interval around 0 ∈ R, ṗ(t) 6= 0 and ṗ(t) ∈ ker(ωp(t)) for all t in this interval. Then, we can
re-parametrize the path p and assume now that p is defined on the whole R and satisfies p(0) = m,
p(1) = m′ with m 6= m′, and ṗ(t) ∈ ker(ωp(t)) for all t. Now, since ṗ(t) ∈ ker(ωp(t)) for all t, using
the expression (♦) given in (art. 1), we get Ψω(p) = 0G ∗ω and thus µω(m) = µω(m′). But this is
a contradiction since m 6= m′ and we have assumed that µω is injective. Hence, the kernel of ω is
reduced to {0}. Therefore, ω is a non degenerate closed 2-form, that is, symplectic. �

4. THE HOMOGENEOUS CASE — Let (M,ω) be a connected symplectic manifold. Assume that
M is homogeneous under a subgroup G ⊂ Hω . Then, the moment map µ associated with G, as
defined in the first section, is a covering onto its image.

For G a Lie group, this is the Souriau’s theorem [Sou70] on homogeneous symplectic manifolds,
but proved the diffeology way. It is illustrated by the example of (art. 7). I

Proof. Let p be a path in M such that µ ◦ p = const. Then, Ψ(p) = 0G ∗ , where Ψ is the paths
moment map of G. Thus, for any integer n and any n-plot F in G, we have Ψ(p)(F)r(δ r) =
0, for all r ∈ dom(F) and all δ r ∈ Rn. Using the expression of Ψ given in (art. 3) part B, we
get

∫ 1
0 ωp(t)(ṗ(t),δ p(t))dt = 0. Considering the 1-parameter family of paths ps : t 7→ p(st), the

derivative of Ψ(ps)(F)r(δ r) = 0, with respect to s at s = s0, gives ωx(u,δx) = 0, with x = p(s0),
u = ṗ(s0) ∈ TxM and

δx = [D(F(r))(x)]−1 ∂F(r)(x)
∂ r

(δ r) ∈ TxM.

Now, let v ∈ TxM be any vector, and let γ be a path in M such that γ(0) = x and v = γ̇(0). Since
M is assumed to be homogeneous under G, there exists a smooth path r 7→ F(r) in G such that
F(r)(x) = γ(r), with F(0) = 1G. Thus, for this F and for r = 0, δx = v. Therefore, for all v ∈ TxM,
ωx(u,v) = 0, that is, u ∈ ker(ωx). But ω is symplectic, then u = 0. Hence, ṗ(s0) = 0, for all
s0. Therefore, the path p is constant. p(t) = x for all t. Thus, the preimages of the values of the
moment map µ are (diffeologically) discrete. Thanks to the double homogeneity: G over M, and
by equivariance, G over the (possibly affine) coadjoint orbit O = µ(M), µ is a covering onto its
image. �

10
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The Presymplectic Case

Considering a parasymplectic form ω on a manifold M, one says that ω is presymplectic if the
dimension of the kernel of ω is constant over M. On a presymplectic manifold, the characteristic
distribution x 7→ ker(ωx) is integrable, that is a consequence of a Fröbenius theorem, the integral
submanifolds are called characteristics of ω . By definition they are connected.

5. PRESYMPLECTIC SPACES AND THE NŒTHER–SOURIAU THEOREM — For a presymplectic
manifold The Darboux theorem (M,ω) states that M is locally diffeomorphic, at each point, to
(R2k×R`,ωst), where ωst is the standard symplectic form on the factor R2k and vanishes on the
factor R`. This implies in particular that the pseudo group Diffloc(M,ω) of local automorphisms10

is transitive. Conversely, if Diffloc(M,ω) is transitive, then the kernel of ω is constant and ω is
presymplectic. That suggest a definition in diffeology:

DEFINITION. — We shall say that a parasymplectic form ω , defined on a diffeological space X, is
presymplectic if its pseudogroup of local symmetriesDiffloc(X,ω) is transitive.

