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Domain wall network as QCD vacuum Sergei N. Nedelko

1. Overview of the approach

As in other quantum systems with infinitely many degrees of freedom, the global minima of
the QCD effective action define its vacuum structure. A nontrivial global minimum corresponds to
a gauge field with the strength not vanishing at space-time infinity and, hence, extensive classical
action proportional to the four dimensional space-time volume of the system. The identification of
global minima in different regimes (high energy density, high baryon density, strong external elec-
tromagnetic fields) is important for understanding the phase transformations in hadronic matter.
Degenerate global minima related by discrete symmetry transformations like CP, Weyl symmetry
in the root space of su(Nc), center symmetry, is a reason to look for field configurations interpolat-
ing between them. First of all, these are domain wall configurations, but also lower dimensional
topological defects at the domain wall junctions.

A variety of essentially equivalent statements of the problem in the context of QCD can be
found in [2, 3, 4, 5, 6] and [7], in particular. In the Euclidean formulation, the statement of the
problem starts with the very basic symbol of the functional integral

Z = N
∫
F

DAexp{−S[A]},

where the functional space F is subject to the condition

F = {A : lim
V→∞

1
V

∫
V

d4xg2Fa
µν(x)F

a
µν(x) = B2

vac}. (1.1)

The constant Bvac is not equal to zero in the general case, which is equivalent to nonzero gluon con-
densate 〈g2F2〉. The phenomenology of strong interactions has required nonzero gluon condensate,
which suggests that it must be allowed in the QCD functional integral from the very beginning.
Condition (1.1) singles out fields Ba

µ with the strength which is non-zero almost everywhere in R4.
The homogeneous fields with the domain wall defects are the most natural gluon configurations
which are homogeneous almost everywhere in R4 and satisfy condition (1.1).

Separation of the modes Ba
µ responsible for gluon condensate and the local fluctuations Qa

µ in
the background Ba

µ , must be supplemented by the gauge fixing condition. The background gauge
condition for fluctuations D(B)Q = 0 is the most natural choice. Further steps include integration
over the fluctuation fields Q resulting in the effective action for the long-range fields and identifi-
cation of the minima of this effective action (for more details see [9] and [6, 7, 8]) which dominate
over the integral in the limit V → ∞ and define the phase structure of the system. As soon as min-
ima are identified, this setup defines a principal scheme for self-consistent identification of the class
of gauge fields which almost everywhere in R4 coincide with the global minima of the quantum
effective action. A treatment of these “vacuum fields” in the QCD functional integral

Z = N′
∫
B

DB
∫
Ψ

DψDψ̄

∫
Q

DQdet[D(B)D(B+Q)]δ [D(B)Q]exp{−SQCD[B+Q,ψ, ψ̄]} (1.2)

must be nonperturbative. The fields Ba
µ ∈B are subject to condition (1.1) with the fixed vacuum

value of the condensate B2
vac. The condensate plays the role of the scale parameter of QCD to be
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identified from the hadron phenomenology. The gluon Q and quark ψ fluctuations in the back-
ground of the vacuum fields can be seen as perturbations.

Many aspects of this general idea has been elaborated in the Copenhagen model of QCD
vacuum [10, 11, 12, 13]. The starting point was the Savvidy’s observation that the pure Yang-Mills
one-loop effective action for the homogeneous chromomagnetic field indicated a minimum at the
nonzero field strength [14, 15]. The Copenhagen vacuum is represented by the ensemble of domain
structured gluon configurations - a network of domain wall defects in the constant chromomagnetic
field. The inhomogeneities due to the domain walls remove tachyonic gluon mode inherent to the
constant chromomagnetic field. Copenhagen vacuum gluon configurations were recognized as the
color magnetic flux tube system [13] with the properties of quantum liquid. This approach turned
out to be very fruitful as it triggered numerous applications varying from the physics of confinement
in QCD to compact stars and early Universe. Particularly important result of Olesen was a proof
of relevance of the randomness of the ensemble of chromomagnetic flux tubes to the area law
for the spacial Wilson loop [16]. For the sake of further comparison we note here that any given
configuration in the flux tube ensemble is characterized by F̃F ≡ 0 (this is a pure chromomagnetic
field), F2 = 0 at the boundary of the tube and F2 6= 0 for the rest of space.

Another important benchmark was the analysis of general features of the quantum effective
action in SU(2) gauge model given by Pagels and Tomboulis [3]. The most important for the con-
text of our approach is the observation that condition (1.1) can lead to the vacuum fields behaving
as a medium infinitely stiff to small gauge field fluctuations, that is seen as the absence of the wave
solutions for the effective quantum equations of motion. This feature was interpreted as suggestive
of confinement of color. Approximately at the same time an interplay between chiral symmetry
breaking and strong CP violation was studied by Minkowski in the context of self-dual constant
background field [2].

Strong argumentation in favour of the Abelian (anti-)self-dual homogeneous field as a candi-
date for the global minimum of the effective action originates from the papers [4, 5, 17, 18, 19, 20].
In particular, Leutwyler’s analysis of all different types of the gauge fields with the constant strength
has indicated that the gauge field is stable against small quantum fluctuations only if it is Abelian
(anti)self-dual covariantly constant field. Other constant fields are unstable due to tachyonic gluon
modes [4, 5]. Nonperturbative calculation of the effective potential within the functional renormal-
ization group [19] supported the earlier one-loop results on existence of the nontrivial minimum of
the effective action for the Abelian (anti-)self-dual field.

