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Gravitational and electromagnetic fields of the over-intaKerr-Newman (KN) solution corre-
spond to the fields of an electron. However, this metric hapalbgical defect, which creates the
singular and two-sheeted space-time. This defect is regglikey a bubble-core of the KN solution,
which is formed of the supersymmetric false-vacuum state@Higgs field. The field model of
this bubble has much in common with the famous MIT and SLAC imaglels, but the model
is geometrically inverted - the Higgs condensate is loedlin the core, leaving undisturbed the
external solution KN. By analysis of the consistent solusiof the Dirac equation, we obtain that
two-sheeted Kerr-Schild geometry ensures the space-tipkementation of the SM-concept on
the originally massless leptons. Similar to other bag mmdke spinning KN bag is deformed at
rotations. For parameters of an electron it turns into a¢lipsoidal disk, sharp border of which
forms a ring-string similar to solitonic strings of the lowedrgy string theory. This string admits
traveling waves, which deform surface of the bag and cretgvaling singular pole, reproducing
‘zitterbewegung’ of the Dirac electron. The KN bag model ¢times the dressed and point-like
electron in a single gravitating quark-string-bag compiexvhich the point-like electron may be
considered as a single quark confined by the bag, or as a aimgnd point of the ring-string.
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1. introduction

It has been discussed for long time that black holes (BH)Ishoeiconnected with elementary
particles. However, the giant spin/mass and charge/méiss & the particlesJ/m ~ 10* and
e/m~ 1072 in the dimensionless units = ¢ = h = 1) show that the black hole horizons should
disappear, and the particles can only be associated witlvemratating geometry KN, without
horizons. This space has gyromagnetic rgtie 2 as in the Dirac electron, and therefore the over-
rotating Kerr-Newman (KN) solution really reproduces thawviational and electromagnetic field
of an electron. However, this space-time has a topologiedal — the naked Kerr’s singular ring,
which is a branch line of space inte/o sheets:the sheet of advanced and sheet of the retarded
fields. The Kerr-Schild form of metric [1]

mr—¢€?/2

L 1.1
r24+a2cos 6 (3.1)

Ouv = Nuv +2Hkyky, H
in which n, is metric of auxiliary Minkowski spacd?, (signature(— + ++)), H is a scalar
function, r and 6 are ellipsoidal coordinates ang is a null vector fieldk, k" = 0, forming a
vortex polarization of Kerr space-time — the Principal NObngruence (PNC)7". . The surface
r = 0 represents a disklike "door" from negative sheet O to positive one > 0. The smooth
extension of the solution from retarded to advanced shegeftier with smooth extension of the
Kerr PNC) occurs via disk = 0 spanned by the Kerr singular ring= 0, cosf = 0 (see fig.1). The
null vector fieldskH*(x) turns out to be different on these sheets, and two differgihtangruences
=, create two different metriag;, = nyy + 2Hk;kj on the same Minkowski background.

The mysterious two-sheeted structure of the
Kerr geometry caused searching diverse models
for source of the KN solution avoiding negative
sheet. Besides, singular metric conflicts with ba-
sic principles of quantum theory, which is settled
on the flat space-time and negligible gravitation.
Resolution of this conflict requires "regulariza-
tion" of space-time, which has to be dopefore
guantization, i.e. on the classical lev8lingular
region has to be excised together with negativeFigure 1: Kerr congruence forms vortex polariza-
sheet and replaced by a regular core with a flattion of the Kerr space. K_err singular ring is the
. . . . branch line of Kerr space into two sheets.
internal metricn,,. The internal metric should
be matched with external KN solution. The consistent mathias obtained by C. Lopez (1984),
who suggested the source of KN solution as a charged andéhigptaicuum bubble, boundary of
whichr = Ris determined by the conditiad (r) = 0, or

e

:fn.

=TIe

(1.2)

Sincer is Kerr’s ellipsoidal coordinate, the boundary of bubbleers the Kerr singular foR > 0,
and the bubble forms a thin rotating disk of the Compton mdiu- a = h/mcand its thickness
R is equal to the known classical radius of electrgn= €/2mc, so that the oblateness of the
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disk is equal to the fine structure constagftr, ~ € = a ~ 137-1. The bubble-source formed by
Lépez boundary was generalized in [3]) to a gravitatingtenlimodel [2, 3] which was build as a
domain-wall bubble confining the Higgs field in a supercortitigcfalse-vacuum state.

