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We examine the general issue of whether a scale dependent cosmological constant can be consis-
tent with general covariance, a problem that arises naturally in the treatment of quantum gravita-
tion where coupling constants generally run as a consequence of renormalization group effects.
The issue is approached from several points of view, which include the manifestly covariant func-
tional integral formulation, covariant continuum perturbation theory about two dimensions, and
the lattice formulation of gravity. In all cases we find that the cosmological constant cannot run
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1. Introduction

We present the properties of the cosmological constant suggested by the quantum field theory
methods, in particular we focus on the Wilson’s renormalization group studies to analyze the role
of the cosmological constant in the framework of pure Einstein gravity with the cosmological con-
stant term. We will first analyze how the bare cosmological constant which appears in the original
Lagrangian should be absorbed into the physical coupling constant by rescaling the gravitational
field. We then argue that the dynamically generated RG invariant scale should be identified with
the observed cosmological constant. This scale can be interpreted as a gravitational condensate.
Specifically, the plan to achieve the above discussion is as follows: we first discuss how the proper
rescaling of the metric is equivalent to removing the gauge dependence of the renormalized cou-
pling constants which results in only one physical coupling constant. We discuss analogies with
relevant aspects from non-Abelian (Yang-Mills) gauge theory, QCD. The gravitational Wilson loop
will be discussed, which supplements the indication of the role of the observed cosmological con-
stant.

2. Gauge Dependence in the Renormalization of the Cosmological Constant

Perturbation theory generally serves a very useful purpose, as it allows one to systematically
track the gauge dependence of various renormalization effects. Unfortunately Einstein gravity is
not perturbatively renormalizable in four dimensions, so this easy route is not available. Neverthe-
less, in lower dimensions it is possible to rescue in part the perturbative treatment and partly address
some of the key issues. One does not, of course, expect the answers to be quantitatively correct,
however it becomes clear below that the issue of gauge invariance comes up, and is eventually
successfully resolved. Let us emphasize here that one key aspect of the perturbative treatment via
the background field method is that diffeomorphism invariance is carefully preserved throughout
the calculation.

In two dimensions the gravitational coupling G ∼ Λ2−d is dimensionless, and the theory ap-
pears to be perturbatively renormalizable. Despite the fact that the gravitational action reduces to a
topological invariant in two dimensions, it is meaningful to try to construct, in analogy to Wilson’s
original suggestion for scalar field theories, the theory perturbatively as a double series in ε = d−2
and G [1, 4, 5]. The 2+ε expansion for pure gravity proceeds as follows [6]. First the gravitational
part of the Lagrangian

L =− Λε

16π G
√

gR , (2.1)

with G dimensionless and Λ a microscopic ultraviolet cutoff, is expanded in the fields by setting
gµν → ḡµν = gµν + hµν , where gµν is the classical background field and hµν the small quantum
fluctuation. To make perturbation theory convergent requires a gauge fixing term, for example,
in the form of a harmonic gauge condition, Lg f = 1

2 α
√

g gνρ(∇µhµν − 1
2 β gµν∇µh)(∇λ hλρ −

1
2 β gλρ∇λ h), with hµν = gµαgνβ hαβ , h = gµνhµν and ∇µ the covariant derivative with respect to
the background metric gµν . In return, the gauge fixing term requires the introduction of a Faddeev-
Popov ghost contribution Lghost , giving the total Lagrangian to be L +Lg f +Lghost . Here we
leave the two gauge parameters unspecified, so that later the detailed gauge dependence of the
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result can be checked. For the one loop divergences associated with the
√

g and the
√

gR terms,
they obtain respectively

λ0→ λ0

[
1−
(a1

ε
+

a2

ε2

)
G
]

and
µε

16π G
→ µε

16π G

(
1− b

ε
G
)
, (2.2)

with coefficients that depend on the gauge dependent parameters α and β , with a1 = − 8
α
+

8 (β−1)2

(β−2)2 + 4 (β−1)(β−3)
α (β−2)2 , a2 = 8 (β−1)2

(β−2)2 , and b = 2
3 · 19+ 4(β−1)2

(β−2)2 [4, 5]. The gauge dependent ar-
tifact reflected in the renormalized couplings shown above can be beautifully compensated if one
makes use of the freedom to rescale the metric, which is equivalently given by the field redefinition[