Leutwyler [21] noticed that the momentum representation of the translation invariant part of
the propagator of the color charged field in the background of dual or anti-self-dual Abelian gauge
field is entire analytical function and interpreted the absence of poles in propagator as color con-
finement. For example Euclidean propagator of the charged massless scalar field has the form

G
(

p2)∼ 1
p2

(
1− e−p2/Bvac

)
. (1.3)

The absence of pole in the propagator was treated as the absence of the particle interpretation of
the charged field. On the other hand, for large Euclidean momentum p2 � Bvac the propagator
takes the standard form of a free massless one. Analytical properties of above propagator reflect
the character of eigenmodes and the spectrum of the color charged field. The spectrum is purely

3
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discrete and the eigenmodes have the character of bound state functions in all four directions.
This was a novel point of view on the role of the background vacuum fields in the confinement
mechanism. However just the absence of a single quark or anti-quark in the spectrum can not
be considered as sufficient condition for confinement. The above given type of the color charged
propagator seemed to have no obvious relation to the most peculiar feature of QCD - the Regge
character of the physical spectrum of colorless hadrons. Usually Regge spectrum is related to the
string picture of confinement [1]. Neither the homogeneous Abelian (anti-)self-dual field itself
nor the propagator above had the clue to linear quark-antiquark potential. Neverthelss the analytic
structure of this propagator and assumption about the randomness of this field gave an unexpected
result.

The constant gauge vacuum fields bring too much order into the system and would mean
violation of essentially all the symmetries of QCD. Randomness of the ensemble of the domain
structured almost everywhere homogeneous Abelian (anti-)self-dual gluon fields has been taken
into account implicitly in the model of hadronization developed in [22, 23] via averaging of the
quark loops over the parameters of the background Abelian (anti-)self-dual fields. The nonlocal
quark-meson vertices with the complete set of meson quantum numbers were determined in this
model by the form of the color charged gluon propagator (1.3). The spectrum of mesons displayed
the Regge character both with respect to total angular momentum (spin) and radial quantum number
of the meson [22, 23]. Regge spectrum occurs due to the nonlocal Gaussian exponent terms in
quark and gluon propagators akin to (1.3). The reason for confinement of a single quark and Regge
spectrum of mesons turned out to be the same. Within this relativistic quantum field description
the Regge spectrum of color neutral collective modes appeared as a "medium effect" as well as the
suppression (confinement) of a color charged elementary modes.

However, besides this dynamical color charge confinement, a correct complete picture must
include the limit of static quark-antiquark pair with the area law for the temporal Wilson loop. In
order to explore this aspect an explicit construction of the random domain ensemble was suggested
in paper [6], and the area law for the Wilson loop was demonstrated by the explicit calculation.
Randomness of the ensemble (in line with [16]) and (anti-)self-duality of the fields are crucial for
this result. For simplicity, the domains in R4 were taken to be spherical in this model.

The model of confinement, chiral symmetry breaking and hadronization based on the domi-
nance of the random ensemble of gluon fields which are (anti-)self-dual Abelian almost everywhere
demonstrated high overall phenomenological performance [6, 8, 23, 24]. It incorporated the ma-
jority of essential physics of confinement, chiral symmetry realization and hadronization from the
single point of view. The model exhibits confinement of static (area law) and dynamical quarks
(absence of poles in the propagators of color charged fields, discrete spectrum of the corresponding
differential operator), spontaneous breakdown of the flavour chiral symmetry, UA(1) symmetry is
broken due to the axial anomaly, strong CP violation is absent in the model in line with the mecha-
nism indicated by Minkowski [2] long time ago. With a minimal set of parameters (quark masses,
gauge coupling constant, gluon condensate and mean domain size related to the topological sus-
ceptibility of pure YM) the model has demonstrated ability to give rather accurate results for meson
masses from all different parts of the spectrum: light mesons including excited states, heavy-light
mesons, heavy quarkonia). The decay constants and some form factors were also calculated within
the model. New improved results for the spectrum of radial excitations of mesons are presented in
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some detail in the last section.
These phenomenological results required more detailed study of the formation of the ran-

dom ensemble under consideration, the domain wall formation in particular. Within the Ginzburg-
Landau approach to the quantum effective action [6, 18, 9] the relevant domain wall was described
by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components
of the gluon field. This kink configuration can be seen as plain domain wall separating the regions
with self-dual and anti-self-dual Abelian gauge fields, F̃F = ±F2. On the domain wall the gluon
field is Abelian chromomagnetic with vanishing topological charge density F̃F = 0 and value of
the scalar invariant F2 = B2

vac being the same as in the bulk of the domains. Group theoretical
analysis of the Weyl symmetry and SU(Nc) subgroup embeddings behind the domain wall forma-
tion in the effective gauge theories, including the present Ginzburg-Landau approach, was given in
paper [20].

In recent paper [33] the approach outlined in articles [6, 18, 9, 24] has been considerably
evolved in two respects: explicit analytical construction of the domain wall network in R4 through
a combination of additive and multiplicative superpositions of kinks, and refining the spectrum and
eigenmodes of the color charged scalar, spinor and vector fields in the background of a domain wall.
In particular the spectrum of quasiparticles inside the thick domain wall junction was evaluated
indicating existence of the critical size Lc ≈ 1 f m for the stable junction.

2. Nonzero gluon condensate 〈g2F2〉 and domain wall network as QCD vacuum

The functional renormalization group RG result [19] supported conclusions of [6, 18] based
on the Ginzburg-Landau type effective Lagrangian of the form

Leff = −
1

4Λ2

(
Dab

ν Fb
ρµDac

ν Fc
ρµ +Dab

µ Fb
µνDac

ρ Fc
ρν

)
−Ueff

Ueff =
Λ4

12
Tr
(

C1 f̆ 2 +
4
3

C2 f̆ 4− 16
9

C3 f̆ 6
)
, (2.1)

where Λ is a scale of QCD related to gluon condensate, f̆ = F̆/Λ2, and

Dab
µ = δ

ab
∂µ − iĂab

µ = ∂µ − iAc
µ(T

c)ab,

Fa
µν = ∂µAa

ν −∂νAa
µ − i f abcAb

µAc
ν ,

F̆µν = Fa
µνT a, T a

bc =−i f abc

Tr
(
F̆2)= F̆ab

µν F̆ba
νµ =−3Fa

µνFa
µν ≤ 0,

C1 > 0, C2 > 0, C3 > 0.

