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This contribution is devoted to summarize the recent results obtained in the construction of an
“analytic continuation” of Loop Quantum Gravity (LQG). By this we mean that we construct
analytic continuation of physical quantities in LQG from real values of the Barbero-Immirzi pa-
rameter γ to the purely imaginary γ =±i. This should allow us to define a quantization of gravity
with self dual Ashtekar variables. We first realized in [1] that this procedure, when applied to
compute the entropy of a spherical black hole in LQG for γ = ±i, allows to reproduce exactly
the Bekenstein Hawking area law at the semi classical limit. The rigorous construction of the
analytic continuation of spherical black hole entropy has been done in [2]. Here we start with
a review of the main steps of this construction: we recall that our prescription turns out to be
unique (under natural assumptions) and leads to the right semi-classical limit with its logarithmic
quantum corrections. Futhermore, the discrete and γ-dependent area spectrum of the black hole
horizon becomes continuous and obviously γ-independent. Then, we review how this analytic
continuation could be interpreted in terms of the analytic continuation from the compact gauge
group SU(2) to the non compact gauge group SU(1,1) relying on an analysis of three dimensional
quantum gravity.
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1. Motivation : Getting rid of γ

The Barbero-Immirzi parameter γ seems to play apparently a paradoxical role in LQG. Whereas
it is totally irrelevant in the classical theory, it enters into the expressions of “physical” quantities
like eigenvalues of geometric operators in the kinematical sector, the maximal density of the uni-
verse in quantum cosmology or the black hole entropy. Nonetheless, many observations (from
black holes physics [1, 2] and three dimensional quantum gravity [16, 17]) indicate that γ should
somehow “disappear” from the quantum theory in the sense that it should take the natural complex
value γ =±i and not a real value. We review here some of these observations focussing mainly on
the case of the black hole entropy. We finish with a discussion where we quickly review the state
of the art in three dimensions.

2. Analytic continuation of black hole entropy

2.1 Real γ Black Holes

In the framework of LQG, a black hole is defined as a boundary in space-time which satisfies
the constraints of an isolated horizon [3]. Those constraints impose that the black hole degrees of
freedom are encoded into the phase space of an SU(2) Chern Simons theory defined on a punctured
two-sphere S2 as a canonical surface. The presence of the gauge group SU(2) derives from the
phase space of gravity in the bulk expressed in terms of Ashtekar-Barbero variables. The Chern-
Simons level k is proportional to the horizon area aH and depends on γ according to (2.1)1. The
punctures originate from the spin networks (the quantum states of the gravitional field) defined in
the bulk which pierce the horizon. They are viewed as the fundamental excitations of the black
hole and each puncture carries a quantum of area al which contributes to the macroscopic area aH

in the usual “real γ" picture according to (n labels the number of punctures)

aH =
2πγ

(1− γ2)
k =

n

∑
l=1

al al = 8πl2
Pγ
√

jl( jl +1). (2.1)

As usual in LQG, the spin jl ∈ N/2 labels an SU(2) unitary irreducible representation (irrep).
For a fixed n, a microscopic state of the black hole is defined by an ordered2 family of spins
P = ( j1, ...., jn).

The degeneracy of a configuration P is given by the dimension of the Chern-Simons Hilbert
space Hk(S2; j1, · · · , jn) which is well-known to be defined by the space of Uq(su(2)) invariant
tensors3 in the tensor product ⊗lVl . Here Vl are Uq(su(2)) modules labelled by the spins jl whose
dimension is denoted dl = 2 jl + 1. The quantum parameter is a root of unity defined by q =

exp(iπ/(k+2)) where the level k is necessarily integer. The dimension gk(dl) of this Hilbert space

1Variant expressions exist but the precise dependence on γ is not important for our purpose. The main point is that
k is large when the area aH is macroscopic.

2In the usual real picture, the punctures are distinguishable. For this reason, we consider a priori an ordered family
of spins. In the complex picture, we relax the distinguishability.

3The space of invariant tensors is endowed with the quantum Haar measure when viewed as the space of linear
forms on SUq(2), the polynomials of the quantum deformation of SU(2).
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is easily computed [4] and can be expressed as the following sum over the integer d

gk(dl) =
2

2+ k

k+1

∑
d=1

sin2(
πd

k+2
)

n

∏
l=1

sin( π

k+2 ddl)

sin( π

k+2 d)
. (2.2)

This Verlinde formula allows to recover at the semi-classical limit (aH large in Planck units) the
Bekenstein-Hawking law for the black hole entropy provided that γ is fixed to a peculiar value
[5, 6]. This is easily seen in the simplest model where dl = d for any l is fixed and n becomes
large at the semi-classical limit. Even if this result is certainly an important success of LQG, it
has risen important questions concerning the role of γ and the validity of the computation we have
just sketched. Since then, different interpretations of γ have been discussed but none are totally
convincing (see [7] and references therein).

