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1. Introduction

The infrared (IR) behavior of gauge-variant Green'’s functiomegpgators) of Yang-Mills
fields has been recently the subject of increased interest. Analyticatig@gons (in Dyson-
Schwinger, DSE (see, e.g., [1] and refs. cited therein), and Funt®ereormalization Group,
FRG (see, e.qg., [2]), approaches) have been stimulated, verifiecbarmaated with lattice studies
(for the papers before 2006, see, e.qg., [3]) of the gluon and thdé ghmzagators. Rather surpris-
ingly it was found that the so-called ‘conformal’, or ‘scaling’, solutiof iglnot the only possible
solution, and another, ‘regular’, or ‘decoupling’, solution has bemamd ([5, 6, 7, 8]). When
studying these problem researchers have to solve the Gribov coplEermpr[®] and to circumvent
lattice artefacts due to the finite size, the finite spacing and hypercubic disgriue to above
mentioned problems lattice studies of Yang-Mills propagators are very CPUatiienemory
consuming and presently such simulations are done on modern supercam@geause of that
improvement of simulation methods which leads to saving computer resourdesoissiderable
importance for such studies.

2. Gauge fixing and the Gribov copy problem

We consider the Landau gauge Green functions (propagato&)@),N = 2, gluodynam-
ics. We shall start with equilibrium ensembles of Yang-Mills (YM) lattice field fagurations
obtained as successive elements of Markov chains created in the obMeate-Carlo generation
when using the standard Wilson action. Lattice YM fields are defined by valuknk variables
Uy € SU(N) which are transformed under gauge transformatggres follows

Ugy > U = 0lUuGin; Gx € SUN). (2.1)
Vector potentials 08U(2) YM lattice fields are defined by the equation
Aciijop = % (Una—U) 2.2)
we shall also use in what follows a shorter notation:

AX-,H - Ax+[1/2;u- (2-3)

The Landau gauge condition in the differential form reads

N

(FuAu)(X) = . (AX+ﬁ/2;u _AX—ﬂ/Z;u) =0. (2.4)
u

It may be rewritten as an (integral) condition of an extremum of the gaugidunal

1

1
Fu(g) = A ; N Re Trug, (2.5)

with respect to gauge transformatiogs, hereV, = L#, wherelL is the linear extension of the lat-
tice. These (both differential and integral) conditions are satisfied aougaconfiguration$gy); ,
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i =1,2,...Ngr, which provide numerous solutions of gauge fixing problem (‘Gribov aoibig).
To avoid this ambiguity further specification of the Landau gauge fixing itionds required; we
shall use for this purpose the requirement of attaininggtbbal extremum of the gauge functional
Fu (9) on the configuratiorigy)giobal (for the definition offy (g) (2.5) it turns out to be its global
maximun.

It was shown numerically that in lattice studies with Landau gauge-fixing fticéaexten-
sionsL > 20 the number of Gribov copiddy, is very large and thus an exact finding of the global
extremum offy (g) is hardly possible. Because of that a weaker choosing criterion is ugeddn
tical simulations, namely, a search for a Gribov cdpy)o havingFRy, (go) as close as possible to
Fu (ggiobal). One of the most efficient numerical technique for getting closer to the lgioaxi-
mum of Ry (g) is ‘the simulated annealing’ (SA) method [10] which for the first time was used in
lattice studies in [11], and has been recently successfully applied to uayadee fixing oSU(3)
gluodynamics [7, 8]. The SA technique, sometimes called ‘the stochastic ogtimizaethod, re-
alizes reasonably slow ‘cooling’ of the physical system defined by itwacr, (g) from an initial
temperaturdy to the finalTjn =~ 0, allowing at each temperature probabilistic ‘tunneling through
a potential barrier’ which reduces probability of stucking the system ifl lngaima. There exists
the theorem stating that the SA process with infinitely slow ‘cooling’ guaranaeeving at the
global extremum of the functional. However in practice computer resourcegstricied and one
can only hope to reach after sufficiently ‘long’ cooling a local extremuimd&ather close’ to the
global one.

In such situation the natural question arises: do numerical values oégauignt observables
computed on different local extrema which are close to the (yet not jagiotal one differ con-
siderably, or, in other words, is the so-called Gribov noise stroAgitiori, one can think that
the answer to this question is observable-dependent. Below we shatlsadtiis question when
considering the ghost and the gluon propagators.

3. The ghost propagator with SA

Equation for the lattice ghost propagator are derived from lattice esipresf the Faddeev-
Popov operatok2?:

My = % {<§B * §Eﬂ?“) By <§E —A_QE) Oy~ (§Eﬁ:u * aEﬁ;u) @:xfﬂ}

where 1 1

Sb _ sab . pab b

Su =003 Trlg; Ag=—3 " Aiou- (3.1)
This is obtained as discretization of the continuum equalitth = —9,, D3P, whereD?" is the
covariant derivative in the adjoint representation.

The ghost propagat@?°(x, y) is defined as [12, 13]

G(x,y) = 3% G(x— ) = < (M*l)j;’[uw , (3.2)

whereM[U] is the Faddeev-Popov operator. The ghost propagator in the momenrdescm be
written as

G(p) = 1 3 &P (ML) (3.9
Xy
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Ghost dressing function
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Figure 1: The ghost observabl#g?) for f = 2.4,L = 80 and various MC configurations compared with
J(g?) averaged over MC configurations.

whereV = L*is the lattice volume, and the coefficigg is taken for a full normalization, includ-
ing the indicated color average owet 1, .., N.