1−
(a1

ε
+

a2

ε2

)
G
]√

g =
√

g′ ↔ gµν =
[
1−
(a1

ε
+

a2

ε2

)
G
]−2/d

g′µν , (2.3)

which restores the original unit coefficient for the cosmological constant term. By this procedure
the cosmological term is brought back into its standard form λ0

√
g′, and one obtains for the com-

plete Lagrangian to first order in G

L →− µε

16π G

[
1− 1

ε
(
2
3
·19)G

]√
g′R′+λ0

√
g′ , (2.4)

where only terms singular in ε have been retained. From this last result one can finally read off the
renormalization of Newton’s constant 1

G →
1
G

[
1− 1

ε
(2

3 ·19)G
]
. Therefore the gauge dependence

has, as it should be on physical grounds, entirely disappeared from the final answer, which is
simply due to general covariance. We make the point here that the results of covariant perturbation
theory are entirely consistent with the scaling argument; only the renormalization of G has physical
meaning. Let us dwell further on this aspect.

In the presence of an explicit renormalization scale µ the only Callan-Symanzik β -function
for pure gravity is obtained by requiring the independence of the effective coupling G from the
original renormalization scale µ; to one loop order,

µ
∂

∂ µ
G(µ) ≡ β (G) = ε G − β0 G2 + O(G3,εG2), (2.5)

with β0 =
2
3 ·19. Depending on whether one is on the right (G > Gc) or on the left (G < Gc) of the

nontrivial UV fixed point at Gc =
ε

β0
+O(ε2), the coupling will either flow to increasingly larger

values of G, or flow towards the Gaussian fixed point at G = 0, respectively. In the following we
refer to the two phases as the strong and weak coupling phase, respectively. The running of G as a
function of momentum scale µ in pure gravity is obtained from integrating (2.5), giving

G(µ) ' Gc

[
1 ± c0

(
m2/µ

2)ε/2
+ . . .

]
, (2.6)

with c0 a positive constant, and m = ξ−1 a mass scale that arises as an integration constant of the
renormalization group equations. The µ2-dependent contribution is the quantum correction, which
at least within a perturbative framework is assumed to be small. The choice of + or − sign is
determined from whether one is to the left (−), or to right (+) of Gc, in which case the effective
G(µ) decreases or, respectively, increases as one flows away from the UV fixed point towards
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lower momentum. Physically the two solutions represent screening (G < Gc) and antiscreening
(G > Gc). While in the above continuum perturbative calculation both phases, and therefore both
signs, look acceptable, the Euclidean and Lorentzian lattice results rule out the weak coupling
phase as pathological, in the sense that there the lattice collapses into a 2 dimensional degenerate
object [7, 8, 9, 14]. This picture is consistent with the intuitive analysis of the properties of gravity;
in gravity, as you go further in distance from the bare mass, more and more mass is included,
therefore the effective mass should be bigger than the bare mass. 1

The µ2-dependent quantum correction in (2.6) involves a new physical, RG invariant scale ξ =

1/m which cannot be fixed perturbatively, whose size then determines the distance scale relevant
for quantum effects. In terms of the bare coupling G(Λ), it can be expressed as

ξ
−1(G) ≡ m = Λ ·Am e−

∫ G(Λ) dG′
β (G′) , (2.7)

with Am a constant. Note the rather remarkable fact that one scale has disappeared (λ0), and a new
one has appeared dynamically (ξ ). Conversely, ξ−1 = m is an RG invariant and one has

Λ
d

dΛ
m [Λ,G(Λ)] = µ

d
dµ

m [µ,G(µ)] = 0 . (2.8)

The constant Am cannot be determined perturbatively; it needs to be computed by nonperturbative
(e.g., lattice) methods, for example by evaluating invariant correlations at fixed geodesic distances;
it is related to the constant c0 in (2.6) by c0 = 1/(A1/ν

m Gc). In the vicinity of the UV fixed point at
Gc, for which β (Gc) = 0, one can write β (G) ≡ µ

∂

∂ µ
G(µ) ∼ β ′(Gc) (G−Gc) + . . . which by

integration gives ξ−1(G) ∝ Λ |(G−Gc)/Gc |ν , with correlation length exponent ν =−1/β ′(Gc).
Note that the magnitude of ξ is not determined by the magnitude of G. Instead, it is determined by
the distance of the bare G from the UV fixed point value Gc, and as such it can be arbitrarily large.

