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From Kerr-Newman Black Hole to Spinning Particle:
Where is There Hidden the Dirac Equation?
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Gravitational and electromagnetic fields of the over-rotating Kerr-Newman (KN) solution corre-

spond to the fields of an electron. However, this metric has a topological defect, which creates the

singular and two-sheeted space-time. This defect is regulated by a bubble-core of the KN solution,

which is formed of the supersymmetric false-vacuum state ofthe Higgs field. The field model of

this bubble has much in common with the famous MIT and SLAC bagmodels, but the model

is geometrically inverted - the Higgs condensate is localized in the core, leaving undisturbed the

external solution KN. By analysis of the consistent solutions of the Dirac equation, we obtain that

two-sheeted Kerr-Schild geometry ensures the space-time implementation of the SM-concept on

the originally massless leptons. Similar to other bag models, the spinning KN bag is deformed at

rotations. For parameters of an electron it turns into a thinellipsoidal disk, sharp border of which

forms a ring-string similar to solitonic strings of the low enetrgy string theory. This string admits

traveling waves, which deform surface of the bag and create atraveling singular pole, reproducing

‘zitterbewegung’ of the Dirac electron. The KN bag model combines the dressed and point-like

electron in a single gravitating quark-string-bag complex, in which the point-like electron may be

considered as a single quark confined by the bag, or as a singular end point of the ring-string.
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1. introduction

It has been discussed for long time that black holes (BH) should be connected with elementary
particles. However, the giant spin/mass and charge/mass ratios of the particles (J/m∼ 1044 and
e/m∼ 1022 in the dimensionless unitsG= c= h̄= 1) show that the black hole horizons should
disappear, and the particles can only be associated with an over-rotating geometry KN, without
horizons. This space has gyromagnetic ratiog= 2 as in the Dirac electron, and therefore the over-
rotating Kerr-Newman (KN) solution really reproduces the gravitational and electromagnetic field
of an electron. However, this space-time has a topological defect – the naked Kerr’s singular ring,
which is a branch line of space intotwo sheets:the sheet of advanced and sheet of the retarded
fields. The Kerr-Schild form of metric [1]

gµν = ηµν +2Hkµkν , H =
mr−e2/2

r2+a2cos2 θ
(1.1)

in which ηµν is metric of auxiliary Minkowski spaceM4, (signature(−+++)), H is a scalar
function, r and θ are ellipsoidal coordinates andkµ is a null vector field,kµkµ = 0, forming a
vortex polarization of Kerr space-time – the Principal NullCongruence (PNC)K . . The surface
r = 0 represents a disklike "door" from negative sheetr < 0 to positive oner > 0. The smooth
extension of the solution from retarded to advanced sheet (together with smooth extension of the
Kerr PNC) occurs via diskr = 0 spanned by the Kerr singular ringr = 0, cosθ = 0 (see fig.1). The
null vector fieldskµ±(x) turns out to be different on these sheets, and two different null congruences
K ±, create two different metricsg±µν = ηµν +2Hk±µ k±ν on the same Minkowski background.
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Figure 1: Kerr congruence forms vortex polariza-
tion of the Kerr space. Kerr singular ring is the
branch line of Kerr space into two sheets.

The mysterious two-sheeted structure of the
Kerr geometry caused searching diverse models
for source of the KN solution avoiding negative
sheet. Besides, singular metric conflicts with ba-
sic principles of quantum theory, which is settled
on the flat space-time and negligible gravitation.
Resolution of this conflict requires "regulariza-
tion" of space-time, which has to be donebefore
quantization, i.e. on the classical level. Singular
region has to be excised together with negative
sheet and replaced by a regular core with a flat
internal metricηµν . The internal metric should
be matched with external KN solution. The consistent mathing was obtained by C. López (1984),
who suggested the source of KN solution as a charged and rotating vacuum bubble, boundary of
which r = R is determined by the conditionH(r) = 0, or

R= re =
e2

2m
. (1.2)

Sincer is Kerr’s ellipsoidal coordinate, the boundary of bubble covers the Kerr singular forR> 0,
and the bubble forms a thin rotating disk of the Compton radius rc ∼ a = h̄/mcand its thickness
R is equal to the known classical radius of electronre = e2/2mc, so that the oblateness of the
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disk is equal to the fine structure constantre/rc ∼ e2 = α ∼ 137−1. The bubble-source formed by
López boundary was generalized in [3]) to a gravitating soliton model [2, 3] which was build as a
domain-wall bubble confining the Higgs field in a superconducting false-vacuum state.