The idea behind (2.1) is the following. One assumes (knows from the hadron phenomenology,
e.g. QCD sum rules) that there is nonzero scalar gluon condensate 〈g2F2〉. This condensate exists
due to the quantum effects. One constructs a minimal form of the invariant with respect to all
relevant QCD symmetry transformations effective potential with nonzero condensate at the mini-
mum. Naturally, it is assumed that UV renormalization is implemented and (if quarks are present)
the massless quark limit is regular. We stress that at this point nothing has been assumed about
the particular character of the gauge field potential Aa

µ . Given the form of effective potential one

5
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Figure 1: Kink profile in terms of the components of the chromomagnetic and chromoelectric field strengths
(upper plot), and a two-dimensional slice for the topological charge density in the presence of a single kink
measured in units of g2Fb

αβ
Fb

αβ
(lower plot) that stays constant everywhere. Here ω is the angle between the

chromomagnetic and chromoelectric fields, cosω = Fa
µν F̃a

µν/Fb
αβ

Fb
αβ

. The three-dimensional planar domain
wall separates the four-dimensional regions filled with the self-dual (blue color) and anti-self-dual (red color)
Abelian covariantly constant gluon fields. The chromomagnetic and chromoelectric fields are orthogonal to
each other inside the wall (green color).

has to study the various gauge fields with a constant strength. Covariantly constant Abelian (anti-
)self-dual gauge fields can be identified as the minumum of the potential. After that one looks for
space-time dependent deformations of the field adding the simplest terms with the covariant deriva-
tives. At this step effective equations of motion have to be considered and lead to the domain wall
configurations. A comprehensive group theoretical analysis of the symmetries of above effective
potential can be found in [20].

The basic input is the existence of the nonzero gluon condensate. An output is somewhat
unexpected – existence of twelve (for SU(3)) global degenerate discrete minima. The minima are
achieved for covariantly constant Abelian (anti-)self-dual fields

Ăµ =−1
2

n̆kFµνxν , F̃µν =±Fµν ,

6
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where the matrix n̆k belongs to the Cartan subalgebra of su(3)

n̆k = T 3 cos(ξk)+T 8 sin(ξk) ,

ξk =
2k+1

6
π, k = 0,1, . . . ,5. (2.2)

The values ξk correspond to the boundaries of the Weyl chambers in the root space of su(3). The
minima are connected by the discrete parity and Weyl transformations, which indicates that the
system is prone to existence of solitons (in real space-time) and kink configurations (in Euclidean
space). Below we shall concentrate on the simplest configuration – kink interpolating between self-
dual and anti-self-dual Abelian vacua. If the angle ω between chromoelectric and chromomagnetic
fields is allowed to deviate from the constant vacuum value and all other parameters are fixed to
the vacuum values, then the Lagrangian takes the form

Leff =−
1
2

Λ
2b2

vac∂µω∂µω−b4
vacΛ

4 (C2 +3C3b2
vac
)

sin2
ω,

with the corresponding sine-Gordon equation

∂
2
ω = m2

ω sin2ω, m2
ω = b2

vacΛ
2 (C2 +3C3b2

vac
)
,

and the standard kink solution

ω(xµ) = 2 arctg
(
exp(µxµ)

)
(2.3)

interpolating between 0 and π . Here xµ stays for one of the four Euclidean coordinates. The
kink describes a planar domain wall between the regions with almost homogeneous Abelian self-
dual and anti-self-dual gluon fields. Chromomagnetic and chromoelectric fields are orthogonal to
each other on the wall, see Fig.1. Far from the wall, the topological charge density is constant,
its absolute value is equal to the value of the gluon condensate. The topological charge density
vanishes on the wall. The upper plot shows the profiles of the components of the chromomagnetic
and chromoelectric fields corresponding to the Bloch domain wall – the chromomagnetic field flips
in the direction parallel to the wall plane.

The domain wall network can be now constructed by the standard methods [25]. The general
kink configuration can be parametrized as

ζ (µi,η
i
νxν −qi) =

2
π

arctanexp(µi(η
i
νxν −qi)),

where µi is the inverse width of the kink, η i
ν is a normal vector to the plane of the wall, qi = η i

νxi
ν

with xi
ν - coordinates of the wall.

For an appropriate choice of normal vectors η i the product

ω(x) = π

k

∏
i=1

ζ (µi,η
i
νxν −qi). (2.4)

represents a lump of anti-self-dual field in the background of the self-dual one, in two, three and
four dimensions for k = 4,6,8, respectively. The general kink network is then given by the additive
superposition of lumps (2.4)

ω = π

∞

∑
j=1

k

∏
i=1

ζ (µi j,η
i j
ν xν −qi j). (2.5)
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The corresponding topological charge densities for different values of the width parameters µi are
shown in Fig. 2. The most LHS plot of Fig. 2 represents the configuration with infinitely thin
domain wall defects, that is the Abelian homogeneous (anti-)self-dual field almost everywhere in
R4 characterized by the nonzero absolute value of the topological charge density which is constant
and proportional to the value of the action density almost everywhere.

The most RHS plot in Fig. 2 shows the opposite case of the network composed of very thick
kinks. Green color corresponds to the gauge field with an infinitesimally small topological charge
density. Study of the spectrum of colorless and color charged fluctuations [33] indicates that the
LHS configuration is expected to be confining (only colorless hadrons can be excited as particles)
while the RHS one supports the color charged quasiparticles as the elementary excitations.

It is expected that the RHS configuration can be triggered by external electromagnetic fields
[9, 26, 27]. Strong electromagnetic fields emerge in relativistic heavy ion collisions [28, 29, 30].
Even after switching off the external electromagnetic field the nearly pure chromomagnetic vacuum
configuration (RHS of Fig.2) can support strong anisotropies [31] and, in particular, influence the
chiral symmetry realization in the collision region [32]. A detailed consideration of the spectrum
of elementary color charged excitations at the domain wall junctions (the green regions) is given in
[33].

Figure 2: Three-dimensional slices of the kink network - additive superposition of numerous four-
dimensional lumps. Green color corresponds to the gauge field with infinitesimally small topological charge
density.