2.2 Complex γ =±i Black Holes

The last couple of years, a new road towards the understanding of the role of γ has emerged.
In that new picture, the Barbero-Immirzi parameter is viewed as a “regulator" which should be sent
back to its “original” imaginary value γ =±i. To clarify this point of view, let us recall that γ has
been first introduced to overcome the problem of working with complex variables, to circumvent
the resolution of the reality conditions and then to start the loop quantization of gravity. It is impor-
tant to notice that such a strategy has been successful because it has led to a very beautiful picture
of the quantum (kinematical) geometry at the Planck scale. However, for solving the quantum dy-
namics, the real Ashtekar-Barbero connection doesn’t seem to be well suited anymore. Already at
the classical level, it is well known that this connection doesn’t transform properly under timelike
diffeomorphisms, and this might be the reason why γ remains in the theory at least at the kinemat-
ical level. This fact is enhanced by a series of recent works which all point towards the need to
come back to the (anti) self-dual variables [1, 8, 9, 10]. One of the most striking result [1, 2] in
that respect has been obtained in the context of black hole physics: the analytic continuation of the
formula (2.2) for the Chern-Simons Hilbert space dimension to the imaginary value γ =±i allows
to reproduce the expected semi-classical Bekenstein-Hawking law for the black hole entropy. We
are going to briefly recall how this works following the construction of [2]. Details can be found in
the original paper [2].

First of all, we immediately notice that taking γ = ±i leads to a complex value of the Chern-
Simons level which becomes k = iλ with λ ∈R. From the LQG point of view, this is an immediate
consequence of (2.1). From the Chern-Simons theory point of view, this shift from k ∈N to k ∈ iR
can be interpreted by the fact that one works now with a complex SL(2,C) connection rather than
a compact real SU(2) connection [11]. Unfortunately, Chern-Simons theory with complex gauge
group and complex level is poorly understood at the quantum level and the only one serious can-
didates for its quantization deeply relies on analytic continuation techniques [11]. However, the
process of analytic continuation is rather subtle even in the construction of the analytic continua-
tion of the Hilbert space dimension (2.2). Indeed, since k enters in the upper bound of the sum,
the expression (2.2) is not really convenient for analytic continuation purposes even if we used it
formally in the first proposal [1]. It is much more convenient to view (2.2) as a sum of residues of
an analytic function in order to write it as an integral in the complex plane along a contour C (see
figure 1) which encompass the imaginary axis between [0, iπ]:
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Figure 1: The contour C = C++C− in the complex plane encloses the imaginary axis between [0, i π].

gk(dl) =
i
π

∮
C

dz sinh2(z)
n

∏
l=1

sinh(dlz)
sinh(z)

coth((k+2)z). (2.3)

To simplify the discussion below, we introduce the notation G(z) = coth((k+ 2)z) while the re-
maining part of the integrand will be denoted F(z). When k and dl are integers, the poles of the
integrand are the poles of G(z) which are located on the imaginary axis: zp =

iπ p
k+2 for p ∈N∗. This

justifies the choice of the contour C .

Now, it makes sense to consider k = iλ as G is an analytic function of k. Let us discuss what
happens to the integral (2.3) when one performs such an analytic continuation.

• If the dimensions dl remain integer, the poles of the integrand are located on the real axis:
the poles of G(z) are zp = −π p

λ
with p ∈ N∗ whereas F(z) still has no pole. In this case,

a contour C close enough to the complex axis doesn’t enclose any poles and the integral
vanishes. As a consequence, analytic continuing only the Chern Simons level from k ∈ N∗

to k ∈ iR keeping dl unchanged leads to inconsistent physical results.

• If dl = isl ∈ iR, the analytic continuation is much more interesting. The location of the poles
of G(z) is unchanged compared to the previous case but the novelty is that F(z) admits new
poles on the imaginary axis at zm = iπm with m ∈ N∗. Among all these new poles, we are
more interested in the one located at iπ which must be enclosed by the contour C in order
for the integral (2.3) to be non-trivial. Therefore, such a continuation leads to a non-trivial
result for the black hole Hilbert space that we define to be the dimension4 of the black hole
Hilbert space when γ =±i.

4To be interpreted as a dimension, gk must necessary be a non-negative real number. This is asymptotically the
case, i.e. when the horizon area becomes large in Planck units and under some conditions satisfied by the number n of
punctures. For non large area, gk is in general complex but we can argue that we have to consider |gk| or R(gk) as the
dimension even if this aspect deserves to be studied deeper. In [2], we considered the modulus of gk.
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To summarize, the dimension of the black hole Hilbert space for γ =±i is defined from the analytic
continuation of (2.3) when C encloses the point iπ and

k = iλ , dl = isl ⇔ jl =
1
2
(−1+ isl) λ ,sl ∈ R+ . (2.4)

The fact that λ and sl are non negative is not restrictive. At this point, it is important to explain the
choice dl ∈ iR. From a physical point of view, this is the only consistent choice which leaves the
area spectrum real when γ =±i as seen from

A( jl) = 8πl2
pγ
√

jl( jl +1)
γ=±i−→ A(sl) = 4πl2

p

√
s2

l +1 (2.5)

where we choose the square root of −1 such that the area is non negative. From a mathematical
point of view, changing jl to 1

2(−1+ isl) amounts to considering SU(1,1) irreps instead of SU(2)
irreps for coloring the punctures.

