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On the gluon propagator I.L. Bogolubsky

1. Introduction

The infrared (IR) behavior of gauge-variant Green’s functions (propagators) of Yang-Mills
fields has been recently the subject of increased interest. Analytical investigations (in Dyson-
Schwinger, DSE (see, e.g., [1] and refs. cited therein), and Functional Renormalization Group,
FRG (see, e.g., [2]), approaches) have been stimulated, verified and completed with lattice studies
(for the papers before 2006, see, e.g., [3]) of the gluon and the ghost propagators. Rather surpris-
ingly it was found that the so-called ‘conformal’, or ‘scaling’, solution [4] is not the only possible
solution, and another, ‘regular’, or ‘decoupling’, solution has been found ([5, 6, 7, 8]). When
studying these problem researchers have to solve the Gribov copies problem [9] and to circumvent
lattice artefacts due to the finite size, the finite spacing and hypercubic distortions. Due to above
mentioned problems lattice studies of Yang-Mills propagators are very CPU-timeand memory
consuming and presently such simulations are done on modern supercomputers. Because of that
improvement of simulation methods which leads to saving computer resources is of considerable
importance for such studies.

2. Gauge fixing and the Gribov copy problem

We consider the Landau gauge Green functions (propagators) ofSU(N),N = 2, gluodynam-
ics. We shall start with equilibrium ensembles of Yang-Mills (YM) lattice field configurations
obtained as successive elements of Markov chains created in the courseof Monte-Carlo generation
when using the standard Wilson action. Lattice YM fields are defined by values of link variables
Uxµ ∈ SU(N) which are transformed under gauge transformationsgx as follows

Uxµ
g
7→ Ug

xµ = g†
xUxµgx+µ ; gx ∈ SU(N) . (2.1)

Vector potentials ofSU(2) YM lattice fields are defined by the equation

Ax+µ̂/2;µ =
1
2i

(

Uxµ −U†
xµ

)

; (2.2)

we shall also use in what follows a shorter notation:

Ax,µ = Ax+µ̂/2;µ . (2.3)

The Landau gauge condition in the differential form reads

(∂µAµ)(x) =
4

∑
µ=1

(

Ax+µ̂/2;µ −Ax−µ̂/2;µ
)

= 0 . (2.4)

It may be rewritten as an (integral) condition of an extremum of the gauge functional

FU(g) =
1

4V4
∑
xµ

1
N

Re TrUg
xµ (2.5)

with respect to gauge transformationsgx , hereV4 = L4, whereL is the linear extension of the lat-
tice. These (both differential and integral) conditions are satisfied on various configurations(gx)i ,
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i = 1,2, ...NGr, which provide numerous solutions of gauge fixing problem (‘Gribov ambiguity’).
To avoid this ambiguity further specification of the Landau gauge fixing condition is required; we
shall use for this purpose the requirement of attaining theglobalextremum of the gauge functional
FU(g) on the configuration(gx)global (for the definition ofFU(g) (2.5) it turns out to be its global
maximum).

It was shown numerically that in lattice studies with Landau gauge-fixing for lattice exten-
sionsL ≥ 20 the number of Gribov copiesNgr is very large and thus an exact finding of the global
extremum ofFU(g) is hardly possible. Because of that a weaker choosing criterion is used inprac-
tical simulations, namely, a search for a Gribov copy(gx)0 havingFU(g0) as close as possible to
FU(gglobal). One of the most efficient numerical technique for getting closer to the global maxi-
mum ofFU(g) is ‘the simulated annealing’ (SA) method [10] which for the first time was used in
lattice studies in [11], and has been recently successfully applied to Landau gauge fixing ofSU(3)
gluodynamics [7, 8]. The SA technique, sometimes called ‘the stochastic optimization’ method, re-
alizes reasonably slow ‘cooling’ of the physical system defined by its ‘action’ FU(g) from an initial
temperatureT0 to the finalTf in ≈ 0, allowing at each temperature probabilistic ‘tunneling through
a potential barrier’ which reduces probability of stucking the system in local minima. There exists
the theorem stating that the SA process with infinitely slow ‘cooling’ guarantees arriving at the
global extremum of the functional. However in practice computer resources are restricted and one
can only hope to reach after sufficiently ‘long’ cooling a local extremum being ‘rather close’ to the
global one.

