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1. Introduction

This work presents a perspective for the characterization of scientific (physical) theories based
on the existence of symmetry groups, and of their progression through the notion of Inönü-Wigner
contraction/extension, which may be seen as a path towards simplicity.

Section 2 introduces the mathematical notions of Inönü-Wigner contraction and extension, for
groups and algebras. Section 3 applies to kinematical groups (and algebras) leading from Galileo
group to conformal group, via Poincaré group and deSitter/anti-deSitter (cosmological) groups.
Section 4 shortly presents some analogies with quantization and non-commutive geometry, and
concluding remarks.

A linear representation of a group G is defined (functorially) as a group homomorphism from
G to the group of endomorphisms of the linear space. We can then handle the elements of a
group as transformations acting on the underlying linear space associated to a physical system. In
the classical domain, the kinematic group acts as canonical transformations on the “phase space”
endowed with a symplectic structure [7]. In the quantum domain it acts (unitarily) on a Hilbert
space of states. This is also known as (anti-)unitary representation.

2. Contractions and Extensions of Groups

2.1 Group contractions

The Inönü-Wigner contraction of a Lie group [10] is best described in terms of its associated
Lie algebra which can be seen as its infinitesimal counterpart. The process allows one to construct
a new Lie algebra, not isomorphic to the initial one but preserving some of its structure. It proceeds
by singular transformations of the infinitesimal elements (the generators) and, in this sense, it can
be generalized to other algebraic structures [11]. Starting from a Lie algebra g, one constructs
a parametrized family of new algebras, gε , which are isomorphic to g for ε 6= 0, but not for the
singular value ε = 0.

The algebras gε , for ε 6= 0, are obtained by reparametrizations of g. Then, the new Lie algebra
emerges as the singular limit ε → 0 of the parameter ( in turn its generates a new Lie group via the
exponential map). Such a contraction may be seen as a special case of degeneration [3].

We assume that g contains a subalgebra h⊂ g, with complement p in g, i.e., g= h⊕p (direct
sum of vector spaces). The commutators can then be schematically decomposed as

[h,h]⊂ h, [h,p]⊂ p, [p,p]⊂ h+p. (2.1)

The reparametrization replaces each generator J ∈ p by a generator J′ = ε J, with ε 6= 0. In abbre-
viated notation, p becomes p′ = ε p. The algebra remains the same, but with the reparametrized
commutation relations

[h,h]⊂ h, [h,p′] = [h,ε p]⊂ ε p= p′, [p′,p′] = [ε p,ε p]⊂ ε
2 (h+p). (2.2)

The singular limit ε → 0 gives a well-defined but different Lie algebra g0 obeying

[h,h]⊂ h, [h,p′]⊂ p′, [p′,p′] = 0. (2.3)
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The new Lie algebra is the semi-direct product of Lie algebras g′ = hn p′. If the second
relation in (2.3) were [h,p′] = 0, then the new Lie algebra would be a direct product g′ = h×p′.

2.1.1 A First Example of Inönü-Wigner Contraction

The group SO(3), of rotations in three-dimensional Euclidean space, admits the Lie algebra
so(3), generated by Ji, i = 1,2,3, with commutation relations

[Ji,J j] =
3

∑
k=1

εi jk Jk. (2.4)

Here εi jk is the Levi-Civita symbol. We define h as the subalgebra generated by J3 only (with
[J3,J3] = 0), so that J1,J2 generate p. We rescale the elements of p by Λ as

j1 = Λ J1, j2 = Λ J2, j3 = J3. (2.5)

For Λ 6= 0, the algebra remains the same, although with the new expression for the commutators

[ j1, j2] = Λ
2 j3, [ j2, j3] = j1, [ j3, j1] = j2. (2.6)

The limit Λ→ 0 provides a new Lie algebra with three generators obeying the relations

[ j1, j2] = 0, [ j2, j3] = j1, [ j3, j1] = j2. (2.7)

They characterize the Lie algebra e(2) = so(2)nR2 of the two-dimensional Euclidean group E(2).
The (special) orthogonal group SO(2) is the group of rotations of the two-dimensional Euclidean
plane; it is natural to associate to it the group of translations of the same space, to complete the
isometries. This corresponds to the natural augmentation SO(2)

augm→ ISO(2) = E(2).

