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1. Introduction

We consider the metric
d = hyydx*dx’ = dt® —a(t)?(k + k) dx dxX (1.1)

(in contradistinction to [1} denotes the cosmic time here; we restrict ourselves mosiyt®).
Einstein equations have the form

HY %h“"R: 8nGTHY, (1.2)
whereG is the Newton constant. The Einstein tensor on the |hs is covariantly codséefesce,
(THY)., = 0. We could insert on the rhs of eq.(1.2) the energy-momerittifnof a collection of
particles with initial conditions described by a probability distributi@ron the phase space. If
particle’s dynamics is determined by classical evolution equations, then tisersation law is a
consequence of the Liouville equation (whér\‘g are Christoffel symbols)

(p“ oxH rﬁppvp”ﬁ)ﬂ =0, (1.3)

when the energy-momentum tensor in eq.(1.2) is defined by
dp 1
~vh / P S (1.4)

In eq.(1.4)h is the determinant of the metric anpg is determined from the mass-shell condition
pupt = n? (mis the particle’s mass). In egs.(1.1)-(1.4) Greek indices run from 0 toa8in L
indices denoting spatial components have the range from 1 to 3. The degticd@pproach (1.2)-
(1.4) must be modified if we describe only a part of the total system. In snakeawe do not have
the complete information. We must supplement our description by an extra teim energy-
momentum

THY =T T, (L.5)

whereTp is the energy-momentum of a certain (dark) matter. From eq.(1.2) it follows

(T8 ) = = (") (1.6)

2. Diffusion and random dynamics

It is well-known that classical dynamics in a random field can be approxihiataliffusion.
In [2] we have discussed relativistic dynamics in a random electromagredti¢-fi

o
dr

mE =F"p,. (2.2)

=pH, (2.1)

It follows from egs.(2.1)-(2.2) that is the proper time ang* p, = const This is an essential
requirement for relativistic dynamics. It is not simple to invent relativisticatigms preserving the
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mass-shell. The geodesic equation could be treated as an example. Howévis case we do
not know how to define a random metric. There is a simple example of ranginantcs which
applies to massless patrticles. We consider

dxt

2T pH
dle u u 2 AU RV oV
op = PP+ opfrAatpfp’uy — Ty, ptp’. (2.4)
In eq.(2.4) we have introduced an observer velogityprmalized a$y,,u*u’ = 1. From eq.(2.4)
1d 5, 2, v 2
St = (p(X)+o+Aau’py)p. (2.5)

Hence, ifp? = 0 atT = 0 then it remains zero forever. A functi€(x(1), p(t)) on the phase space
satisfies the Liouville equation

0:Q=(X+Y)Q, (2.6)
where
X = “i+ K(o+Aa?p’u )i—r" "p”i (2.7)
and P
K
Y=p (p(X)TpK' (2.8)

We have separated deterministic and random evolutions and imposed the amitidtian p? = 0.
We assume thap is a random field with the covariance

(p(X)(y)) = S(x=y) (2.9)

such thatS(xg — Yo, X — y) =~ exp(—T; }[Xo — Yo|) for a large time. Then, according to Kubo (see
the discussion in [2]) the random motion can be approximated by the diffudiose generator is
defined by(Y?) calculated for a small time (we have choser: 2 in eq.(2.4) in order to achieve a
general coordinate invariance of eq.(2.10), see [3]). In the honsmysmetric { =0 in eq.(1.1))
we obtain

17}

] ]
Q=2pp°H - Q+p| -~
PP +IPlgx

.0
H_— Ki—1 2.V j
T 37 P¥p| (/\a P Uy + S(0) p Tpi)Q (2.10)
whereH = a~'ga and p° = a|p| (note that the diffusion equation in [1] was discussed mainly in

conformal time). We denotg = A (1.S(0)) L. Then,
Qe = exp(—a?Bu, p!) (2.11)

solves eq.(2.10). Hencg has an interpretation of the inverse temperature et 7.50) is
the diffusion constant. We can get a solution of eq.(2.10) with an arbitr#igl ioondition which
equilibrates tdQe (2.11) att = tg, starts at =ty from the Juttner equilibrium distribution (2.11)
and subsequently continues as a solution of eq.(2.10)AWith3 = 0 (describing a matter evolution
without equilibration). Let
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Then, the above mentioned solution without an equilibration is [1]

3 -3 L, @
Qo(t) = 838+ A) eXp<—K 6+A\p|), (2.12)

where® is a parameter which can be expressed by an equilibration temperatusemnt

3. Conservation laws

The energy-momentum tensor (1.4) in the state (2.11) is conserved. Wefomtaegs.(1.2),(1.4)
and (2.11) the standard Friedmann equation (ultrarelativistic case, dleg)sp
da 8nG 1
—1Ua,  onb
@5 =3 2me