A comment on representation of the domain wall network in terms of the vector potential is in
order. The domain wall network constructed in this section relies on the separation of the Abelian
part from the general gauge field. The vector potential representation can be easily realized for
the planar Bloch domain wall and layered superposition of planar walls. The same is true also for
the interior of a thick domain wall junction, where field is almost homogeneous. The description
of the domain walls in the general network Fig. 2 in terms of the vector potential requires appli-
cation of the gauge field parametrization suggested in a series of papers by Y.M. Cho [34, 35], S.
Shabanov [36, 37], L.D. Faddeev and A. J. Niemi [38] and, recently, by K.-I. Kondo [39]. In this
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parameterization the Abelian part V̂µ(x) of the gauge field Âµ(x) is separated manifestly,

Âµ(x) = V̂µ(x)+ X̂µ(x), V̂µ(x) = B̂µ(x)+Ĉµ(x), (2.6)

B̂µ(x) = [naAa
µ(x)]n̂(x) = Bµ(x)n̂(x),

Ĉµ(x) = g−1
∂µ n̂(x)× n̂(x),

X̂µ(x) = g−1n̂(x)×
(
∂µ n̂(x)+gÂµ(x)× n̂(x)

)
,

where Âµ(x) = Aa
µ(x)t

a, n̂(x) = na(x)ta, nana = 1, and

∂µ n̂× n̂ = i f abc
∂µnanbtc, [ta, tb] = i f abctc.

The field V̂µ is seen as the Abelian field in the sense that [V̂µ(x),V̂ν(x)] = 0. The color vector field
na(x) may be used for detailed description of the thin domain wall junctions in general case. One
can see that both the color and space orientation of the field can become frustrated at the junction
location and, thus, develop the singularities in the vector potential. These singularities can be
expected to be pure gauge ones as soon as the gauge invariant quantities stay regular in the limit of
infinitely thin domain wall. The singularities may cover the whole range of defects – vortex-like,
dyon-like and zero-dimensional instanton-like defects.

3. Ensemble properties and the elementary color charged excitations

3.1 Domain bulk

It is known that the presence of a planar domain wall does not destroy confinement in the bulk
of domains, as well as interior of the planar domain wall exhibits color charged quasiparticles [33].
The details of statistical properties of the domain ensemble in its present formulation have yet to
be investigated. However, its main properties can be foreseen due to the detailed study of the sim-
plified version of the domain ensemble with spherical domains performed in [6, 24, 8]. The study
indicated that the ensemble provides one with both static (area law) and dynamical (purely discrete
spectrum of color charged excitations, there are no poles in their propagators), spontaneously bro-
ken flavour chiral symmetry, UA(1) being broken due to the axial anomaly, absence of the strong
CP violation.

Though these studies have given an overall coherent system of guidelines for description of
confinement, chiral symmetry realisation, hadronization (see below), it has been always completely
unclear what are the mechanisms for deconfinement and chiral symmetry restoration within the
framework of the present approach.

More detailed construction of the domain ensemble allows one to recover certain physical
mechanisms for deconfinement. The gluon field inside the thick domain wall junction is purely
chromomagnetic and allows the color charged quasi-particles. Confinement is lost inside the junc-
tion of a finite size. The domain wall junction plays the role of a trap for charged quasi-particles.
There exists a critical size of the stable trap, beyond which the emerging tachyonic Nielsen-Olesen
gluon modes destroy it.

The chromomagnetic traps as well as any domain wall or junction can be treated as seeds of
deconfinement phase randomly distributed in the phase with confinement. At zero mean energy

9
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density and baryon density, in the absence of strong electromagnetic fields and other relevant exter-
nal influence, i.e. at normal conditions, the deconfinement phase occupies a statistically negligible
fraction of the total space-time volume of the system. Under extreme conditions the fraction of
deconfinement phase may grow and become statistically dominant.

Figure 3: Examples of two-dimensional slice of the cylindrical thick domain wall junctions. Blue and
red regions represent self-dual and anti-self-dual lumps. Confinement is lost in the green region where
g2F̃µν(x)Fµν(x) = 0. The scalar condensate density g2Fµν(x)Fµν(x) is nonzero and homogeneous every-
where.

3.2 The spectrum of color charged quasiparticles trapped in a thick domain wall junction

For illustration of above statement it is appropriate to consider the eigenmodes of color charged
fields inside the cylindrical domain wall junction. One has to solve the Minkowski space Klein-
Gordon and Dirac equations in the presence of chromomagnetic field inside the cylinder with the
bag-like boundary conditions [33]. Solutions describe the elementary quasiparticle excitations in-
side the junction. Quite detailed analysis of the notion of quasiparticles in relativistic quantum field
theory can be found in [51]. In generic relativistic frame both chromoelectric and chromomagnetic
fields are present inside the domain wall junction. However since the topological charge density
vanishes in the region (see Fig.3) there exists specific frame where chromoelectric field is absent.
This frame is the most convenient for our purposes.

Adjoint representation: color charged bosons In the adjoint representation the elementary
scalar field excitations φ a inside the cylindrical trap are given by a complex scalar field

φ
a(x) = ∑

lk

+∞∫
−∞

d p3

2π

1√
2ωalk

[
a+akl(p3)eix0ωakl−ip3x3 +bakl(p3)e−ix0ωakl+ip3x3

]
eilϑ

φalk(r), (3.1)

φ
a†(x) = ∑

lk

+∞∫
−∞

d p3

2π

1√
2ωalk

[
b+akl(p3)e−ix0ωakl+ip3x3 +aakl(p3)eix0ωakl−ip3x3

]
e−ilϑ

φalk(r),

p2
0 = p2

3 +µ
2
akl,

p0 =±ωakl(p3), ωakl =
√

p2
3 +µ2

akl, (3.2)

k = 0,1, . . . ,∞, l ∈ Z,

10
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with φalk(r) normalized as

∞∫
0

drr
2π∫
0

dϑei(l−l′)ϑ
φalk(r)φal′k′(r) = δll′δkk′ .