2.2 Extensions

A group that cannot be written as a (semi-)direct product is a simple group. The Inönü-Wigner
contraction diminishes simplicity. There is an inverse procedure, the Inönü-Wigner extension,
which achieves simplicity. It extends a Lie group which is a (semi-)direct product, towards a sim-
pler group: with less (semi-)direct products of groups. For instance, the extension associated with
the previous contraction may be written as ISO(2) ext→ SO(3), so that we may write the diagram

SO(2)
augm→ ISO(2) ext→ SO(3).

It expresses the transition from pre-Newtonian to Newtonian physics, through the introduction
of isotropic Euclidean space [15]. We will see below further extensions of this diagram.

3. Study of Case of Theory Change: from Newton to Cosmology

The kinematic group of a theory is the group of isometries of the space-time of that theory.
We will consider the sequence of theory change

Galilei→ Einstein→ (anti-)deSitter→ conformal. (3.1)
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3.1 Newtonian Kinematic: the Galilei Group

The Galilei group G is the group of isometries of the Newtonian space-timeR×R3, where the
first component stands for the time direction. A generic element g = (b,~a,~v,R) combines a time
translation b, a three-dimensional rotation R; a three-dimensional spatial translation~a= (ax,ay,az),
and a Galilei transform (or boost)~v = (vx,vy,vz) which exchanges inertial frames.

The Galilei group admits the maximal Abelian subgroup U , generated by spatial translations
and Galilei boosts. The quotient G /U (the group of classes of equivalence) is not a simple group:
it still contains a (maximal) Abelian subgroup T generated by time translations. The factor group
(G /U )/T is the simple group R of three-dimensional rotations.

The Lie algebra of G admits then ten generators (H,Pi,Ci,Li j), i, j = 1,2,3: the Hamiltonian H
generates time-translations; the momenta Pi generate spatial-translations, the Ci generate the Galilei
boosts and the Li j =−L ji spatial rotations.

We will consider the subgroup ISO(3) of the Galilei group G , generated by the spatial rotations
SO(3) and spatial translations R3.

3.2 Special Relativity: the Poincaré Group

The Poincaré group P (we consider its proper orthochronous component, which does not
include time-reversal and parity) acts as isometries of the Minkowski space-time. It includes the
space-time translations and rotations, together with their combinations. The space-time translations
generate its maximal Abelian subgroup R1,3. The quotient (group of classes of equivalence) L =

P/R1,3 is the Lorentz group L = SO(3,1), which comprises the space-time rotations, which
combine three-dimensional spatial rotations with Lorentz boosts. It is a subgroup of the Poincaré
group and the latter is also known as the inhomogeneous Lorentz group. This is a simple group
and the Lie algebra p of P may be written as the semi-direct product p = lnR1,3 where l stands
for the Lie algebra of L .

The general element g = (a,R), where a∈ IR4 is a 4-translation and R∈L a four-dimensional
(Lorentz) rotation. The Lie algebra p admits ten generators, (Pµ ,Jµν), µ,ν = 0,1,2,3. The four 4-
momenta Pµ generate the space-time translations; the six Jµν =−Jνµ generate space-time rotations.

The above kinematics were discussed by A. Einstein in 1905, where he proposed a kinematics
covariant under the symmetries of the electromagnetism. Before A. Einstein there was an aston-
ishment among physicists due to the fact that the symmetries of the Maxwell equations describing
electrodynamics (i.e., the Poincaré group) differed from those of the Newton-Galilei kinematics,
i.e., the Galilei group.

3.3 From Galilean Kinematics to Special Relativity

The group ISO(3) is not simple. It admits a natural Inönü-Wigner extension to the Lorentz
group ISO(3) ext→ SO(3,1), with parameter 1/c. The Lorentz group is stable, i.e., admits no
further similar extension. This lifts to an extension of their prolongations: from the Galilei group
to the Poincaré group, i.e., from Newtonian kinematics to special relativity. The Poincaré group is
however not simple and the process may be continued.
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3.4 From Special Relativity to Cosmology

The natural augmentation SO(3,1)
augm→ P = ISO(3,1) completes the space-time translations

with the space-time rotations. Then, ISO(3,1) admits also a family of natural extensions with a
parameter Λ called the cosmological constant. This gives the anti-deSitter group AdS = SO(3,2)
(Λ < 0) or the deSitter group dS = SO(4,1) (Λ > 0). These simple kinematic groups act as isome-
tries on the respective cosmological space-times of constant non zero curvatures±Λ−2, the deSitter
and anti–de Sitter space-times (embedded in R4,1 and R3,2 respectively).

