From Quantum Cellular Automata to Quantum Field Theory

Alessandro Bisio*
Università degli studi di Pavia, Dipartimento di Fisica
E-mail: alessandro.bisio@unipv.it

This talk is based on Refs. [1,2,3]. We explore the idea that Quantum Field Theory could be grounded on a Quantum Cellular Automaton (QCA) model (i.e. a discrete unitary evolution of a lattice of quantum systems). In the $1+1$-dimensional case, we show that the translation, parity and time-reversal symmetries lead to QCA model which recovers 1D Dirac field equation in the large scale limit. The discreteness of this model implies a breakdown of Lorentz covariance, which is replaced by a doubly special relativity model with an invariant length. Finally we will discuss the phenomenology of the QCA model and extensions to the three dimensional and interacting cases.

References

Frontiers of Fundamental Physics 14 - FFP14,
15-18 July 2014
Aix Marseille University (AMU) Saint-Charles Campus, Marseille

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/