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Perturbative algebraic quantum field theory is a formalism which allows to put perturbative QFT
on a solid mathematical basis and solves many conceptual problems. It has proven to be a very
successful framework for QFT on curved spacetimes, since it allows to separate the algebraic
structure of the theory from the construction of a state. The main idea, inspired by the Haag-
Kastler axiomatic framework, is to define a model of a QFT by giving a net of unital *-algebras,
assigned to regions of spacetime. To construct such a model, one starts with a free classical
theory, then obtains the free quantum theory via deformation quantization and finally introduces
the interaction by means of Epstein-Glaser renormalization. In this overview talk I will show how
this method works for the example of the scalar field and how this is related to Schwinger-Dyson

equations.

Frontiers of Fundamental Physics 14 - FFP14,
15-18 July 2014
Aix Marseille University (AMU) Saint-Charles Campus, Marseille

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:kasia.rejzner@york.ac.uk

PAQFT Kasia Rejzner

To start the construction of a QFT model one needs the following input from physics:

e Spacetime M: a smooth globally hyperbolic (has a Cauchy surface) Lorentzian manifold.
Such manifolds are necessarily non-compact.

e Configuration space E(M). This specifies the choice of objects one wants to study in the
particular model (scalars, vectors, tensors, ...). Typically this is a space of smooth sec-
tions of some vector bundle E = M over M. For the scalar field, the configuration space is
E(M) = C~(M,R). More generally, one can choose £(M) as an infinite dimensional man-
ifold modeled on a locally convex topological vector space. This generalization allows to
treat theories like gravity or sigma models. Here I will focus on examples where the mani-
fold (M) is affine.

o Classical observables are modeled as smooth functionals on the configuration space &(M),
i.e. elements of C*(E(M),R). One is primarily interested in certain classes of functionals
relevant in physics. Let me first define the spacetime support of F € C*(E(M),R):

suppF = {x € M|V neigh, U of x 3¢,y € E(M),suppy C U such that F(¢+y) # F(¢p)} .

The support of F essentially characterizes the region of spacetime that can thought of as
the localization region of the classical observable corresponding to F. I will restrict myself
to functionals that are compactly supported. A particularly important class of compactly
supported smooth functionals consist of local ones. One says that F € C*(E(M),R) is local
if it is of the form: F(¢) = [}, f(jx(@))du(x), where f is a function on the jet bundle over
M and j.(@) = (¢(x),d@(x),...) is the jet of @ at the point x. Let Fj,c (M) denote the space of
local functionals. In classical theory it is enough to consider functionals that are multilocal,
i.e. they are sums of products of local functionals. The space of such functionals is denoted
by F(M) and one can think of them as polynomials.

e Dynamics. To introduce the dynamics, I will use a modification of the Lagrangian formal-
ism. Since the manifold M is non-compact, I need to introduce a cutoff function into the
Lagrangian. For the free scalar field the Lagrangian with a cutoff f € D(M) = C?(M,R) is
given by

Lu(H)(0) = 5 [ (V0¥ 0 —m0?) () ()i (x). m

In general, a Lagrangian in the pAQFT framework is a family of maps (labeled by space-
times) Ly : D(M) — C*(E(M),R), satisfying in addition:

L Ly(f+g+h)=Lu(f+g)—Lu(g) +Lu(g+h); f,g,h € D(M), supp f Nsupph = 2.
2. supp(Lu(f)) € supp(f).

Actions S are equivalence classes of Lagrangians under the equivalence relation L; ~ L; if supp(L; —
L,)(f) C suppdf. Physically, this amounts to identifying the Lagrangian densities that differ by
a total derivative. The reason for identifying such Lagrangian is that they result in the same equa-
tions of motion (EOM’s), i.e. they implement the same dynamics. In the pAQFT framework, the
equations of motion are obtained from the Euler-Lagrange derivative of an action S, which is a
map S}, : E(M) — E.(M) defined as (S}, (9),h) = (L (f)"V(@),h), where f =1 on supph (see
the first diagram below) and &.(M) denotes the space of compactly supported configurations.
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The EOM is the condition
Su(@)=0. )
Note that S}, is a one-form on &(M) (an element of I'(T*E(M))), and Es(M), the space of solutions

of the EOM, is the zero locus of this form. Let me remark briefly on the manifold structure of €(M).
I consider here only the affine case with the charts defined by

O+E(M)— E(M), o+ — ¢ ,with ¢ € E(M), 3)

where E.(M) is equipped with its natural compact open topology, so (M) is an infinite dimen-
sional manifold modeled on &.(M) (see [6] for details). In this setting T*E(M) = E(M) x EL(M)
(with the dual understood as the strong dual), so ['(T*E(M)) = C*(E(M), EL(M).