Explicit analytical form of φalk(r) expressed in terms of confluent hypergeometric functions can be
found in [33].
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µ
2

l

Figure 4: Quasiparticle masses squared µ2
alk for the scalar field problem, l =−2,−1,0,1,2 and k = 0,1,2,

for
√

HR = 1.6, in units of chromomagnetic field strength H. Asterisks (circles) correspond to positive
(negative) eigenvalues of the adjoint color matrix n̆.
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6
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µ
2

√
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k = 0

k = 1

l =
0

l =
1

l =
2

l =
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l =
1

l =
2

√
HRc ≈ 1.910

Figure 5: The mass squared of the lowest eigenmodes (in units of H) as functions of
√

HR. The critical
radius Rc corresponds to µ2

a00 =
√

3H. For large
√

HR eigenvalues approach correct Landau levels, the
degeneracy in l is restored.

Equation (3.2) can be treated as the dispersion relation between energy p0 and momentum p3

for the quasiparticles with masses µakl . These quasiparticles are extended in x1 and x2 directions
and are classified by the quantum numbers l,k. The orthogonality, normalization and completeness
of the set of functions eilϑ φalk(r) guarantees the standard canonical commutation relations for the
field φ a and its canonically conjugated momentum if a†

akl(p3), aakl(p3), b†
akl(p3) and bakl(p3) are

assumed to satisfy the standard commutation relations for creation and annihilation operators. The

11
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Fock space of states for the quasiparticles with masses µakl can be constructed by means of the
standard QFT methods. This treatment provides one with a suitable terminology and formalism for
discussion of the confining properties of various gluon field configurations in the context of QFT:
unlike the chromomagnetic field the (anti-)self-dual fields characteristic for the bulk of domain
network configuration (see the LHS plot in Fig. 2) lead to purely discrete spectrum of eigenmodes
in Euclidean space and do not possess any quasiparticle treatment in terms of dispersion relation
between energy and momentum for elementary color charged excitations. If there is a reason for
long-lived defect in the form of thick domain wall junction then its boundary defines a shape and a
size for the space region which can be populated by color charged quasiparticles.

The vector adjoint field can be elaborated in the similar to the scalar case way. A modifica-
tion relates just to the inclusion of polarization vectors. The most important feature is the absence
of tachyonic mode (Nielsen-Olesen mode) of the vector color charged field if the cylinder radius
is sufficiently small R < Rc (see Fig.5). To estimate the critical size one may use the mean phe-
nomenological value of the gluon condensate (gauge coupling constant g is included into the field
strength tensor)

〈Fa
µνFaµν〉= 2H2 ≈ 0.5GeV4.

One arrives at to the critical radius

Rc ≈ 0.51 fm (2Rc ≈ 1 fm). (3.3)

0

5

10

15

20

25

− 5
2 − 3

2 − 1
2

1
2

3
2

5
2

µ
2

j3

Figure 6: The effective masses of fermion quasiparticles µ2 for
√

HR= 1.6, in units of H. Here j3 = l+1/2
is the projection of the total angular momentum on the direction of the chromomagnetic field. Asterisks
(circles) correspond to positive (negative) eigenvalues of the fundamental color matrix n̂.

Fundamental representation: color charged fermions The solution of the Dirac equation

i 6Dψ(x) = 0,

inside the cylindrical trap are characterized by the dispersion relation for the modes with definite
projection of the total angular momentum j3, radial number k and color "orientation" j

p2
0 = p2

3 +µ
2
jlk, p0 =±ω jlk(p3),

ω jlk =
√

p2
3 +µ2

jlk,

12
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where µ jlk are the effective masses of fermion quasiparticles, see Fig.6.
The solution of the Dirac equation takes the form (for analytical form of Φ(r) see [33])

ψ
j(x) = ∑

lk

+∞∫
−∞

d p3

2π

1√
2ω jlk

[
a†

jlk(p3)χ jlk(p3|r,ϑ)eix0ω jlk−ix3 p3 +b jlk(p3)υ jlk(p3|r,ϑ)e−ix0ω jlk+ix3 p3
]
,

ψ̄
j(x) = ∑

lk

+∞∫
−∞

d p3

2π

1√
2ω jlk

[
b†

jlk(p3)χ̄ jlk(p3|r,ϑ)e−ix0ω jlk+ix3 p3 +a jlk(p3)ῡ jlk(p3|r,ϑ)eix0ω jlk−ix3 p3
]
.

Here the pair of spinors for positive χlk and negative υlk energy solutions are

χlk = Alk


(−1)k+1 µlk√

ωlk+p3
Φ
↑↑
l (r)eilϑ

i(−1)k+1 µlk
√

ωlk+p3
2(l+1) Φ

↑↓
l+1(r)e

i(l+1)ϑ

i
√

ωlk + p3Φ
↑↑
l (r)eilϑ

µ2
lk

2(l+1)
√

ωlk+p3
Φ
↑↓
l+1(r)e

i(l+1)ϑ

 , υlk = Alk


(−1)k+1 µlk√

ωlk+p3
Φ
↑↑
l (r)eilϑ

i(−1)k µlk
√

ωlk+p3
2(l+1) Φ

↑↓
l+1(r)e

i(l+1)ϑ

−i
√

ωlk + p3Φ
↑↑
l (r)eilϑ

µ2
lk

2(l+1)
√

ωlk+p3
Φ
↑↓
l+1(r)e

i(l+1)ϑ


for l > 0 and

χlk = Blk


µ2

lk
2l
√

ωlk+p3
Φ
↑↑
l (r)eilϑ

i
√

ωlk + p3Φ
↑↓
l+1(r)e

i(l+1)ϑ

i(−1)k µlk
√

ωlk+p3
2l Φ

↑↑
l (r)eilϑ

(−1)k µlk√
ωlk+p3

Φ
↑↓
l+1(r)e

i(l+1)ϑ

 , υlk = Blk


µ2

lk
2l
√

ωlk+p3
Φ
↑↑
l (r)eilϑ

−i
√

ωlk + p3Φ
↑↓
l+1(r)e

i(l+1)ϑ

i(−1)k+1 µlk
√

ωlk+p3
2l Φ

↑↑
l (r)eilϑ

(−1)k µlk√
ωlk+p3

Φ
↑↓
l+1(r)e

i(l+1)ϑ


for l < 0. The spinors are normalized as

2π∫
0

dϑ

R∫
0

drrχ
†
jlk(p3|r,ϑ)χ jlk(p3|r,ϑ) =

2π∫
0

dϑ

R∫
0

drrυ
†
jlk(p3|r,ϑ)υ jlk(p3|r,ϑ) = 2ω jlk.