Recently, [4] this model has been recognized as agravitating bag modelwhich has much in
common with known MIT and SLAC bag models, [5, 6], however, itavoids the well-known conflict
between Gravity and Quantum theory by dividing their spheres of influence. Region outside the
disk-like bubble,r > R, is controlled by the classical KN solution. Near the boundary of the disk,
r ∼ R, gravity vanishes, and metric matches with flat metric insidethe disk, where flatness of space
is provided by false-vacuum state of the Higgs fieldΦ(x). The vacuum expectation value (vev) of
this stateσ =< |Φ| > is controlled by the Higgs mechanism of spontaneously broken symmetry.
Thus,Quantum theory works in the flat space inside the bubble, while the classical KN gravity acts
outside the Compton zone formed by the bubble boundary R. The Higgs condensate regulates also
the KN electromagnetic (EM) field, pushing it from inside thebubble to domain wall boundary,
which provides flatness of internal space required by quantum theory.

2. Peculiarities of the phase transition for gravitating bag model

The quartic potentialV(|Φ|) = g(σ̄σ −η2)2 for self-interaction of the Higgs field is used in
many nonperturbative models of the extended particles, andin particular, in the MIT and SLAC
bag models. It creates the bag as a cavity (or bubble) in the Higgs condensate which fills all the
external space,r > R. As a result, the gauge symmetry of the external gravitational and electro-
magnetic fields turns out to be broken. Gravitating bag modelrequires inverse situation: the Higgs
condensate should be concentrated inside the bag,r < R, leaving the unbroken gauge symmetry in
external space,r > R. This requires a more complex scheme of phase transition [2].

Supersymmetric phase transitionrequires three chiral fieldsΦ(i), i = 1,2,3. One of them,
sayΦ(1), is identified as the Higgs fieldH . The bag is formed of a domain wall, and the corre-
sponding phase transition may be considered in a flat space-time. At this stage, we also ignore the
EM field. We set new notations(H ,Z,Σ)≡ (Φ1,Φ2,Φ3). The required potentialV(r) = ∑i |∂iW|2

is obtained by the known supersymmetric scheme [7] from the superpotentialW(Φi ,Φ̄i) = Z(ΣΣ̄−

η2)+(Z+µ)H H̄ , whereµ andη are real constants. The condition∂iW = 0 determines two vac-
uum states separated by a positive spike of the potentialV in the transition zoneR−δ < r < R−δ :

(I) external vacuum,r > R+δ , V(r) = 0, with vanishing Higgs fieldH = 0, and
(II) internal false-vacuum,r < R−δ , V(r) = 0, with broken symmetry,|H |= η = const.
(III) intermediate region of the domain wall phase transition R−δ < r < R−δ .

Inside the bag the space is flat and the EM field vanishes, but gauge symmetry is broken. The Higgs
condensate forms a supersymmetric superconducting false-vacuum state.

Transition zone (III). The space may still be considered as flat, but the Lagrangian includes
interaction of the Higgs condensate with EM field. Field model of this type was used by Nielsen-
Olesen for a vortex string in superconducting media [8],

LNO =−
1
4

FµνFµν +
1
2
(DµH )(Dµ

H )∗+V(|H |), (2.1)

whereDµ = ∇µ + ieAµ is a covariant derivative,Fµν = Aν ,µ −Aµ ,ν , and∇µ ≡ ∂µ is reduced to
derivative in flat space with a flat D’Alembertian∂ν∂ ν = �. For interaction of the complex Higgs
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field H (x) = |H (x)|eiχ(x) with the Maxwell field we obtain the following complicated systems of
the nonlinear differential equations

DνDν
H = ∂

H̄
V, (2.2)

�Aµ = Iµ = e|H |2(χ ,µ +eAµ). (2.3)

Inside the bag we should haveIµ = 0, and (2.3) yields two remarkable consequences, [2, 3]:
(A) The vortex of the KN vector potentialAµ forms a quantum Wilson loop placed along the

border of the disk-like bag, which leads toquantization of the angular momentum,
(B) Phase of the Higgs field should compensate the componentA0 which leads tooscillations

of the Higgs field with the frequencyω = 2m.