One calls elements of Eg(M) on-shell configurations. The second diagram above presents
schematically Eg(M) as a subspace (in fact a submanifold) of £(M). One is then interested in
the space Fg(M) of multilocal functionals on Eg(M). Fs(M) is called the space of classical on-
shell observables. It has a nice homological interpretation, which I will now present. As the
first step, note that one can characterize Fs(M) as the quotient F(M)/Fo(M), where Fo(M) is the
ideal of F(M) consisting of elements that vanish on Eg(M). In “nice” cases, Fo(M) is generated
by functionals of the form (S},,X), where X is a vector field on E(M), i.e. X € [(TE(M)) =
C*(E(M),E.(M)). For (S};,X) to be multilocal, I need to restrict myself to vector fields X which
are in fact derivations of F(M). One calls such vector fields multilocal and the space consisting of
such objects is denoted by V(M). I obtain a sequence:

0 — Ker(8) — V(M) > F(M) — 0,

hence Fg(M) = Hp(S). In order to prove that Fo(M) is indeed equal to §(V(M)), one has to
examine the space of solutions Eg(M) in more detail. In particular, if S is quadratic and S}, is a
normally hyperbolic operator, the relevant result was proven in [5]. For higher order S, the EOM’s
become non-linear and it can happen that they develop singularities, after a finite time, starting
from smooth Cauchy data. In such cases, the space of smooth solutions Eg(M) could turn out to be
very small and hard to control. In such situations it is better to take a more pragmatic point of view
and define Fs(M) = F(M)/6(V(M)). This way of thinking about on-shell observables agrees with
the spirit of algebraic geometry and is more convenient from the point of view of quantization, so
I adopt it also in this review.

In the next step I extend the map & from V(M) to AV(M), the space of multivector fields
defined as the exterior algebra (over F(M)) of V(M), by requiring the graded Leibniz rule. This
way I obtain a differential complex

o AV S V) S F M) — 0,
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called the Koszul complex. The kernel of & in degree 1 consists of vector fields X € V, which
satisfy (S},,X) =0, i.e. dxSy = 0. These vector fields characterize directions in the configuration
space E(M) in which the action S is constant; one calls these vector fields local symmetries. The
space of symmetries includes, in particular, elements of the form § (A%V(M)), where A>V(M) is the
second exterior power of V. Such symmetries are called trivial. It is now clear that H; (AV(M), J)
characterizes in fact the space of non-trivial local symmetries. In the simplest case (e.g. real scalar
field), S doesn’t have non-trivial local symmetries and the Koszul complex is a resolution of Fg(M),
i.e. Hy(AV(M),8) = Fs(M) and Hy(AV(M),d) for k # 0.

Note that AV(M), as the space of multivector fields on €(M), is equipped with natural graded
bracket, the Schouten bracket: {X,F} = dxF for X a vector field and F a function; {X,Y} = [X,Y]
for X,Y a vector fields; {.,.} is extended to higher orders by the graded Leibniz rule. One can
check that {.,.} defined this way is of degree —1 and it satisfies the graded Jacobi identity. The
structure (AV(M),{.,.}) is an example of a Gerstenhaber algebra and together with 6 one obtains
a differential Gerstenhaber algebra.

I will now focus on the example of the scalar field and show how it can be quantized within the
pAQFT framework. I start with the free theory described by the Lagrangian (1) and after quantizing
it I will introduce the interaction in a perturbative way. The equation of motion is S},(¢) = P¢ =0,
where P = [0+ m? is the Klein-Gordon operator. Since M is assumed to be globally hyperbolic,
P posses the retarded and advanced Green’s functions AR, A4, They satisfy P o AR/A = idp () and
AR/A o (P|,D(M)) = idp(u) as well as the support properties: supp(AR) C {(x,y) e M*ly € (V_),}
and supp(A?) C {(x,y) € M?|y € (V,),}, where V. is the closed future/past lightcone. Their
difference is the causal propagator A = AR — A4, The singularities of the distribution A are well
understood, as one can explicitly determine its WF set

WEF(A) = {(x,k;x', —K') € T*M?*|(x,k) ~ (', K)},

where ~ means that there is a null geodesic connecting x and x’ and k’ is the parallel transport
of k along it. Note that WF(A) breaks down into two disjoint components, one with k on the
future lightcone and the other with k on the past lightcone. Therefore, one can decompose A as
%A = A, — H, where A, is the positive frequency part, i.e.:

WE(Ay) = {(x,k;x', =K') € TM?|(x,k) ~ (x', k'), k € (V 1), }.