The Dirac conjugated spinors are

ψ̄
j(x) = ψ

j†(x)γ0

as usual. The Fock space can be constructed by means of the creation and annihilation operators{
a†

jlk(p3),a jlk(p3),b
†
jlk(p3),b jlk(p3)

}
satisfying the standard anticommutation relations. The one-particle state is characterized by a
color orientation j, momentum p3, projection j3 = (l + 1/2) of the total angular momentum and
the energy ω jlk =

√
p2

3 +µ2
jlk.

4. The strong electromagnetic field as a trigger for deconfinement

It has been observed that the strong electromagnetic fields generated in relativistic heavy ion
collisions can play the role of a trigger for deconfinement [9]. The electric Eel and magnetic Hel

fields are practically orthogonal to each other [29, 28]: EelHel ≈ 0. For this configuration of the

13



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
1
7

Domain wall network as QCD vacuum Sergei N. Nedelko

mu/d , MeV ms, MeV mc, MeV mb, MeV Λ, MeV g
156 389 1575 4868 418 6.97

Table 1: Values of parameters used for calculations of the masses and decay constants given in all other
tables

external electromagnetic field the one-loop quark contribution to the QCD effective potential for the
homogeneous Abelian gluon fields is minimal for the chromoelectric and chromomagnetic fields
directed along the electric and magnetic fields respectively. The orthogonal chromo-fields are not
confining: color charged quasiparticles can move along the chromomagnetic field. It has been
noted also that this mechanism assumes the strong azimuthal anisotropy in momentum distribution
of color charged quasiparticles. Deconfined quarks as well as gluons can move preferably along
the direction of the magnetic field but this happens due to the gluon field configuration even after
switching the electromagnetic field off.

A detailed and systematic analytical one-loop calculation of the QCD effective potential for
the pure chromomagnetic field was performed recently in [41] and confirmed the result that the
chromomagnetic field prefers to be parallel (or anti-parallel) to the external magnetic field. Another
important source of verification of the basic observations of paper [9] is due to the recent Lattice
QCD studies of the response of the QCD vacuum to external electromagnetic fields [26, 27, 42, 43,
44, 45].

In particular, in qualitative agreement with [9] Lattice QCD study [27] has demonstrated that
in the presence of external magnetic field the gluonic action develops an anisotropy: the chro-
momagnetic field parallel to the external field is enhanced, while the chromo-electric field in this
direction is suppressed. The results of [42] indicated that the magnetic field can affect the azimuthal
structure of the expansion of the system during heavy ion collisions.

Within the context of the confining domain wall network these observations mean that a flash
of the strong electromagnetic field during heavy ion collisions produces a kind of defect in the form
of the thick domain wall junction in the confining gluon background exactly in the region where
collision occurs (see Fig.3). The electromagnetic flash can act as one of the preconditions for
conversion of the high energy density and baryon density to the thermodynamics of color charged
degrees of freedom.

5. Color neutral collective excitations

In this section we present the new results of calculation of the spectrum of radial meson ex-
citations within the framework of domain model. Ground state and orbital excitations of light,
heavy-light mesons and heavy quarkonia were considered in [22, 23, 24]. In these previous cal-
culations the non-diagonal in radial quantum number terms in the effective meson action were
neglected. Here we improve the calculation in this respect. Technical details and approximations
of the bosonization procedure in application to the partition function (1.2) can be found in papers
[22, 23, 24].

14
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5.1 Effective meson action

The quantum field dynamics of collective boson modes in the domain ensemble is described
by the Euclidean functional integral [24]

Z = N lim
V→∞

∫
DΦQ exp

{
−B

2
h2

Q

g2CQ

∫
dxΦ

2
Q(x)−∑

k

1
k

Wk[Φ]

}
, (5.1)

1 =
g2CQ

B
Γ̃
(2)
QQ(−M2

Q|B), (5.2)

h−2
Q =

d
d p2 Γ̃

(2)
QQ(p2)|p2=−M2

Q
. (5.3)

The effective action in Eq. (5.1) is expressed in terms of colourless composite meson fields ΦQ(x)
with the mass MQ defined by Eq. (5.2), where the condensed index Q denotes isotopic and space-
time indices as well as all possible mesonic quantum numbers (iso-spin, spin-parity in the ground
state, total momentum, radial quantum number), and k-point nonlocal vertices Γ

(k)
Q1...Qk

Wk[Φ] = ∑
Q1...Qk

hQ1 . . .hQk

∫
dx1 . . .

∫
dxkΦQ1(x1) . . .ΦQk(xk)Γ

(k)
Q1...Qk

(x1, . . . ,xk|B),

Γ
(1)
Q1

= G(1)
Q1

, (5.4)

Γ
(2)
Q1Q2

= G(2)
Q1Q2

(x1,x2)−Ξ2(x1− x2)G
(1)
Q1

G(1)
Q2

, (5.5)

Γ
(3)
Q1Q2Q3

= G(3)
Q1Q2Q3

(x1,x2,x3)−
3
2

Ξ2(x1− x3)G
(2)
Q1Q2

(x1,x2)G
(1)
Q3

(x3)

+
1
2

Ξ3(x1,x2,x3)G
(1)
Q1

(x1)G
(1)
Q2

(x2)G
(1)
Q3

(x3), (5.6)

Γ
(4)
Q1Q2Q3Q4

= G(4)
Q1Q2Q3Q4

(x1,x2,x3,x4)−
4
3

Ξ2(x1− x2)G
(1)
Q1

(x1)G
(3)
Q2Q3Q4

(x2,x3,x4)

− 1
2

Ξ2(x1− x3)G
(2)
Q1Q2

(x1,x2)G
(2)
Q3Q4

(x3,x4)

+ Ξ3(x1,x2,x3)G
(1)
Q1

(x1)G
(1)
Q2

(x2)G
(2)
Q3Q4

(x3,x4)

− 1
6

Ξ4(x1,x2,x3,x4)G
(1)
Q1

(x1)G
(1)
Q2

(x2)G
(1)
Q3

(x3)G
(1)
Q4

(x4), (5.7)

and analogous expressions for the higher vertices. Defining the meson-quark coupling constants
hQ by Eq. (5.3) provides for the correct residue of the meson propagators at the poles and is known
as a compositeness condition.