3. Fermionic sector

The bag models give significant progress in the fermionic sector of the extended particle-like
solutions. In the SLAC bag theory, [6], the Dirac equations interacting with the classical vev of the
Higgs fieldσ -field take the form

(iγµ∂µ −gσ)ψ = 0, (3.1)

whereg is a dimensionless coupling parameter. One sees that the Dirac fieldψ acquires from the
Higgs field effective massm= gσ , which takes maximal valuem= gη outside the bag and vanishes
inside the bag. The quarks are confined, getting inside the bag a more favorable energetic position,
and this is the principal idea of the confinement mechanism. For gravitating bag model, geometric
position of the Higgs condensate is inverted “inside out” tohave unbroken the gravitational and EM
fields of the external KN solution. Thus, the Dirac equation will have nonzero massm= gη inside
the bag, while outside the bag it will be massless. In the Weylbasis the Dirac equation splits into
the left and right chiral equations for the spinor components of the Dirac bispinorΨ† = (φα , χ̄ α̇).

σ µ
αα̇ i∂µ χ̄ α̇ = mφα , σ̄ µα̇α i∂µφα = mχ̄ α̇ . (3.2)

Outside the bag,r > R−δ , the mass vanishes and these equations become independent

σ µ
αα̇ i∂µ χ̄ α̇ = 0, σ̄ µα̇α i∂µφα = 0. (3.3)

They must be consistent with spinor structure of the external KN solution, which is determined by
the Kerr theorem [4]. The KN solution may be represented in the Kerr-Schild (KS) form through
the both Kerr congruences, the outgoingk+µ or the ingoingk−µ , but not the both simultaneously.
Taking for thephysical sheetof the KN solution the outgoing Kerr congruencek+µ , corresponding
to the retarded EM field and the metricg+µν , we obtain that the advanced Kerr congruence and EM
field become inconsistent with this physical sheet. Being aligned with another congruencek−µ , the
advanced fields should be positioned on a separate sheet which different metricg−µν .

This problem disappears inside the bag, whereH = 0, the space is flat,g± = ηµν , and differ-
ence between these two metrics disappears. Due to consistency conditions the gravitational inter-
action drops out, and the Dirac equations take the ordinary flat space-time form. The consistency
conditionskµγµΨ = 0 turn into equations for eigenfunctions of the helicity operator

(k ·σ)φ = φ , (k ·σ)χ =−χ . (3.4)
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One sees that the spinorsφ andχ have opposite helicity, forming the "left-handed"φ and "right-
handed" helicity states, aligned with the outgoing null directionk+µ = (1,k) and ingoing direction
k−µ = (1,−k) correspondingly. The requirement of the consistency of theDirac solutions with KN
geometry enforces us to return the removed two-sheeted structure of the Kerr geometry, this time
to restore it outside the KN source. Therefore, two masslessWeyl spinorsφα and χ̄ α̇ should live
on the different sheets of the external KN solution. In the flat space inside the bag, they are joined
in a single Dirac bispinor and obtain mass from the Higgs fieldvia Yukawa coupling. Two-sheeted
structure of the Kerr-Schild geometry ensures the space-time realization of the SM-concept, in
which the originally massless leptons acquire mass from theHiggs field.

Variation of the mass term on the regions of space is a new feature of the Dirac equation
following from theory of the bag models.The Dirac wave function, solution of the Dirac equation
with variable mass term, avoids the region with a large bare mass, and tends to get an energetically
favorable position.In the SLAC bag model [6] this problem is solved by variational approach. The
corresponding Hamiltonian is

H(x) = Ψ†(
1
i
~α ·~∇+gβσ)Ψ, (3.5)

and the energetically favorable wave function has to be determined by minimization of the averaged
HamiltonianH =

∫
d3xH(x) under the normalization condition

∫
d3xΨ†(x)Ψ(x) = 1. It yields

(
1
i
~α ·~∇+gβσ)Ψ = E Ψ, (3.6)

whereE appears as the Lagrangian multiplier enforcing the normalization condition. Similar to
results of the SLAC-bag model, one expects that the Dirac wave function will not penetrate deep
in the region of large bare massm= gη , and will concentrate in a narrow transition zone at the bag
borderR−δ < r < R+δ . As it motivated in [6], narrow concentration of the Dirac wave function
is admissible for scalar potential which does not lead to theKlein paradox.

The exact solutions of this kind are known only for two-dimensional case, and the correspond-
ing variational problem should apparently be solved numerically by using the ansatz̃Ψ= f (x)Ψ(x),
in which f (x) is a variable factor for the Dirac solution based on the Weyl spinorsφα , χ̄ α̇ consistent
with the corresponding outgoing and ingoing Kerr congruences.