Recently, [4] this model has been recognized gsawitating bag modelhich has much in
common with known MIT and SLAC bag models, [5, 6], howeveayibids the well-known conflict
between Gravity and Quantum theory by dividing their sphearfeinfluence. Region outside the
disk-like bubbley > R, is controlled by the classical KN solution. Near the bougdzrthe disk,

r ~ R, gravity vanishes, and metric matches with flat metric ingiigedisk, where flatness of space
is provided by false-vacuum state of the Higgs fi#lk). The vacuum expectation value (vev) of
this statec =< |®| > is controlled by the Higgs mechanism of spontaneously brakenmetry.
Thus,Quantum theory works in the flat space inside the bubble evihd classical KN gravity acts
outside the Compton zone formed by the bubble boundafh&Higgs condensate regulates also
the KN electromagnetic (EM) field, pushing it from inside th&bble to domain wall boundary,
which provides flatness of internal space required by qurarheory.

2. Peculiarities of the phase transition for gravitating bay model

The quartic potentiaV/ (|®|) = g(ao — n?)? for self-interaction of the Higgs field is used in
many nonperturbative models of the extended particles,irmparticular, in the MIT and SLAC
bag models. It creates the bag as a cavity (or bubble) in tggdHtondensate which fills all the
external space;, > R. As a result, the gauge symmetry of the external gravitatiand electro-
magnetic fields turns out to be broken. Gravitating bag moetglires inverse situation: the Higgs
condensate should be concentrated inside therbadg, leaving the unbroken gauge symmetry in
external space, > R. This requires a more complex scheme of phase transition [2].

Supersymmetric phase transitionrequires three chiral field®(), i = 1,2,3. One of them,
say®  is identified as the Higgs field?. The bag is formed of a domain wall, and the corre-
sponding phase transition may be considered in a flat sjjaee-At this stage, we also ignore the
EM field. We set new notations#’,Z, %) = (&1, @2 ®3). The required potentiad (r) = 5; |GW |2
is obtained by the known supersymmetric scheme [7] from mpemotentiaW(d)i,d_)i) = Z(Zf —
n?)+(Z+ u)%%z, whereu andn are real constants. The conditighV = 0 determines two vac-
uum states separated by a positive spike of the potanirmathe transition zon®— 6 < r < R—9:

() external vacuumr, > R+ 9, V(r) = 0, with vanishing Higgs field# = 0, and

(1) internal false-vacuumr, < R— 9,V (r) = 0, with broken symmetry,.7#’| = n = const

(1) intermediate region of the domain wall phase tramsitR— o < r < R— 9.

Inside the bag the space is flat and the EM field vanishes, bigiegsymmetry is broken. The Higgs
condensate forms a supersymmetric superconducting atsgism state.

Transition zone (lll). The space may still be considered as flat, but the Lagrangidndes
interaction of the Higgs condensate with EM field. Field maafehis type was used by Nielsen-
Olesen for a vortex string in superconducting media [8],

1 1
o=~ ZFuFH! + 5 (Fu) (T4 H)" +V(|#]), 2.1)

where 2, = U, +ieA, is a covariant derivativelr,,, = Ay ;, — Ay v, and, = g, is reduced to
derivative in flat space with a flat D’Alembertiat)d¥ = [J. For interaction of the complex Higgs
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field 27 (x) = |.22 (x)|€X™ with the Maxwell field we obtain the following complicatedstgms of
the nonlinear differential equations

DDV # = 9,;V, (2.2)
DAL =1, = €22 (X,u+eA). (2.3)

Inside the bag we should haljge= 0, and (2.3) yields two remarkable consequences, [2, 3]

(A) The vortex of the KN vector potentidl,, forms a quantum Wilson loop placed along the
border of the disk-like bag, which leadsdoantization of the angular momentum

(B) Phase of the Higgs field should compensate the compdigenhich leads tascillations
of the Higgs field with the frequenayp = 2m.