The meson-meson vertices Γ(k) are expressed via quark loops G(n)
Q with n quark-meson vertices

G(k)
Q1...Qk

(x1, . . . ,xk) =
∫
Σ

dσ jTrVQ1(x1|B( j))S(x1,x2|B( j)) . . .VQk(xk|B( j))S(xk,x1|B( j))

G(l)
Q1...Ql

(x1, . . . ,xl)G
(k)
Ql+1...Qk

(xl+1, . . . ,xk) =
∫
Σ

dσ j

×Tr
{

VQ1(x1|B( j))S(x1,x2|B( j)) . . .VQk(xl|B( j))S(xl,x1|B( j))
}

×Tr
{

VQl+1(xl+1|B( j))S(xl+1,xl+2|B( j)) . . .VQk(xk|B( j))S(xk,xl+1|B( j))
}
, (5.8)
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meson n M, MeV M, MeV h
π 0 139.57 [46] 139.5 3.74

π(1300) 1 1300 [46] 1364.243 2.46
K 0 493.68 [46] 494.0 4.24

K(1460) 1 1460 [46] 1380 2.10
ρ 0 770 [46] 770 1.97

ρ(1450) 1 1450 [46] 1577 1.53
ρ 2 1720 [46] 1663 1.57

K∗ 0 891.7 [46] 892 2.15
K∗(1410) 1 1410 [46] 1517 1.52

φ 0 1019.46 [46] 1041 2.40
φ(1680) 1 1680 [46] 1718 1.66

φ 2 2175 [46] 1931 1.58
D 0 1864.86 [46] 1712 6.16
D 1 2579 [48] 2337 2.69
Ds 0 1968.5 [46] 1830 7.08
Ds 1 2670 [48] 2604 2.71
B 0 5279 [46] 5018 9.62
B 1 5883 [48] 5578 4.07
Bs 0 5366.7 [46] 5118 11.07
Bs 1 5971 [48] 5806 4.02
Bc 0 6277 [46] 5981 14.65
Bc 1 6842 [49] 6986 4.39

ηc(1S) 0 2981 [46] 2781 9.84
ηc(2S) 1 3639 [46] 3620 3.42

D∗ 0 2010.28 [46] 1944 3.18
D∗ 1 2629 [48] 2402 1.89
D∗s 0 2112.3 [46] 2092 3.57
D∗s 1 2716 [48] 2659 1.92

J/ψ(1S) 0 3096.92 [46] 3097 5.13
ψ(2S) 1 3686 [46] 3705 2.32

ψ(4040) 2 4039 [46] 3931 2.44
B∗ 0 5325 [46] 5197 5.20
B∗ 1 5898 [48] 5620 2.82
B∗s 0 5415.4 [46] 5336 5.80
B∗s 1 5984 [48] 5844 2.80

ϒ(1S) 0 9460 [46] 9460 10.51
ϒ(2S) 1 10023 [46] 10109 4.08
ϒ(3S) 2 10355 [46] 10337 3.68

Table 2: The masses and decay constants of ground state and radially excited mesons. Our result is given in
the fourth column. The table includes light and heavy-light mesons as well as the heavy quarkonia. Overall
accuracy is less than 11%.
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where bar denotes integration with measure dσ j over all configurations of the background domain
structured field B( j). The form of the nonlocal quark-meson vertex operator V ak

µ (x)

V aJln
µ1...µl

(x) = Ma
Γ

J


Fnl

↔∇2
(x)

Λ2

T (l)
µ1...µl

1
i

↔
∇

2
(x)

Λ2


 , (5.9)

Fnl(s) = sn
∫ 1

0
dttn+l exp(st), (5.10)

↔
∇=

←
∇ ξ f ′−

→
∇ ξ f ,ξ f =

m f

m f +m f ′
, (5.11)

←
∇=

←
∂ µ +iB̂µ(x),

→
∇=

→
∂ µ −iB̂µ(x). (5.12)

is completely determined by the form of the gluon propagator in the presence of the background
field.

The quark propagator S(x,y) in the presence of Abelian (anti-)self-dual field (taken here to be
constant with random values of its parameter) has the form

S(x,y) = exp
(
− i

2
xµ B̂µνyν

)
H(x− y),

H̃ f (p|B) = 1
2υΛ2

∫ 1

0
dse(−p2/2υΛ2)s

(
1− s
1+ s

)m2
f /4υΛ2 [

pαγα ± isγ5γα fαβ pβ+

+m f

(
P±+P∓

1+ s2

1− s2 −
i
2

γα fαβ γβ

s
1− s2

)]
, (5.13)

P± = (1± γ5)/2, fαβ =
n̂

2υΛ2 Bαβ ,υ = diag
(

1
6
,
1
6
,
1
3

)
, (5.14)

Bµν =−Bνµ , B̃µν =
1
2

εµναβ Bαβ =±Bµν , B̂ρµ B̂ρν = 4υ
2
Λ

4
δµν . (5.15)

One can see that all elements in the effective mesonic action are defined in analytical form and
ready for calculation of meson spectrum, formfactors, etc.

5.2 Radial excitations of mesons

Quadratic part of the effective action in the momentum representation reads

I2 =−
1
2

∫
d4 pΦ̃

ak
µ (−p)

[
Λ

2
δµµ ′δ

ak,a′k′+GkGk′Π̃
aka′k′
µµ ′ (p)

]
Φ̃

a′k′
µ ′ (p).

Here

k = (Jln), µ = (µ1 . . .µl), Gk = g

√
CJ

l +1
2ln!(n+ l)!

.

17



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
1
7

Domain wall network as QCD vacuum Sergei N. Nedelko

Figure 7: One-loop contribution to the polarization function. Light grey color denotes averaging over the
background field.

Figure 8: Two-loop diagram. Dark grey color indicates the correlated averaging over the background gluon
field in two quark loops.