Let us come back to the case of a manifold M:

PROPOSITION. — The Nœther–Souriau theorem, applied to the whole group Gω (which is not a
Lie group stricto sensu), states that the universal moment map µω is constant on the characteristic
of ω .

By functoriality, this proposition applies to any group of automorphisms. I

Proof. Then, the proposition is an immediate consequence of the explicit formula of (art. 1). If a
path p connects m to m′ and ṗ(t) ∈ ker(ωp(t)), for all t, then for every n-plot F of Gω , for every
r ∈ dom(F), for every δ r ∈ Rn, we have

Ψω(p)(F)r(δ r) =
∫ 1

0
ω(ṗ(t),δ p(t)) dt = 0.

Thus, 0 = Ψω(p), but ψω(m,m′) = class(Ψω(p)) ∈ G ∗ω/Γω . And since ψω(m,m′) = µω(m′)−
µω(m), we have µω(m) = µω(m′). �

6. PRESYMPLECTIC HOMOGENEOUS MANIFOLDS — Let M be a connected Hausdorff manifold,
and let ω be a parasymplectic form on M. Let G ⊂ Gω be a connected subgroup. If M is a
homogeneous space11 of G, then the characteristics of ω are the connected components of the
preimages of the moment maps µ .

NOTE. — In particular, if M is a homogeneous space of Gω , and thus of its identity component,
then the characteristics of ω are the connected components of the preimages of the values of a
universal moment map µω . This justifies a posteriori a general definition for the characteristics of
a homogeneous presymplectic diffeological space, as the connected components of the preimages
of the universal moment map.

10See [Piz13, §2.1] for local maps and local diffeomorphisms in general.
11That means that the orbit map x̂ : G→M, defined by x̂(g) = g(x), is a subduction.
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Also, from a pure linguistic point of view, motion and moment (in French: mouvement and mo-
ment) share the same Latin etymology: momentum12. And in symplectic mechanics, a motion of
a dynamical system appears as an integral curve of a presymplectic structure, see [Sou70]. This
theorem shows how the universal moment map confounds definitely these two apparently different
objects. I

Proof. The Souriau-Nœther theorem states that if m and m′ are on the same characteristic of ω ,
then µ(m) = µ(m′) (art. 5). We shall prove the converse in a few steps.

(a) Let us consider first the case when the holonomy of Γ is trivial, Γ = {0}. Let us assume m
and m′ connected by a path p such that µ(p(t)) = µ(m) for all t. Then, let s 7→ ps be defined by
ps(t) = p(st), for all s and t. We have µ(ps(1)) = µ(ps(0)), that is, Ψ(ps) = 0G ∗ , for all s. Thus,
for all n-plots F of G, for all r ∈ dom(F), all δ r ∈ Rn and all s, Ψ(ps)(F)r(δ r) = 0. That is, after a
change of variable t 7→ st and noticing that δ ps(t) = δ p(st) (art. 1, ♥),

Ψ(ps)(F)r(δ r) =
∫ 1

0
ωps(t)(ṗs(t),δ ps(t))dt =

∫ s

0
ωp(t)(ṗ(t),δ p(t))dt = 0

Hence, after derivation:

∂

∂ s
Ψ(ps)(F)r(δ r) = ωp(s)(ṗ(s),δ p(s)) = 0.

Next, let v ∈ Tp(t)(M), then v is the speed of some path c in M at the point p(t), that is,

c(0) = p(t) and
dc(s)

ds

∣∣∣∣
s=0

= v.

Since M is assumed to be homogeneous under the action of G, there exists a smooth path s 7→ F(s)
in G, centered at the identity, F(0) = 1M, such that F(s)(p(t)) = c(s). Then, for s = 0 and δ s = 1,
we get from above,

δ p(t) = 1Tp(t)M
dF(s)(p(t))

ds

∣∣∣∣
s=0

=
dc(s)

ds

∣∣∣∣
s=0

= v.

Hence, for every v ∈ Tp(t)M, ω(ṗ(t),v) = 0, i.e. , ṗ(t) ∈ ker(ωp(t)) for all t. Therefore, the
connected components of the preimages of the values of the moment map µ of the group G are the
characteristics of ω .