3. Fermionic sector

The bag models give significant progress in the fermionitosesf the extended particle-like
solutions. In the SLAC bag theory, [6], the Dirac equatiameiiacting with the classical vev of the
Higgs fieldo-field take the form

(iy'oy—go)y =0, (3.1)
whereg is a dimensionless coupling parameter. One sees that the fétd ) acquires from the
Higgs field effective massi= go, which takes maximal value= gn outside the bag and vanishes
inside the bag. The quarks are confined, getting inside thaaore favorable energetic position,
and this is the principal idea of the confinement mechanismgFavitating bag model, geometric
position of the Higgs condensate is inverted “inside outidgwe unbroken the gravitational and EM
fields of the external KN solution. Thus, the Dirac equatialh rave nonzero mass = gn inside
the bag, while outside the bag it will be massless. In the Wagls the Dirac equation splits into
the left and right chiral equations for the spinor composeritthe Dirac bispinok/T = (cpa,)?d).

ol i0uX% =m@y, 0H9Tid, @y = mx©. (3.2)
Outside the bag, > R— 9, the mass vanishes and these equations become independent
ok idux® =0, aH9%d,q@ =0. (3.3)

They must be consistent with spinor structure of the extdéhasolution, which is determined by
the Kerr theorem [4]. The KN solution may be represented énKbrr-Schild (KS) form through
the both Kerr congruences, the outgoiqg or the ingoingk,, but not the both simultaneously.
Taking for thephysical sheetf the KN solution the outgoing Kerr congruenlc@, corresponding
to the retarded EM field and the metggv, we obtain that the advanced Kerr congruence and EM
field become inconsistent with this physical sheet. Beimgnald with another congruenég, the
advanced fields should be positioned on a separate shedt different metricg,,, .

This problem disappears inside the bag, where 0, the space is flag™ = n,, and differ-
ence between these two metrics disappears. Due to comsistenditions the gravitational inter-
action drops out, and the Dirac equations take the ordinatysflace-time form. The consistency
conditionsk!y, W = O turn into equations for eigenfunctions of the helicity ker

(k-o)p=09, (k-o)x=-X. (3.4)
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One sees that the spinagsand x have opposite helicity, forming the "left-handeg"and "right-
handed" helicity states, aligned with the outgoing nulédiion kﬁ = (1,k) and ingoing direction
k, = (1,—k) correspondingly. The requirement of the consistency oftinac solutions with KN
geometry enforces us to return the removed two-sheetectisteuof the Kerr geometry, this time
to restore it outside the KN source. Therefore, two masaisd spinorsg, and x? should live
on the different sheets of the external KN solution. In thedimce inside the bag, they are joined
in a single Dirac bispinor and obtain mass from the Higgs fiéddvukawa coupling. Two-sheeted
structure of the Kerr-Schild geometry ensures the space-tealization of the SM-concept, in
which the originally massless leptons acquire mass frontiigs field.

Variation of the mass term on the regions of space is a newrteaif the Dirac equation
following from theory of the bag model3.he Dirac wave function, solution of the Dirac equation
with variable mass term, avoids the region with a large baess) and tends to get an energetically
favorable positionln the SLAC bag model [6] this problem is solved by variaticeaproach. The
corresponding Hamiltonian is

H(x) = WT(%aﬁJrgBa)LP, (3.5)

and the energetically favorable wave function has to beaeted by minimization of the averaged
Hamiltonian.Z = [ d®xH(x) under the normalization conditiofd3xW' (x)W(x) = 1. It yields

(Fa-D+gpo)w =&, (36)

where& appears as the Lagrangian multiplier enforcing the nomattin condition. Similar to
results of the SLAC-bag model, one expects that the Diraevitanction will not penetrate deep
in the region of large bare mass= gn, and will concentrate in a narrow transition zone at the bag
borderR— & <r <R+ 4. As it motivated in [6], narrow concentration of the Diracwggunction
is admissible for scalar potential which does not lead tdkileén paradox.