We do not consider here the orbital excitations and put the orbital momentum to be zero l = 0.
The polarization operator ΠaJ0n,aJ0n′(p) can be reduced to a rather compact form

Π
nn′
J
(
−M2;m f ,m f ′ ;Λ

)
=

− Λ2

4π2 Trυ

1∫
0

dt1

1∫
0

dt2

1∫
0

ds1

1∫
0

ds2

(
1− s1

1+ s1

)m2
f /4υΛ2(

1− s2

1+ s2

)m2
f ′/4υΛ2

tn
1 tn′

2
∂ n

∂ tn
1

∂ n′

∂ tn′
2
×

1
Φ2

2

[
M2

Λ2
F(J)

1

Φ2
2
+

m f m f ′

Λ2
F(J)

2

(1− s2
1)(1− s2

2)
+

F(J)
3

Φ2

]
exp
{

M2

2υΛ2
Φ1

Φ2

}
.

where

Φ1 = s1s2 +2
(
ξ

2
1 s1 +ξ

2
2 s2
)
(t1 + t2)v,

Φ2 = s1 + s2 +2(1+ s1s2)(t1 + t2)υ +16(ξ 2
1 s1 +ξ

2
2 s2)t1t2υ

2,

F(P)
1 = (1+ s1s2) [2(ξ1s1 +ξ2s2)(t1 + t2)υ+

4ξ1ξ2(1+ s1s2)(t1 + t2)2
υ

2 + s1s2(1−16ξ1ξ2t1t2υ
2)
]
,

F(V )
1 =

(
1− 1

3
s1s2

)[
s1s2 +16ξ1ξ2t1t2υ

2 +2(ξ1s1 +ξ2s2)(t1 + t2)υ
]
+

4ξ1ξ2(1− s2
1s2

2)(t1− t2)2
υ

2,

F(P)
2 = (1+ s1s2)

2, F(V )
2 = (1− s2

1s2
2),

F(P)
3 = 4υ(1+ s1s2)(1−16ξ1ξ2t1t2υ

2),

F(V )
3 = 2υ(1− s1s2)(1−16ξ1ξ2t1t2υ

2).

Diagonalizing of ΠaJ0n,aJ0n′ with respect to the radial quantum numbers n = 0 . . .3 and n′ =
0 . . .3 and using (5.3) one arrives at the meson masses listed in the Table 2 for the values of the
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meson n M, MeV [46] M, MeV h
η 0 547.86 499 3.78
η ′ 0 957.8 957 3.41

η(1295) 1 1294 1165 3.08
η(1475) 1 1476 1366 3.10

Table 3: Masses and coupling constants of η ,η ′. For interpretation of the excited states , see [46]. The
value of domain radius R = 2.374/Λ ≈ 1.121 fm is chosen to fit the η ′ mass. Our result is given in fourth
column.

meson fP, MeV fP, MeV
K 156 [46] 159
π 130 [46] 132
D 205 [46] 180
Ds 258 [46] 230
B 191 [46] 157
Bs 253 [47] 205
Bc 489 [47] 341

Table 4: Decay constants of pseudoscalar mesons.

parameters given in Table 1. Omitting the details we report also the weak decay constants of
pseudoscalar mesons, see Table 4.

It should be noted that the masses of all mesons listed in Table 2 are computed by means of the
one-loop diagram, Fig. 7. Two-loop contribution, Fig. 8, is irrelevant to these mesons. The situation
is completely different in the case of the η and η ′ (for details see [24]). Taking into account both
one- and two-loop contributions in the case of flavour octet and singlet states and diagonalizing
the polarization function both in (n,n′) and (a = 0,8;a′ = 0,8) we arrive to the masses given in
Table 3.

We have to stress here that the model has a minimal set of parameters: scale Λ related to the
scalar gluon condensate, quark masses m f , gauge coupling constant g at the scale Λ, and the domain
radius R related to the topological susceptibility of the pure glue vacuum. The domain radius R was
required only for calculation of the η and η ′ masses. The overall accuracy of description of the
masses and decay constant is less than 11%.

6. Discussion

Here we would like to discuss further steps that become accessible within the more detailed
construction of the domain wall network presented in sections 2 and 3.

Functional integral (1.2) includes integration over the whole statistical ensemble B. This
infinite dimensional integral can be defined by means of the parametrization of the general kink
superposition (2.5) to set up a considerably refined version of the models elaborated in papers [23,
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22, 6, 24, 8]. Statistical weight of a given configuration B ∈B has to be controlled by the QCD
effective action emerging from the integral over the fields Q.

Important observation was that there exists a critical size Rc of the region (chromomagnetic
trap) where deconfined color charged quasiparticles may exist. For overcritical size of the trap the
tachyonic gluon modes emerge in the excitation spectrum and destabilize it.

This certainly does not mean that the overall volume of deconfinement transition in hadronic
matter is somehow restricted by Rc. Numerous traps may be formed, the traps may merge into a
large purely chromomagnetic lump developing the "spaghetti" flux tube structure inside the lump.
Equivalently one may also think about formation of the spaghetti configuration inside the traps with
overcritical size emerging under conditions of high energy or/and baryon number density, strong
electromagnetic fields.

Unlike the previous formulations the new one allows, at least in principle, to study the decon-
finement transition. The general idea of the study can be related to the treatment of heterophase
mixed states in condensed matter [52]. As it has already been mentioned in the Introduction, do-
main walls and their junctions can be treated as representing the seeds of the deconfinement phase
randomly distributed in the confinement phase. In the absence of any external impact one expects
that the fraction of the deconfinement phase is statistically negligible as it occupies an essentially
three-dimensional sub-manifold in the four-dimensional space R4.

The domain wall network representation of QCD vacuum is suggestive of a two-stage decon-
finement transition. At the first stage topological charge density vanishes but the scalar condensate
stays almost unchanged, color charged quasiparticles are activated at this stage while the colorless
collective excitations can decay into the color charged ones. At the second stage the scalar gluon
condensate vanishes and the system turns into dilute quark-gluon plasma. Detailed consideration
requires an additional information about the QCD effective action structure and goes far beyond
the scope of the present paper.
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