(b) Let us consider the general case. Let M̃ be the universal covering of M, π : M̃→ M be the
projection, and let ω̃ = π∗(ω). Let Ĝ be the group of automorphisms of M̃ over G, defined by

Ĝ = {ĝ ∈ Diff(M̃, ω̃) | ∃g ∈ G and π ◦ ĝ = g◦π}.

Let ρ : Ĝ→ G be the morphism ĝ 7→ g. By construction, the group Ĝ is an extension of G by the
homotopy group π1(M). Let us show that the following sequence of morphisms is exact:

1M̃ −→ π1(M)−→ Ĝ
ρ−→ G−→ 1M.

12See for example the Merriam-Webster dictionnary,
http://www.merriam-webster.com/dictionary/moment.
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We shall prove now a few lemmas presented as short propositions.

b1.— The morphism ρ is surjective. Indeed, let g ∈ G. Consider g ◦ π : M̃→ M. Since M̃ is
simply connected, thanks to the monodromy theorem, there exists a smooth lifting ĝ : M̃→ M̃,
that is, π ◦ ĝ = g ◦ π . Let fix a point m ∈ M and a point m̃ ∈ M̃ over m. Let m′ = g(m), the
lifting ĝ is unique after chosing m̃′ = ĝ(m̃) in π−1(m′). Now, let ĝ−1 be the lifting of g−1 defined
by ĝ−1(m̃′) = m̃. Hence, ĝ−1 ◦ ĝ is a lifting of 1M, fixing m̃. But, 1M̃ also lifts 1M, fixing m̃.
Thus, ĝ−1 ◦ ĝ = 1M̃, and ĝ−1 = (ĝ)−1. Therefore, ĝ is a diffeomorphism satisfying π ◦ ĝ = g◦π , it
preserves then ω̃ = π∗(ω): it belongs to Ĝ. We proved that ρ is surjective.

b2.— The kernel of ρ is exactly π1(M). First of all, M̃ is a π1(M)-principal bundle over M, the
action of π1(M) preserves ω̃ = π∗(ω). Thus, π1(M) ⊂ Ĝ. Now, by the monodromy theorem,
ker(ρ) corresponds to the various liftings of 1M. But these liftings are uniquely defined by their
images of a base point m̃ ∈ π−1(m), and these points are just the k(m̃) with k ∈ π1(M). Thus,
ker(ρ) = π1(M). That achieves to prove that the morphisms sequence above is exact.

b3.— The morphism ρ is smooth. The group Ĝ is equipped with the functional diffeology. The
morphism ρ is smooth if and only if, for all plot P : U→ Ĝ, the parametrisation ρ ◦P, with values
in G, is smooth. By definition of the functional diffeology, P is a plot in Ĝ means that ẽv : (r, m̃)→
P(r)(m̃) is smooth. And, ρ ◦ P is a plot in G means that ev : (r,m) 7→ ρ(P(r))(m) is smooth.
Consider then the commutative diagram:

(r, m̃) P(r)(m̃)

(r,m) π(P(r)(m̃)) = ρ(P(r))(m)

ẽv

1U×π π

ev

Since the arrow 1U×π is a subduction and ẽv and π are smooth, ev is smooth. Therefore, ρ is a
smooth morphism.

b4.— The morphism ρ is a subduction. We have seen that ρ is smooth and surjective. It remains
to see that the plots of G lift locally into plots of Ĝ, according to criterion [Piz13, §1.31]. Consider
a plot r 7→ gr, that is, a parametrisation such that (r,m) 7→ gr(m) is smooth. Let us choose a
parameter r0, a point m0 ∈ M, a point m̃0 ∈ π−1(m0), and a point m̃′0 ∈ π−1(gr0(m0)). Let us
restrict the parametrisation to a small ball around r0. Thanks again to the monodromy theorem, the
map (r, m̃) 7→ gr(π(m̃)) has a unique smooth lifting (r, m̃) 7→ m̃′r into M̃ such that, π(m̃′r) = gr(m)