To summarize the results so far, we showed that the path integral for pure quantum gravity
depends only on one dimensionless combination of couplings, G

√
λ0 in d = 4, and that the bare λ0

is entirely scaled out of the path integral, and out of the physics. It is also clear that the only renor-
malization that is gauge independent and physically meaningful is the one for Newton’s constant
G. Finally, we emphasized the fact that the very same, manifestly covariant, RG treatment clearly
shows the appearance of a new dynamically generated scale ξ [(2.7)].

3. The Gauge Theory Analogy

QED and QCD provide two invaluable illustrative cases where the running of the gauge cou-
pling with energy is not only theoretically well understood, but also verified experimentally. As in
QED, in QCD radiative corrections are known to significantly alter the behavior of the static po-
tential at short distances. Changes in the potential are best expressed in terms of the running strong
coupling constant αS(µ), whose scale dependence is determined by the celebrated β function of
SU(3) QCD with n f fermion flavors

µ
∂ αS

∂ µ
= 2β (αS) = − β0

2π
α

2
S −

β1

4π2 α
3
S −

β2

64π3 α
4
S − . . . , (3.1)

1Whereas in QED, where the virtual electron-positron clouds make the vacuum into dialectric medium, in which as
you go further from the bare charge, the effective charge becomes smaller as it gets screened.
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with coefficients β0 = 11− 2
3 n f , β1 = 51− 19

3 n f , and β2 = 2857− 5033
9 n f +

325
27 n2

f . The solution of
the RG equation (3.1) then gives for the running of αS(µ)

αS(µ) =
4π

β0 ln µ2/Λ2
MS

[
1 − 2β1

β 2
0

ln [ln µ2/Λ2
MS]

ln µ2/Λ2
MS

+ . . .

]
. (3.2)

The nonperturbative scale ΛMS appears as an integration constant of the RG equations, and is
therefore by construction scale independent. Indeed, the physical value of ΛMS cannot be fixed
from perturbation theory alone, and needs to be determined from experiment, which gives ΛMS '
213MeV . In principle, one can solve for ΛMS in terms of the coupling at any scale, and in particular
at the cutoff scale Λ, obtaining

ΛMS = Λe
−
∫

αS(Λ)
dα ′S

2β (α ′S) = Λ

(
β0 αS(Λ)

4π

)β1/β 2
0

e−
2π

β0 αS(Λ) [1 + O(αS(Λ)) ] . (3.3)

Not all physical properties can be computed reliably in weak coupling perturbation theory. In non-
Abelian gauge theories a confining potential is found at strong coupling by examining the behavior
of the Wilson loop, defined for a large closed loop C as 〈W (C)〉 = 〈 trP exp

{
ig
∮

C Aµ(x)dxµ

}
〉,

with Aµ ≡ taAa
µ and the ta’s the group generators of SU(N) in the fundamental representation. In

the pure gauge theory at strong coupling, the leading contribution to the Wilson loop can be shown
to follow an area law for sufficiently large loops

〈W (C)〉 ∼
A→∞

exp(−A(C)/ξ
2) , (3.4)

where A(C) is the minimal area spanned by the planar loop C [10]. The quantity ξ is the gauge
field correlation length, 2 and is essentially the same [up to a factor O(1)] as the inverse of ΛMS in
(3.3)

ΛMS ∼ ξ . (3.7)

The point here is that non-Abelian gauge theories are known to contain a new, fundamental, dynam-
ically generated length scale, in clear analogy to the result of (2.7) for gravity. It is also understood
that the inverse of the correlation length ξ corresponds to the lowest gauge invariant mass excita-
tion in the gauge theory, the scalar glueball (gauge field (gluon in QCD) condensate) with mass
m0 = 1/ξ . As in the case of gravity [see for comparison (2.8)], the correlation length ξ , or equiv-
alently its inverse m ≡ 1/ξ , is known to be a RG invariant, i.e., Λ

d
dΛ

m(Λ,g(Λ)) = 0. It is the
combination of these effects that then leads to an entirely new physical quantum vacuum.

2The universal quantity ξ also appears in a number of other physical observables, including the exponential decay
of the Euclidean correlation function of two infinitesimal loops separated by a distance |x|,

Gloop−loop(x) = 〈 trP exp
{

ig
∮

Cε

Aµ (x′)dx′µ
}
(x) trP exp

{
ig
∮

Cε

Aµ (x′′)dx′′µ
}
(0)〉c . (3.5)

Here the Cε ’s are two infinitesimal loops centered around x and 0 respectively, suitably defined on the lattice as elemen-
tary square loops, and for which one has at sufficiently large separations

Gloop−loop(x) ∼
|x|→∞

exp(−|x|/ξ ) . (3.6)
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4. Gravitational Wilson Loop

Since the bare cosmological constant can be entirely scaled out of the theory, the legitimate
question arises: how can a nonvanishing (and indeed small) effective large-scale cosmological
constant arise out of the field-theoretic treatment of quantum gravity? The key to this answer lies
in the fact that the lattice field theory itself contains an entirely new dynamically generated scale
ξ , see Eqs. (2.7) and (2.9).