24m(Ba)~*. (3.1)

In general, the conservation law is

_,da

(THO)., = AT+ 3a —T°°+a‘1%5jijk.
’ dt dt
In a homogeneous universe we may write
TH — EWWY — e (hHY — uHuY), (3.2)

whereE is the energyf the pressure and the four-velocity satisfies the condition

h“vu“uv - 1. (3-3)
For massless particléf'ﬁ‘ = 0. Hence,
- 1.
=_E. 3.4
& =7 (3.4)
In general, we assume
e = WE. (3.5)

For a general phase space distributidthe energy-momentum (1.4) is not conserved. We assume
that the non-conservation comes from some other fields or matter whichsggkebyTp as in
eg. (1.5). We represent the unknown enefgyn eq.(1.5) by a cosmological terfa Then

- A
THY = THY v 3.6

The energy conservation (1.6) (in the frame: (1,0) ) is expressed as
—Oigos = AE +3a tqa(E + 7E) 3.7)
With the assumption (3.5) we have

(THO)., = AE +3a aE(1+w). (3.8)

1

Integration of eq.(3.7) gives (W is time-independent)

A Alto) 1 _314w) 5 /23(1+w)500
T e /toa o (a T)dr. (3.9)
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4. Decaying cosmological term

It follows from eqgs.(1.4),(3.6) and (3.9) that a model of the phase sgistiébutionQ deter-
mines/\. As an example, the solution (2.12) gives

= Vhe*(6+A) | zsapexp(—Kk 2gi5P) = Gr24m<®6°(0+ At (4.1)

From eq.(3.9) we obtaii. Then, Einstein equations (1.2) with the energy-momentum(4.1) and
the cosmological term (3.9) read (far= %)

(@ §)?=0(A+8)a*—3 fy dra®+ (o), (4-2)
where 1
_ 83
5= (Zn)348Gn2K 3. (4.3)

We can find an explicit power-like solution of the integro-differential émue(4.2) by a fine tuning
of parameters
a(t) = 35(t—q), (4.4)

A = 8nGE = g(t—q)*z (4.5)

and(to — q)? = 20573, Eq.(4.4) applies ify < tp because the integral in eq.(4.2) is divergent at
r = g. The solution (4.4) defined on the intervi, ) does not achieve 0 reaching its minimum
atg) = 6%(t0 —q). The solution (4.4) is interesting because it gittst (whereH is the present
value of the Hubble constant) as the age of the universe in agreemeneuétit experimental data
(see [4] for an explanation of a distinguished character of the linedntéme). The time evolution
(4.5) of A\ can also explain the present small value of the cosmological constaBi{ [$][Thet 2
behaviour iINCDM model has been tested against observations in [6].

The result (4.5) is not surprising. Einstein equations (1.2) and eqs(@&)lead to the equa-
tion (for an arbitrary time-dependemw)

2 dH
3H? — = 4.6
+ (14+w) dt (4.6)
If a=1t% thenH = at~1 and 1 o
A== 0) 4.0

We have got thé\-term as an energy-momentum compensating correction for a particle system
interacting with a random scalar field (2.4). We could consider a determin@tile system
interacting with a scalar field which has a Lagrangian of the form

L= %h“”ﬁu(pavqo—gexp(—r(p) (4.8)

Neglecting the patrticles in the first approximation the model of gravity plus thlarsield has the
solutionp = aln(t) , a(t) =t* with ro = 2 ando (3a — 1) = gr; so that exp—r @) =t~2 and (for a
largeg) a ~ % g[8]. As a consequence, for a largeve haveE ~ — 7 ~ gt—2. The pressure

and the energy behave as if we had a cosmological mtm[%.
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As a next step we study the effect of diffusion and the decaying cosigalogrm upon
the inhomogeneities of the metrig,,. They have observational consequences on temperature
fluctuations. We can look for a solution of the general diffusion equaBbag a perturbation of
the temperature

Q = exp( —a?p|(B+5p)) (4.9)

We expand the temperature as a perturbation of the mitgi¢. Thus far we have calculated only
the tensor metric perturbations [9]. We have shown that the standard formulas for temperature
fluctuations(d63) resulting from quantum metric fluctuations are modified by a damping factor
exp(—Bk2A(t)) implied by diffusion. The effect of diffusion on structure formation regsia
solution of Einstein equations. This is now under investigation.
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