In such situation the natural question arises: do numerical values of gauge-variant observables
computed on different local extrema which are close to the (yet not found) global one differ con-
siderably, or, in other words, is the so-called Gribov noise strong?A priori, one can think that
the answer to this question is observable-dependent. Below we shall address this question when
considering the ghost and the gluon propagators.

3. The ghost propagator with SA

Equation for the lattice ghost propagator are derived from lattice expression of the Faddeev-
Popov operatorMab:

Mab
xy = ∑

µ

{(

S̄ab
xµ + S̄ab

x−µ̂;µ

)

δx;y−

(

S̄ab
xµ − Āab

xµ

)

δy;x+µ̂−
(

S̄ab
x−µ̂;µ + Āab

x−µ̂;µ

)

δy;x−µ̂

}

where
S̄ab

xµ = δ ab 1
2

Tr Uxµ ; Āab
xµ =−

1
2

εabc Ac
x+µ̂/2;µ . (3.1)

This is obtained as discretization of the continuum equationMab = −∂µDab
µ , whereDab

µ is the
covariant derivative in the adjoint representation.
The ghost propagatorGab(x,y) is defined as [12, 13]

Gab(x,y) = δ ab G(x−y)≡
〈

(

M−1)ab

xy [U ]
〉

, (3.2)

whereM[U ] is the Faddeev-Popov operator. The ghost propagator in the momentum space can be
written as

G(p) =
1

NV ∑
x,y

e−2π i p·(x−y)
〈

(

M−1)aa

xy [U ]
〉

, (3.3)
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Figure 1: The ghost observableJ(q2) for β = 2.4,L = 80 and various MC configurations compared with
J(q2) averaged over MC configurations.

whereV = L4 is the lattice volume, and the coefficient1
NV is taken for a full normalization, includ-

ing the indicated color average overa= 1, ..,N.
The ghost propagator has been subject of detailed lattice studies during two last decades

[13, 14, 15, 16, 17]. For the present study we use the MC configurations produced forβ = 2.4
andL = 80 in [18] and generate many ‘good’ Landau-gauge copies via gauge fixing with very slow
SA cooling, so that all these Gribov copies haveFG values very close to the global maximum value
of FG (technically these essentially different copies have been found as results of the gauge fixing
process starting from various random latticeg(x) configurations). In Fig.1 we plot the ghost dress-
ing functionJ(q2) = G(q2)q2 computed on the first Gribov copy for different MC configurations.
One can see that all theJ(q2) curves are pretty smooth and rather close to the curve of theJ(q2)

averaged overNgh = 26 MC configurations for which the ghost propagator has been computed.
This finding confirms the result obtained first in [7] that one can get reasonable approximation to
the ghostG(q2) andJ(q2) by computing the same curves from one (!) MC configuration with the
only one ‘good’ Gribov copy calculated. This also means that Gribov noisefor ghost observables
is rather small and hence the conventional ‘one-copy’ algorithm of computation ofG(q2) andJ(q2)

based on averaging of ghost observables overNgh MC configurations with one representative Gri-
bov copy for each configuration is not far from being optimal. In the nextsection we shall see that
such situation may change when considering another gauge-variant observable.

4. Gribov noise for the gluon propagator with SA

The lattice gluon propagators in the coordinate space is defined as

Dab
µν(x,y) = Dab

µν(x−y) =
〈

Aa
x,µAb

y,ν

〉

U
.