4. Stringy deformations of bag: unification of the bare and dressed electron

Taking the bag model conception, we should also accept the dynamical point of view that
the bags are soft and may easily be deformed [6]. By deformations the bags may form stringy
structures. The typical deformations of the bags are radialand rotational excitations forming the
flux-tubes of the open strings. The old Dirac’s model of an "extensible" spherical electron [9]
may be considered as a prototype of the bag model with spherically symmetric radial excitations.
The bag-like source of the KN solution without rotation,a = 0, represents the Dirac model of a
spherical "extensible" electron, which has in rest the classical electron radiusR= re = e2/2m. The
KN rotating disk-like bag may be considered as the Dirac bag stretched by rotation to the disk of
Compton radius,a= h̄/2mc, which corresponds to the zone of vacuum polarization of a “dressed”
electron. The degree of oblateness of the KN bag is close toα = 137−1. Sharp boundary of this
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disk plays the role of a ring-string, which may be accompanied by traveling waves. Field structure
of this string, [10], is similar to that of fundamental string, obtained by Sen solution to low energy
string theory.

Boundary of the disk is very close to position of the Kerr singular ring, and regularization of
the KN source gives to this string the cut-off parameterR= re, (1.2). In accord with [11, 12] this
string may carry the EM traveling waves which deform the bag surface. The EM excitations of
the Kerr background [1] are defined by analytic functionA= ψ(Y,τ)/P2 whereY = eiφ tanθ

2 is a
complex projective angular variable,τ = t − r − iacosθ is a complex retarded-time parameter and
P= 2−1/2(1+YȲ) for the Kerr geometry at rest. Vector potential is determined by functionψ as
follows [1]

Aµdxµ =−Re[(
ψ

r + iacosθ
)e3+ χdȲ], χ = 2

∫
(1+YȲ)−2ψdY (4.1)

The simplest functionψ = −e, corresponding to stationary KN solution, creates a frozen circular
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Figure 2: Cut-off parameter is determined by
distanceR= re from the bag boundary to sin-
gular ring. A) Axially symmetric KN solution,
R= e2/2m. B) Deformation of the KN bag by
stringy excitation.
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Figure 3: Circular light-like string propagating
along the bag border joined with time-like zero-
mode of the KN solution at singular pole.

EM wave, which is locally plane and “propagates” along the Kerr singular ring. By regularization,
it obtains the constant cut-off parameterR= re, see Fig.2.1A. It is a zero-mode excitation of the
regularized Kerr string. Along with many other possible stringy waves, interesting effect shows the
simple wave solutions

ψ = e(1+
1
Y

eiωτ). (4.2)

Functionψ acts on the metric through the functionH

H =
mr−|ψ |2/2
r2+a2cos2θ

. (4.3)

As we have seen in sec.2, the conditionH = 0 determines the boundary of diskR= |ψ |2/2m,

which acts as the cut-off parameter for EM field. One sees thatsolution (4.2) takes in equatorial
plane cosθ = 0 the formψ = e(1+e−i(φ−ωt)), and the cut-off parameterR= |ψ |2/2m= e2

m(1+
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cos(φ − ωt) depends onφ −ωt. VanishingR at φ = ωt creates singular pole which circulates
along the ring-string, reproducing the known zitterbewegung of the Dirac electron. This pole may
be interpreted as a point-like electron, or as a light-like quark confined in the bag.

5. Conclusion

The mysterious problem of the source for two-sheeted Kerr geometry leads to a gravitating
soliton model, which has to retain the external long-range gravitational and EM field of KN so-
lution. This requires a supersymmetric model of phase transition, in which the Higgs condensate
forms a superconducting core of the spinning particle-likesolution. The resulting particle has much
in common with the famous MIT and SLAC bag models and represents a space-time realization of
the Standard Model. Two sheets of the Kerr geometry turn out to be the necessary carriers of the
left and right leptons of the SM, in which they are originallymassless and get the mass from the
Higgs condensate through Yukawa coupling.

Similar to other bag models, the KN bag is pliant to deformations. Spinning bag takes the form
of a thin disk, sharp boundary of which represents a ring-string supporting traveling waves. The
Compton radius of the bag indicates that it should be associated with a dressed electron. Traveling
waves of the ring-string deform the bag creating a singular pole – the circulating end point of
the ring-string, which may also be interpreted as a quark confined in the bag. The resulting bag
model forms a coherent bag-string-quark complex which unites the dressed and point-like electron,
reproducing the known puzzle of zitterbewegung.
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