and m̃′r0
= m̃′0. Let ĝr : m̃ 7→ m̃′r. By construction π ◦ ĝr = gr ◦π , and the map ĝr has an inverse, by

lifting the same way r 7→ g−1
r , mapping m̃′0 to m̃0. Now, since (r, m̃) 7→ ĝr(m̃) and (r, m̃) 7→ ĝ−1

r (m̃)

are smooth, we deduce two things: first of all, the maps ĝr and ĝ−1
r are smooth, that is, ĝr ∈ Ĝ, and

then r 7→ ĝr is a plot of Ĝ, and thus a (local) smooth lifting of r 7→ gr. Hence, ρ is a subduction.
Moreover now, as quotient space, G' Ĝ/π1(M), and since the subgroup π1(M) is discrete, ρ is a
covering. Note however that Ĝ may be not connected.

b5.— The action of Ĝ on M̃ is homogeneous. Let us choose two points m ∈M and m̃ ∈ π−1(m).
Let prm : G→M be the orbit map of m, with respect to G, prm(g) = g(m). By hypothesis, prm is a

13
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subduction. And let prm̃ : Ĝ→ M̃, be the be the orbit map of m̃, prm̃(ĝ) = ĝ(m̃). We will check that
prm̃ is also a subduction. Consider the diagram:

Ĝ M̃

G M

prm̃

ρ π

prm

All the arrows are subductions and ρ and π are covering. Let r 7→ m̃r be a plot in M̃, and let
mr = π(m̃r). Since prm is a subduction, there exists locally a smooth lifting r 7→ gr in G such that
gr(m) = mr = π(m̃r). Now, there is a smooth lifting r 7→ ĝ′r in Ĝ such that ρ(ĝ′r) = gr. Thus,
π(m̃r) = mr = gr(m) = ρ(ĝ′r)(m) = ρ(ĝ′r)(π(m̃)) = π(ĝ′r(m̃)). Hence, r 7→ m̃r and ĝ′r(m̃) are two
smooth lifting in M̃ of r 7→ mr. Restricted to a small ball, these two liftings differ only from a
constant element k of π1(M), that is m̃r = k(ĝ′r(m̃)), but r 7→ ĝr = k ◦ ĝ′r is also a smooth lifting of
r 7→ gr. Thus, there always exists locally a smooth lifting r 7→ ĝr in Ĝ such that m̃r = ĝr(m̃), that
is, m̃r = prm̃(ĝr). Therefore, prm̃ is a subduction, and the action of Ĝ on M̃ is homogeneous.

b6.— The characteristics of ω are the connected components of the preimages of µ . First of all,
since M̃ is simply connected, there is no holonomy. The moment map µ̃ takes its values in the
space of momenta of Ĝ. But Ĝ being a covering of G, there is a canonical identification between
the spaces of momenta of the two groups. Thus µ̃ : M̃→ G ∗ [Piz13, 7.13]. And thanks to the
variance of the moment map [Piz13, §9.13], we have the commutating diagram:

M̃ G ∗

M G ∗/Γ

µ̃

π class

µ

Now, consider the characteristic foliation ker(ω̃). Since M̃ is a covering of M, the tangent map
D(π) is an isomorphism from ker(ω̃) onto ker(ω). Therefore, the characteristics of ω̃ , that is, the
integral manifolds of the characteristic distribution, maps onto the characteristics of ω , and are
connected coverings of their images. Hence, the characteristics of ω are the projections by π of
the characteristics of ω̃ . Note that, since π1(M) preserve ω̃ , it exchanges the characteristics of ω̃ ,
over the characteristics of ω . Now, let c = µ(m), one has (µ ◦π)−1(c) = (class◦ µ̃)−1(c), that is,
π−1(µ−1(c)) = µ̃−1(class−1(c)). And then, µ−1(c) = π(µ̃−1(class−1(c))). Let m̃ ∈ π−1(m) and
c̃ = µ̃(m̃), then c̃ ∈ class−1(c). Thus, class−1(c) = {c̃+ γ | γ ∈ Γ}. Hence,

µ
−1(c) = π

(
µ̃
−1{c̃+ γ | γ ∈ Γ}

)
.