To see this, consider elementary parallel transports on the lattice. Between any two neigh-
boring pair of simplices s,s+ 1 one can associate a Lorentz transformation Rµ

ν(s,s+ 1). Such a
transformation can be directly related to the continuum path-ordered (P) exponential of the inte-
gral of the local affine connection Γλ

µν(x) via

Rµ

ν =
[
P e

∫
path

between simplices
Γλ dxλ ]µ

ν

. (4.1)

Further one can consider a closed lattice path passing through a large number of simplices s,
and spanning a large near-planar closed loop C. Along C the overall rotation matrix is given by

Rµ

ν(C) =
[
∏s⊂C Rs,s+1

]µ

ν

. In a semiclassical picture, if the curvature of the manifold is small,

the expression for the full rotation matrix R(C) associated with the large near-planar loop can be
rewritten, using the Stoke’s theorem, in terms of a surface integral of the large scale Riemann
tensor, projected along the surface area element bivector Aαβ (C) associated with the loop,

Rµ

ν(C) ≈
[

e
1
2
∫

S R ··αβ
Aαβ (C)

]µ

ν

. (4.2)

The expectation value of the gravitational Wilson loop can be defined in [11, 12, 13] as 〈W (C)〉 =
〈 tr[BC R1 R2 ... ... Rn ] 〉, where the Ris are the rotation matrices along the path, and BC related
to a constant bivector characterizing the geometric orientation of C. One can then show, by using
known properties of the Haar measure for the rotation group, that, at least for strong coupling
and large area, the gravitational Wilson loop follows an area law, in the same form as in (3.4)
with ξ determined, by scaling and dimensional arguments, to be the nonperturbative gravitational
correlation length [see (2.7)]. The last result follows from tiling the interior of the given loop by a
minimal surface built up of elementary transport loops, in close analogy to the gauge theory case.

One can now compare the quantum result at strong coupling, i.e., the area law, with the semi-
classical result that follows from (4.2), which is

W (C) ∼ Tr
(

BC exp
{

1
2

∫
S(C)

R ··µν Aµν

C

})
. (4.3)

Then for a smooth background classical manifold with constant or near-constant large-scale cur-
vature, Rµνλσ = 1

3 λ (gµν gλσ − gµλ gνσ ), one immediately obtains from the identification of the
area terms in the two Wilson loop expressions the following result for the average semiclassical
curvature at large scales

R ∼ +1/ξ
2 . (4.4)

An equivalent way of phrasing the statement of (4.4) uses the classical field equations in the absence
of matter, R = 4λ . The latter suggests one should view 1/ξ 2 as the observed scaled cosmological
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constant,
1
3

λobs ' +
1

ξ 2 . (4.5)

This last quantity can then be considered as a measure of the gravitational vacuum energy, in anal-
ogy to the non-Abelian gauge theory vacuum condensate result, 〈F2

µν〉 ' 1/ξ 4, whose gravity
analog can be written, equivalently, as 〈R〉 ∝ 1/ξ 2. The nonperturbative treatment of lattice quan-
tum gravity has added one more ingredient to the puzzle: while the bare cosmological constant λ0

can be completely scaled out of the problem, a new RG invariant scale ξ of (2.7) appears, and is
identified with the effective cosmological constant (4.5).

5. Conclusions

We examined the role of the cosmological constant in pure Einstein gravity. The key message
is that the cosmological constant cannot run with scale, if general covariance is preserved. Instead,
evidence from the nonperturbative path integral treatment of quantum gravity points to the fact that
the observed effective long-distance cosmological is a renormalization group invariant quantity,
related to the fundamental RG scale ξ , and thus to a vacuum condensate of the gravitational field.
In analogy to the corresponding scale for non-Abelian gauge theories, ξ cannot run, and represents
a dynamically generated, nonperturbative mass-like parameter. That this is possible is a highly
nontrivial result of the renormalization group treatment, of the Callan-Symanzik RG equations for
G, and of the phase structure of four dimensional gravity.
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