However, of higher interest for physics is its analog in the momentum space

Dab
µν(q(p)) =

1
V

〈

∑
x,y

Aa
x,µAb

y,νeip·(x+µ̂/2)e−ip·(y+ν̂/2)

〉

U

, (4.1)
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Figure 2: The gluon observableD(q2) for β = 2.4,L = 80, the 5th MC configuration and 3 Gribov copies
compared with theD(q2) averaged overNMC configurations.

note that here summation over all relative distances(x−y) available on the lattice is introduced to
ensure translational invariance of the gluon propagator. We shall assume for the lattice propagator
D the same tensor structure which holds in the continuum theory,

Dab
µν(q) = δ ab

(

δ µν
−

qµqν

q2

)

D(q2), (4.2)

and extract from computer simulations the dependenceD(q2) using an equation

D(q2) =
1

N2−1 ∑
aµ

Daa
µµ(q), (4.3)

which follows from (4.2).
From previous lattice experience with gluon propagator it was known (see, e.g., [3]) that gluon

curvesD(q2) in the ‘one-copy’ approach may considerably differ for various configurations (cf. the
ghost case in the above section). To get deeper insight into the gluon situation we have generated for
several different MC configurations rather large numberNcopy∼ O(100) of ‘good’ Gribov copies
and computed for them the gluon observableD(q2).

In Fig.2 one can see thatD(q2) curves for given MC configuration are strongly copy-dependent
and are often ‘saw-like’.

In Fig.3 we plot moreD(q2) curves for the 5th MC configuration and various ‘good’ Gribov
copies. These curves are plotted together with the curveDcp−av(q2) obtained by averaging of the
D(q2) over 77 Gribov copies found for the 5th MC configuration.

Analogous plot for the 10th MC configuration is presented in Fig.4, here thecurveDcp−av(q2)

is obtained by averaging of theD(q2) over 72 copies.
Now compareD(q2) results averaged over many Gribov copies of a single MC configura-

tion with the results of the conventional averaging overNMC configurations with one Gribov copy
chosen for each MC configuration (‘the one-copy approach’).
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Figure 3: The gluon observableD(q2) for β = 2.4,L = 80, the 5th MC configuration and various Gribov
copies compared with theD(q2) averaged over 77 SA Gribov copies.
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Figure 4: The gluon observableD(q2) for β = 2.4,L = 80, the 10th MC configuration and various Gribov
copies compared with theD(q2) averaged over 72 SA Gribov copies.

One can see that averaging over various Gribov copies generated from one Yang-Mills MC
configuration typically leads to theD(q2) dependence which is pretty close to the standardD(q2)

propagator obtained by averaging overNMC MC configurations in the conventional ‘one-copy’
approach. Note that theD(q2) curves found in this way from various MC configurations also are of
‘regular’, or ‘decoupling’ type, thus showing qualitatively correct result. Moreover we can further
average these newD(q2) results over relatively small number of MC configurations, for which ‘the
one configuration’D(q2) has been found by generating many ‘good’ Gribov copies; corresponding
results will be published elsewhere.
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Figure 5: The gluon observableD(q2) for β = 2.4,L = 80, averaged over many Gribov copies for fixed MC
configurations versus the gluon propagatorD(q2) obtained in the ‘one-copy approach’ by averaging over
NMC MC configurations.

5. Conclusions

We have found that when investigating the gluon propagator of lattice gluodynamics one is
faced with the high level of Gribov noise, contrary to the case of the ghostpropagator where
Gribov noise is much weaker. We propose the way of overcoming this difficulty by means of
averaging the gluon observable over many ‘good’ gauge copies foundfor the given Monte-Carlo
configuration. Such averaging leads to qualitatively correct results forthe gluon propagatorD(q2),
which means that from one MC configuration one can extract much more information on gauge-
variant observables with high level of Gribov noise. This way of suppressing Gribov noise may
be used for obtaining the gluon propagator (or another gauge-variantGreen function for which the
Gribov noise turns out to be strong) when only few MC configurations areavailable (for example,
in the case of lattice simulations with dynamical fermions, when generating each MC configuration
is very CPU-time consuming).
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