But for each γ ∈ Γ, either µ̃−1(c̃+γ) is empty or is a union of characteristics of ω̃ , thanks to previ-
ous paragraph a). Then, since µ̃−1(c̃) is not empty, µ̃−1{c̃+ γ | γ ∈ Γ} is a union of characteristics
of ω̃ . Its projection by π , that is µ−1(c), is then a union of characteristics of ω . �
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Examples

We give here two simple examples that illustrate the previous constructions of moment maps, using
the diffeological framework.

7. THE CYLINDER AND SL(2,R) — This is a classical example for which the moment maps of
a transitive Hamiltonian action of a Lie group is a nontrivial covering. I use this example here to
show how the algorithm of the moment map in diffeology works in a concrete case. Let us consider
the real space R2 equipped with the standard symplectic form surf = dx∧dy, with (x,y) ∈R2. The
special linear group SL(2,R) preserves the standard form ω . Its action on R2 is effective and has
two orbits, the origin 0 ∈ R2 and the “cylinder” M = R2−{0}. The restriction ω = surf �M is
still symplectic and invariant by SL(2,R). Since R2 is simply connected the holonomy of SL(2,R)

is trivial, so its action is Hamiltonian. And since 0 is a fixed point, the 2-points moment map ψ is
exact [Piz10, §6.2, Note 2]. Then, there exists an equivariant moment map µ : R2→ sl(2,R)∗ such
that ψ(z,z′) = µ(z′)− µ(z), for all z,z′ ∈ R2 [Piz10]. Moreover, we know an explicit expression
for µ . For every z ∈ R2, let pz = [t 7→ tz] ∈ Paths(R2) connecting 0 to z. The general expression
given in (art. 1) (♦) and (♥) gives, in the particular case of p = pz and Fσ = [s 7→ esσ ], with13

σ ∈ sl(2,R), the following:

µ(z)(Fσ ) =
1
2surf(z,σz)×dt.

By choosing various σ in sl(2,R), we can check that µ(z) = µ(z′) if and only if z′=±z. Restricting
this construction to M, which is an orbit of SL(2,R), and thanks to the functoriality of the moment
maps [Piz10], the moment map µM = µ � M of SL(2,R) on M is a non trivial double sheets
covering onto its image O = µ(M). It is possible to complicate this example by considering the
universal covering M̃ of M, equipped with the pullback ω̃ of ω by the projection π : M̃→M. Then,
the action of the universal covering S̃L(2,R) on M̃ is still effective homogeneous and Hamiltonian,
and the moment map µ̃ factorizes through π and has the same image O . I

8. THE LINEAR CYLINDER — The example of the cylinder is interesting because it shows simply
and explicitly what happens when a symplectic form is exact but not its primitive. So, let M =

R× S1 equipped with the 2-form ω = dα , and α = r× dz/iz, where (r,z) ∈ R× S1 and S1 is
identified with the complex numbers of modulus 1. The manifold M is also a group G, acting by
gM(r,z) = (r+ρ,ζ z), with g = (ρ,ζ ). Now, for all g ∈ G,

g∗M(α) = α +β (g) with β (g) = ρ
dz
iz
, β ∈ C∞(G,Z1

DR(M)).

The form β (g) is closed for every g ∈G as it must be. The holonomy group Γ is the subgroup of all
Ψ(`) = ˆ̀∗(Kω), where ` runs over the loops of M (notations [Piz10]). We have,

ˆ̀∗(Kω) = ˆ̀∗(K dα) = ˆ̀∗(1̂∗α− 0̂∗α−d[K α]) =−d[K α ◦ ˆ̀],

13sl(2,R) denotes the Lie algebra of SL(2,R), that is, the vector space of real 2×2 traceless matrices.
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but ˆ̀(g) = g◦ `, thus K α ◦ ˆ̀(g) = K α(g◦ `), and then

Ψ(`) = ˆ̀∗(Kω) = −d
[

g 7→
∫

g◦`
α

]
=−d

[
g 7→

∫
`
g∗(α)

]
= −d

[
g 7→

∫
`
α +

∫
`
β (g)

]
=−d

[
g 7→

∫
`
β (g)

]
= −d

[
g 7→

∫
`
ρ

dz
iz

]
=−d[g 7→ 2πkρ]

= −2πk×dρ,

where k ∈ Z represents the class of the loop ` (we know that Ψ(`) depends only on the homotopy
class of ` [Piz10, §4.7 - 2]). Hence, the form a = dρ is a good closed (even exact) invariant 1-form
of G, that is a momenta of G. And,

Γ = {2πk×a | k ∈ Z} with a = dρ.