One requires H to be a symmetric bi-solution for P. Moreover, A, is required to be positive
definite. On the Minkowski spacetime, Ay is just the Wightman 2-point function. On general
globally hyperbolic spacetimes, the choice of A is non-canonical and this ambiguity corresponds
to the non-existence of a preferred vacuum state (see for example [3] for a detailed discussion of
these issues). The Feynman propagator is now defined by:

1
Ap = E(AA—i—AR)—i—H.

Properties of the WF set of A, motivate to define the space of microcausal functionals F.(M) as
the space consisting of functionals F' with

WE(F") (@) CE,, VneN,Voec M),
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where E, = T*M" \ {(x1,....xn, k1, ..kx) | ki € (V4), U(V_)y,i = l..n}. For F,G € Fyc(M), 1
define now the x-product (deformation of the pointwise product) as:

(=) hn
(FxG)(9) =},

(F (9),(8:)*"G"(9)) .
n=0

n!
The free QFT is defined as Ao(M) = (Fyc(M),*).

The interaction is introduced by means of time-ordered products. I start with defining these
on a particularly well-behaving class of functionals and later on I will explain how to extend this
definition to a larger class. The space of regular functionals JFes(M) is defined as the space of
functionals whose derivatives are test functions, i.e. F)(¢@) € D(M™"). In a similar way we define
also the space of regular vector fields Vieg(M). The time-ordering operator T is defined on Freg (M)
as:

o g
TF(p) =),

n=0

(FO(0). (i8r)°") .

n!

and the time-ordered product -7 on T(JFreg (M)][[71]]) is given by
FsG=T(T'F-T'G).

I now have an algebraic structure with two products (Freg (M)][[71]], %, -7 ), where % is non-commutative,
-7 is commutative and they are related by a causal relation F -7 G = F x G, if the support of F is
later than the support of G. By interaction term I mean functional V (for a moment I assume that it
belongs to Freg(M)) and using the commutative product -7 I define the S-matrix corresponding to
this interaction as:

S(V)=e/ =T(7 7).

Interacting fields are defined by the formula of Bogoliubov:
Ry(F) = ()" % (e} -+ F).

Let me now consider what happens with the Gerstenhaber algebra introduced earlier. Explicit
calculation shows that
8r:=T1080T =8+ihA,

where A acts on vector fields X € Vi (M) as AX (@) = [ 53)%) (o) with X (@) = fX,A(p)%. Itis

remarkable that the operator A is “almost” a derivation of AV, (M) and the failure is characterized
by {.,.}, i.e:
AXAY)=AX)AY —(=D)XIX AA®Y) = {X,Y},

where |X]| is the degree of the multivector field X. The triple (AVyes(M),{.,.},A\) is an example of
a mathematical structure called the BV algebra. The BV structure is a universal feature of pAQFT
models, although it was first discovered in physics [1] in the context of gauge theories. For the free
scalar field the relation between &y and & corresponds to the Schwinger-Dyson equation.

5:)(0) = [ (X o0 ) (0) =[xl 5o it [ 50 (0).
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Note that fXx((p)% = f(X;ﬁ%) (¢). Hence, f(Xx-ry %) = _ihfsaT%c) modulo the -
ideal generated by EOM’s (this is the algebraic Schwinger-Dyson equation).

Up to now, I have considered only the regular functionals Freg(M). Now I want to generalize
all the constructions also to the local functionals. Because of the WF set properties of Ar, the time-
ordered product -7 is not well defined on local, non-linear functionals, but the physical interaction
is usually local! The renormalization problem is therefore to extend 8(.) to local arguments. This

is reduced to extending the n-fold time-ordered products, since

oo

SV =Y LT, v,..v).

=n!
The time-ordered product T, (Fi,...,F,) = F; -7 ... -7 F, of n local functionals is well defined if
their supports are pairwise disjoint. To extend 7, to arbitrary local functionals I follow the causal
approach of Epstein and Glaser (causal perturbation theory), where one proves the existence of
the renormalized n-fold time ordered products T}, such that T = 0, T} = id; suppT},(Fi,...,F,) C
UsuppF; and the Causal factorization property holds. The latter means that, if the supports of
Fi, ... F; are later than the supports of Fi,1,...,F;,, then

WA - 0FK)=T(R® - @F)xT,_(Fi1® - ®F).

By the theorem of Epstein and Glaser I know that the extension exists, but is not unique. Further-
more, in [4] it was shown that the renormalized time-ordered product -7 is an associative product
on T (F(M)) given by

FewG=T(T"'F-T7'G),
where T" : F(M)[[1]] — T(F(M))[[A]] is defined as T* = (6D, T;,) o B and B : F(M) — S'S"l(gc) (M)
is the inverse of multiplication m and 7}, is a family of renormalized time-ordered products. This
result, together with the anomalous Master Ward Identity proven in [2], allows one to write the

renormalized Schwinger-Dyson equation as
8yr(e!") = end/" e (8X + 1{X X} —in AT (X)),

where A" is the renormalized BV Laplacian, obtained recursively from the formula for the
anomaly term provided in [2].
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