

Higher Symmetries of Laplace and Dirac operators - towards supersymmetries

Jean-Philippe Michel*

Université de Liège E-mail: jean-philippe.michel@ulg.ac.be

In this talk, I will survey some of the results obtained in [3, 4, 5]. On a flat (pseudo-)Riemannian manifold, the higher symmetries of the Laplacian form an associative algebra of differential operators, determined by Eastwood in [1]. It plays a central role in higher spin field theory and give a geometric realization of a highly non-trivial object from Lie theory: the Joseph ideal [2]. Using quantization methods, I propose a simple proof of Eastwood's result and extend it to the system Laplace \oplus Dirac operators. In dimension 4, its higher symmetries are generated by the conformal supersymmetries discovered by Wess and Zumino [6].

References

[1] M. G. Eastwood. *Higher symmetries of the Laplacian*. Ann. of Math. (2), 161(3):1645–1665, 2005.

[2] A. Joseph. *The minimal orbit in a simple Lie algebra and its associated maximal ideal*. Ann. Sci. École Norm. Sup. (4), 9(1):1–29, 1976.

[3] J.-Ph. Michel. *Higher symmetries of Laplacian via quantization*. Ann. Inst. Fourier (to appear).

[4] J.-Ph. Michel, F. Radoux, and J. Šilhan. *Second order symmetries of the conformal Laplacian*. SIGMA, 10:Paper 016, 2014.

[5] J.-Ph. Michel and J. Šilhan. *Higher symmetries of Laplace and Dirac operators*. In preparation.

[6] J. Wess and B. Zumino. *Supergauge transformations in four dimensions*. Nucl. Phys. B, 70(1):39 – 50, 1974.

Frontiers of Fundamental Physics 14 - FFP14, 15-18 July 2014 Aix Marseille University (AMU) Saint-Charles Campus, Marseille

*Speaker.