Now, the space G ∗ of momenta of the Lie group G is generated by a = dρ and b = dζ/iζ , the
quotient G ∗/Γ is thus equal to [Ra/2πZa]×Rb which is equivalent to S1×R. I

9. THE HOLONOMY OF THE TORUS — We shall compute the holonomy group Γω for the 2-torus
T2 = R2/Z2, equipped with ω = class∗(dx∧dy), the canonical volume form on T2. We denoted by
class : R2→ T2, the canonical projection.

We know that Γω is a homomorphic image of the first homotopy group of T2, that is, π1(T2) = Z2.
We choose then a canonical representant of every homotopy class:

`n,m = [t 7→ class(nt,mt)], with n,m ∈ Z.

We will show now that the map j : (n,m) 7→Ψω(`n,m) is injective. Since Ψω(`) is a closed 1-form
on the group Diff(T2,ω) for any loop ` [Piz10], it is sufficient, if (n,m) 6= (0,0), to find a loop γ in
Diff(T2,ω) such that

∫
γ

Ψω(`n,m) 6= 0. We have

∫
γ

Ψ(`) =
∫ 1

0
Ψω(`)(γ)s(1)ds =

∫ 1

0

[∫ 1

0
ω`(t)( ˙̀(t))(δ`(s, t))dt

]
ds,

with

δ`(s, t) = [D(γ(s))(`(t))]−1 ∂γ(s)(`(t))
∂ s

Consider now two integers j,k ∈ Z, we check immediately that

γ(s) =
[

class

(
x
y

)
7→ class

(
x+ s j
y+ sk

)]

is a loop in Diff(T2,ω) based at the identity. For that γ , and for `= `n,m, we have:

˙̀n,m(t) = class∗

(
n
m

)
and δ`(s, t) = class∗

(
j
k

)
.
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Then,

ω`(t)( ˙̀(t))(δ`(s, t)) = det

(
n j
m k

)
= nk−m j.

Thus, ∫
γ

Ψω(`n,m) = nk−m j.

Hence, j(`n,m) = 0 only for n = m = 0. Therefore, j is injective and Γω ' Z2. I

References

[Boo69] William M. Boothby. Transitivity of the automorphisms of certain geometric structures. Trans.
Amer. Math. Soc. vol. 137, pp. 93–100, 1969.

[Don84] Paul Donato Revêtement et groupe fondamental des espaces différentiels homogènes. Thèse de
doctorat d’état, Université de Provence, Marseille, 1984.

[Kos70] Bertram Kostant. Orbits and quantization theory. In Actes, Congrès intern. Math., 1970. vol. 2,
pp. 395–400.

[Kir74] Alexandre A. Kirillov. Elements de la théorie des représentations. Ed. MIR, Moscou, 1974.

[Piz13] Patrick Iglesias-Zemmour. Variations of integrals in diffeology. Canad. J. Math. Vol. 65 (6),
2013 pp. 1255–1286.

[Piz10] Patrick Iglesias-Zemmour The moment maps in diffeology. Memoirs of the American
Mathematical Society, vol. 207, RI 2010.

[MW82] Jerry Marsden and Alan Weinstein. The hamiltonian structure of the maxwell-vlasov equations.
Physica D, 4:394–406, 1982.

[Omo86] Stephen Malvern Omohundro. Geometric Perturbation Theory in Physics. World Scientific,
1986.

[Sou70] Jean-Marie Souriau. Structure des systèmes dynamiques. Dunod Ed., Paris, 1970.

17