The limit Λ→ 0 corresponds to their common contraction, the Poincaré group P . Both dS
and AdS are stable, in the sense that they admit no further similar extension. For each of them, the
Lie algebras admit ten generators Jab =−Jba, a,b = 0,1, ...,4.

Going further, the natural augmentations of dS and AdS (by adding " translations ") give
respectively ISO(4,1) and ISO(3,2). Both admit a common extension under the form of the con-
formal group SO(4,2). The latter admits the ten generators of dS (or AdS), augmented by five
new generators, one for scaling transformations, and four generating the so called special con-
formal transformations. This group plays an important role in physics. For instance it preserves
electromagnetism. As proposed initially by Weyl [18] it may constitute the symmetry group of a
conformal theory of gravitation.

We resume the sequence through the following diagram. Horizontal arrows indicate exten-
sions; oblique arrows subgroup inclusion (sg); and vertical ones natural augmentations. It may
be continued, but without straightforward applications to physics. A similar version applies with
dS = SO(4,1) and ISO(4,1) replaced by AdS = SO(3,2) and ISO(3,2), respectively.

SO(2)

augm
��

sg

$$
ISO(2) ext // SO(3)

sg

''
augm
��

ISO(3)
1
c // SO(3,1)

sg

((
augm
��

G
1
c //P = ISO(3,1) Λ // dS = SO(4,1)

sg

''
augm
��

ISO(4,1) ext // SO(4,2) . . .

Furthermore, the groups in the above series act as isometries of the space-times indicated in
the diagram below, where the symbol ie stands for isometrical embedding.

SO(2)
sg //

��

SO(3)
sg //

��

SO(3,1)
sg //

��

SO(4,1)
sg //

��

SO(4,2)

��
R2 ie // R3 ie // R3,1 ie // R4,1 ie // R4,2

The notations R2,R3 stand respectively for Euclidean plane and Euclidean space; Rp,q for the
pseudo–Euclidean space of signature p,q.
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4. Discussion and Conclusion

Comparable procedures also account for the transition from the classical to the quantum do-
main: the process of quantization corresponds to the replacement (with some conditions) of a
commutative Poisson algebra A of classical observables (functions on a symplectic manifold Γ)
by a non-commutative algebra A of quantum observables (seen as operators acting on an Hilbert
space). This can be accomplished by an algebra deformation procedure, which associates to A
a parametrized family of non-commutative algebras. The quantum algebra of interest is obtained
with the value h̄ of the parameter. This procedure bears some similarities with the extension of Lie
algebras (see, e.g., [17]).

The geometrical interpretation of algebra extension (diagram B) considers each algebra in the
chain as the isotropy algebra of a manifold, and so provides a progression chain of these manifolds.
The deformation quantization A→A above also admits a geometrical interpretation, at the basis
of non-commutative geometry (NCG) [6]. The Gel’fand duality — in fact a categorial equivalence
[13][14] — associates a space with the commutative algebra of functions on it. NCG associates a
non-commutative space (not made of points) to a non-commutative C∗-algebra A . Quantization
is so interpreted geometrically as an upgrading of a phase space manifold to a non commutative
space. A similar procedure may also be applied to space-time, with the goal of constructing a
new physics in the frame of a non-commutative space-time [16]. This intends for instance to give
a phenomenological description of the effects of quantum gravity which are thought to destroy
the manifold structure of space-time at small scales. Another original possibility, developed by
A. Connes and collaborators [4, 5], considers an internal (discrete) non-commutative space: the
product of this internal space by the (commutative) space-time manifold provides the geometrical
framework for the matter fields. Application of a spectral action principle led Connes and his
collaborators to a pure geometrical derivation of the physics of both standard model and gravity.

We have applied the perspective of extensions of (kinematical) groups and their associated
space-times, with contraction providing the way back to the problem of theory evolution — and
hence of scientific discovery [12]. This is connected with the Bargmann-Wigner program [19, 1,
2]. We have achieved, in our sense, a precision which is not obtained by other exclusively logic
approaches like for instance the semantic one. The same conclusion is given by Halvorson [8]
when he states that despite their adequateness, the logic approaches are too general to usefully
characterize specific disciplines.
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