The exact solutions of this kind are known only for two-dirsi@mal case, and the correspond-
ing variational problem should apparently be solved nucadlyi by using the ansat¥ = f(X)W(x),
in which f(x) is a variable factor for the Dirac solution based on the Weilars gy, X? consistent
with the corresponding outgoing and ingoing Kerr congresnc

4. Stringy deformations of bag: unification of the bare and dessed electron

Taking the bag model conception, we should also accept thardigal point of view that
the bags are soft and may easily be deformed [6]. By defoamgtthe bags may form stringy
structures. The typical deformations of the bags are raudtidlrotational excitations forming the
flux-tubes of the open strings. The old Dirac’'s model of antérgible" spherical electron [9]
may be considered as a prototype of the bag model with splilgreymmetric radial excitations.
The bag-like source of the KN solution without rotatian= 0, represents the Dirac model of a
spherical "extensible" electron, which has in rest thesitas electron radiuR = re = €/2m. The
KN rotating disk-like bag may be considered as the Dirac liegched by rotation to the disk of
Compton radiusa = h/2mc, which corresponds to the zone of vacuum polarization of essed”
electron. The degree of oblateness of the KN bag is cloge401371. Sharp boundary of this
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disk plays the role of a ring-string, which may be accompaiig traveling waves. Field structure
of this string, [10], is similar to that of fundamental styirobtained by Sen solution to low energy
string theory.

Boundary of the disk is very close to position of the Kerr silag ring, and regularization of
the KN source gives to this string the cut-off paraméet re, (1.2). In accord with [11, 12] this
string may carry the EM traveling waves which deform the badase. The EM excitations of
the Kerr background [1] are defined by analytic functie: (Y, 1)/P?> whereY = é‘l’tang is a
complex projective angular variable=t —r —iacos6 is a complex retarded-time parameter and
p=2% 2(1+Y\7) for the Kerr geometry at rest. Vector potential is determibg functiony as
follows [1]

Aydx = —Re[(%%)eﬁxdﬂ, X = 2/(1—|—YY_)_2l,UdY (4.1)

The simplest functiony = —e, corresponding to stationary KN solution, creates a frozemular
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Figure 2: Cut-off parameter is determined by
distanceR = re from the bag boundary to sin-
gular ring. A) Axially symmetric KN solution,
R = €/2m. B) Deformation of the KN bag by
stringy excitation.

Figure 3: Circular light-like string propagating
along the bag border joined with time-like zero-
mode of the KN solution at singular pole.

EM wave, which is locally plane and “propagates” along therksengular ring. By regularization,

it obtains the constant cut-off parameRE= re, see Fig.2.1A. It is a zero-mode excitation of the
regularized Kerr string. Along with many other possibléngly waves, interesting effect shows the
simple wave solutions

1 :e(1+$é°”). (4.2)
Functiony acts on the metric through the functiéh
_ mr—|yf?/2
" r24-a?cog6 (4.3)

As we have seen in sec.2, the conditidn= 0 determines the boundary of digk= |@|?/2m,
which acts as the cut-off parameter for EM field. One seesdblation (4.2) takes in equatorial
plane co® = 0 the formy = e(1+ e (»~@)) and the cut-off parametd® = |y[2/2m = € (1+
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cog @ — wt) depends orp — wt. VanishingR at ¢ = wt creates singular pole which circulates
along the ring-string, reproducing the known zitterbewwgof the Dirac electron. This pole may
be interpreted as a point-like electron, or as a light-likary confined in the bag.

5. Conclusion

The mysterious problem of the source for two-sheeted Kesngdry leads to a gravitating
soliton model, which has to retain the external long-rangevitational and EM field of KN so-
lution. This requires a supersymmetric model of phase itiansin which the Higgs condensate
forms a superconducting core of the spinning particlegigkition. The resulting particle has much
in common with the famous MIT and SLAC bag models and repitesespace-time realization of
the Standard Model. Two sheets of the Kerr geometry turnmbetthe necessary carriers of the
left and right leptons of the SM, in which they are originathassless and get the mass from the
Higgs condensate through Yukawa coupling.

Similar to other bag models, the KN bag is pliant to deforovai Spinning bag takes the form
of a thin disk, sharp boundary of which represents a ringgtsupporting traveling waves. The
Compton radius of the bag indicates that it should be assatcisith a dressed electron. Traveling
waves of the ring-string deform the bag creating a singutde p- the circulating end point of
the ring-string, which may also be interpreted as a quarkimed in the bag. The resulting bag
model forms a coherent bag-string-quark complex whichegrtite dressed and point-like electron,
reproducing the known puzzle of zitterbewegung.
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