The ghost propagator has been subject of detailed lattice studies duniastvdecades
[13, 14, 15, 16, 17]. For the present study we use the MC confignsapooduced fo3 = 2.4
andL = 80 in [18] and generate many ‘good’ Landau-gauge copies via gaxigg fiith very slow
SA cooling, so that all these Gribov copies h&gevalues very close to the global maximum value
of Fg (technically these essentially different copies have been found dssresthe gauge fixing
process starting from various random lattige) configurations). In Fig.1 we plot the ghost dress-
ing functionJ(g?) = G(g?)g? computed on the first Gribov copy for different MC configurations.
One can see that all thEg?) curves are pretty smooth and rather close to the curve af(tjfe
averaged oveNgn, = 26 MC configurations for which the ghost propagator has been computed
This finding confirms the result obtained first in [7] that one can gerestde approximation to
the ghosiG(g?) andJ(g?) by computing the same curves from one (!) MC configuration with the
only one ‘good’ Gribov copy calculated. This also means that Gribov rfoisghost observables
is rather small and hence the conventional ‘one-copy’ algorithm of ctetipn ofG(g?) andJ(g?)
based on averaging of ghost observables digMC configurations with one representative Gri-
bov copy for each configuration is not far from being optimal. In the segtion we shall see that
such situation may change when considering another gauge-varianvable.

4. Gribov noise for the gluon propagator with SA

The lattice gluon propagators in the coordinate space is defined as
D 0y) = D (x—y) = (AZ,AD, )

However, of higher interest for physics is its analog in the momentum space

1 e
Dﬁt\’,(q(p)) =y <ZA>6<\7HA3,VEIP (x+01/2) g-ip (y+v/2)> ’ (4.1)
Xy U
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FAN o—o SA, 331 conf
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Gluon propagator, D[Ge\'f]
=
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Figure 2: The gluon observablB(g?) for B = 2.4,L = 80, the 5th MC configuration and 3 Gribov copies
compared with th®(g?) averaged oveNyc configurations.

note that here summation over all relative distaneesy) available on the lattice is introduced to
ensure translational invariance of the gluon propagator. We shathasiu the lattice propagator
D the same tensor structure which holds in the continuum theory,

qug
D@ = 5% (8 - % ) (). @2)
and extract from computer simulations the depend®{cg) using an equation

1
D(¢?) = NZ_1 ; D% (a), (4.3)

which follows from (4.2).

From previous lattice experience with gluon propagator it was known ésge [3]) that gluon
curvesD(g?) in the ‘one-copy’ approach may considerably differ for various @unfitions (cf. the
ghost case in the above section). To get deeper insight into the gluadtiositwa have generated for
several different MC configurations rather large numigy,y ~ O(100) of ‘good’ Gribov copies
and computed for them the gluon observable?).

In Fig.2 one can see thBt(g?) curves for given MC configuration are strongly copy-dependent
and are often ‘saw-like’.

In Fig.3 we plot moreD(g?) curves for the 5th MC configuration and various ‘good’ Gribov
copies. These curves are plotted together with the cDageav(qz) obtained by averaging of the
D(g?) over 77 Gribov copies found for the 5th MC configuration.

Analogous plot for the 10th MC configuration is presented in Fig.4, hereth@Dcpay(g?)
is obtained by averaging of th&(g?) over 72 copies.

Now compareD(q?) results averaged over many Gribov copies of a single MC configura-
tion with the results of the conventional averaging adMge configurations with one Gribov copy
chosen for each MC configuration (‘the one-copy approach’).
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Figure 3: The gluon observablB(¢?) for B = 2.4,L = 80, the 5th MC configuration and various Gribov
copies compared with th(g?) averaged over 77 SA Gribov copies.
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Figure 4: The gluon observablB(g?) for B = 2.4,L = 80, the 10th MC configuration and various Gribov
copies compared with th(g?) averaged over 72 SA Gribov copies.

One can see that averaging over various Gribov copies generateddfre Yang-Mills MC
configuration typically leads to thg(g?) dependence which is pretty close to the stand(gf)
propagator obtained by averaging owyic MC configurations in the conventional ‘one-copy’
approach. Note that tH2(g?) curves found in this way from various MC configurations also are of
‘regular’, or ‘decoupling’ type, thus showing qualitatively correctutt. Moreover we can further
average these nel¥(q?) results over relatively small number of MC configurations, for which ‘the
one configurationD(g?) has been found by generating many ‘good’ Gribov copies; corretpgn
results will be published elsewhere.
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Figure 5: The gluon observablB(g?) for B = 2.4,L = 80, averaged over many Gribov copies for fixed MC
configurations versus the gluon propagdbd?) obtained in the ‘one-copy approach’ by averaging over
Nmc MC configurations.

5. Conclusions

We have found that when investigating the gluon propagator of lattice ghawdigs one is
faced with the high level of Gribov noise, contrary to the case of the ghmgiagator where
Gribov noise is much weaker. We propose the way of overcoming this diiffiby means of
averaging the gluon observable over many ‘good’ gauge copies fimurtde given Monte-Carlo
configuration. Such averaging leads to qualitatively correct resulthdogluon propagatdd(q?),
which means that from one MC configuration one can extract much moneriafimn on gauge-
variant observables with high level of Gribov noise. This way of sugging Gribov noise may
be used for obtaining the gluon propagator (or another gauge-v&iaen function for which the
Gribov noise turns out to be strong) when only few MC configurationseaédable (for example,
in the case of lattice simulations with dynamical fermions, when generating e@atokfiguration
is very CPU-time consuming).
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