2.3 Semi-classical limit: area law and logarithmic corrections

To simplify the study of the semi-classical limit, we consider the model where all the punctures
carry the same color sl = s. This corresponds to the one color model in the following. We first
impose that k is large in (2.3) and we obtain the following expression for the candidate to the
dimension of the one-color black hole Hilbert space

g∞(s,n) =
i
π

∮
C

dz sinh2(z) enS(z) S(z) = log
(sinh(sz)

sinh(z)
)
. (2.6)

In the semi-classical limit, the black hole area aH = 4πł2pns is large, which means that the product
ns becomes large. It has been argued in [12] that the semi-classical regime corresponds to both n
and s large. Then, the form (2.6) of the integral is well suited for the study of the thermodynamical
limit. When n is large, this integral can be estimated using the stationary phase method. The study
of the critical points reveals that there are two critical points, zc = 0 and zc = i(π + 1

s )+o(1
s ) for s

large. Only the later contributes to the saddle point approximation which finally leads to

Sm = log(g∞(s,n)) =
aH

4l2
p
+Scor (2.7)

for the black hole microcanonical entropy Sm. The leading term reproduces the expected Beken-
stein Hawking area law without any fine tuning and Scor are quantum corrections. At this point,
the quantum corrections scale in general as

√
aH in Planck units, and then are much larger than

logarithmic corrections.
In the grand canonical ensemble, the situation concerning the quantum corrections is more

satisfying. Using the local framework developed in [13, 14], we have a notion of energy (measured
by an observer located at a “small" distance L of the horizon compared to the black role radius)
which allows to compute the canonical and grand canonical partition functions. In this approach,
the black hole is viewed as a gas of indistinguishable punctures which has been studied first in
[12]. If we assume in addition that the punctures admit a non-vanishing chemical potential µ and
satisfy the Maxwell-Botzmann statistics, we can show that, at the semi-classical limit, the black
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hole temperature approaches the Unruh temperature TU = 1/βU for the local observer and the
black hole mean area āH , the mean number of punctures n̄ and the mean color s̄ scale as follows

āH = 4πl2
p

z
2x2

(
1− 3

2z
x
)

x =
2L
l2
p
(β −βU) n̄ ∝

√
aH , s̄ ∝

√
aH (2.8)

where z = exp(β µ) is the fugacity. As a consistency check, we recover that n and s are large in the
semi-classical regime. It is easy to compute from this analysis the semi-classical expansion of the
grand canonical entropy and we deduce the expression

Sgc =
āH

4l2
p
− 3

2
log

(
āH

l2
p

)
+

zU

2
(2−µβU)

(
āH

l2
p

)1/2

+o

(
log

(
āH

l2
p

))
. (2.9)

We recover therefore the expected logarithmic quantum corrections supplemented with larger quan-
tum corrections ∝

√
aH which vanish when the chemical potential is fixed to µ = 2TU . A physical

interpretation of such a result is still missing. Note however that the same value of the chemical
potential is also found to cancel the too large quantum correction for the real black hole (γ ∈ R)
with the Maxwell Boltzman statistic [15]. Therefore, this behaviour of the quantum correction
Scor ∝

√
aH is not specific to the complex model.

The calculation can be generalized in different ways. First, we can extend the model to a
black hole with p colors [2]. In that case, the entropy has the same form as (2.9) with a modified
logarithmic correction which depends on p. Interestingly we notice that only the case p = 1, i.e.
the one color model, which can be interpreted as a kind of spherical symmetric quantum condition,
allows to recover the prefactor −3/2 for the logarithmic corrections. We could also generalize to
the cases where the punctures satisfy a quantum statistic. This has been done in [12, 15] when the
area spectrum is discrete. In that context, we showed that assuming the punctures are boson, there
exists a semi-classical regime where the gas condensates to spin 1/2 punctures and also where the
quantum corrections are logarithmic5. It would be interesting to see whether a similar phenomenon
occurs when the spectrum is continuous.

Finally, this prescription was applied to the simplest Loop Quantum Cosmology model in
[18]. It was shown that the analytic continuation described above preserves also the bouncing
universe scenario. Another study was realized in the context of three dimensional gravity, in order
to understand the appearance of the gauge group SU(1,1). For more details on those results, see
[16, 17].

This analytic continuation constitutes a proposal for defining a theory of self-dual quantum
gravity in terms of the complex Ashtekar connection and for solving the so-called reality condi-
tions. We expect that the systematic investigation of this analytic continuation in various setups
will eventually lead to new insights on the status of the quantum states of complex Ashtekar grav-
ity. The first attempt to define a Wick rotation in the context of Ashtekar gravity was proposed in
[19]. Establishing a clear link between the two approaches would inevitably shed some light on the
one described in this contribution.

5This contrasts with the case of a classical Maxwell-Boltzmann statistics where large spins dominate at the semi-
classical limit.
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