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QCD with massive gluons Sergey Larin

The discovery [1] of asymptotic freedom in Quantum Chromodynamics (QCD) has lead to the
establishment of QCD as the theory of strong interactions. The gauge bosons of the theory, the glu-
ons, are considered to be massless to have gauge invariance and correspondingly renormalizability.
In the present paper it is shown that the QCD Lagrangian should be modified by the adding gluon
masses to ensure that QCD does not contradict to experiments. On mass-shell renormalizability of
the resulting theory is discussed.

The Lagrangian of QCD is

LQCD =−1
4

Fa
µνFa

µν + iψ f γµDµψ f −mf ψ f ψ f (1)

− 1
ξ

(∂ µAa
µ)2 +∂

µca(∂µca−g fabccbAc
µ)+counterterms,

whereFa
µν = ∂µAa

ν − ∂νAa
µ + g fabcAb

µAc
ν is the gluon field strength tensor,Dµ = ∂µ − igAa

µTa is
the covariant derivative. The quark fieldsψ f transform as the fundamental representation of the
colour groupSU(3) , f = u,d,s,c,b, t is the flavour index. The gluonsAa

µ transform as the adjoint
representation of this group.ca are the ghost fields,ξ is the gauge parameter of the usually chosen
general covariant gauge,f abc are the structure constants of the group,Ta are the generators of the
fundamental representation.g = g(µ) is the renormalized strong coupling constant,g2/(16π2) ≡
as, mf = mf (µ) is the Lagrangian (renormalized) mass of a quark with a flavorf , andµ is the
renormalization point. The summations over repeated indexes are assumed.

Let us consider the vacuum polarization functionΠ(q2)

(−q2gµν +qµqν)Π(q2) = i
∫

dxeiqx〈0| T jµ(x) jν(0) |0〉. (2)

where jµ = ∑ f qf ψ f γµψ f is the electromagnetic quark current andqf = 2/3,−1/3, ... is the elec-
tromagnetic charge of the quark with a flavorf .

According to general principles of local quantum field theory the functionΠ(q2) satisfies the
Källen-Lehmann [2] spectral representation

Π(q2) =
1

12π2

∫ ∞

4m2
π

ds
R(s)

s−q2− i0
, (3)

where the ratioR(s) = σtot(e+e− → hadrons)/σ(e+e− → µ+µ−) is the normalized total cross-
section of electron-positron annihilation into hadrons,mπ is a pion mass.

The Källen-Lehmann representation determines the analytic properties ofΠ(q2) which should
be an analytic function in the complexq2-plane with the cut starting from the first physical thresh-
old, i.e. as it is dictated by experiments from the two-pion thresholdq2 = 4m2

π . In particular, one
gets for the discontinuity ofΠ(q2) on the cut

∆Π(q2)≡ Π(q2 + i0)−Π(q2− i0) =

{
i R(q2)/(6π) at s> 4m2

π

0 at s< 4m2
π .

(4)

Perturbative QCD produces the following expression for the discontinuity

∆Π(q2)pQCD = θ(q2) ρgluon(q2)+θ(q2−4M2
u) ρquark(q2). (5)
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QCD with massive gluons Sergey Larin

The gluon spectral densityρgluon(q2) contributes forq2 > 0 as it is indicated by the theta-function
θ(q2). This is the known zero threshold. It arises from those absorptive parts of Feynman diagrams
of Π(q2) which are produced by purely gluonic cuts of the diagrams (i.e. by the Cutcosky cuts
which cross only gluon propagators of diagrams). As it is well known such diagrams appear for
the first time at the four-loop level in the ordera3

s (corresponding cuts cross 3 gluon propagators).
The quark spectral densityρquark(q2) arises from the quark cuts of the diagrams (i.e. from

the cuts which cross two or more quark propagators of the diagrams). It contributes forq2 > 4M2
u

whereMu is the perturbative pole mass of the lightestu-quark, defined as the pole of the quark
propagator within perturbation theory. A perturbative quark pole mass

M f = mf (µ)+O(as) (6)

appears after summation of perturbative corrections to a quark propagator. It is a renormalization
group invariant quantity, i.e. independent on the renormalization pointµ and on the choice of the
subtraction scheme. In this sense it behaves as a physical object and that is why it is natural to use
this definition of a quark mass to parametrize the theory.

We will not discuss here the important by themselves questions of convergence or divergence
of corresponding perturbative QCD series at low or at high energies. Here we will just accept that
our conventional perturbation theory is adequate to the exact solution of the theory, i.e. it correctly
reproduces the perturbative expansion of the exact solution.

Hence one gets within QCD that∆Π(q2) is non-zero in the energy interval 0< q2 < 4m2
π since

the perturbative contribution∆Π(q2)pQCD is non-zero in this interval. And we would like to stress
here that one should get in QCD an exact zero below the two-pion threshold as it is dictated by
experiments. There are of course also non-perturbative contributions, i.e. contributions of the type
of e−1/as which are invisible in the perturbative expansion atas = 0+

e−1/as = 0·as+0·a2
s + ...

At this point it is interesting to see on simple examples how non-perturbative contributions can be
separated from perturbative ones. We consider first the following function

1

eas +e−1/as

which contains both perturbative and non-perturbative contributions.
Let us nullify in this function the non-perturbative objecte−1/as. Then we are left with the

purely perturbative function1
eas . Let us now subtract and add this function to the original one:

1

eas +e−1/as
≡ 1

eas +e−1/as
− 1

eas
+

1
eas

=− e−1/as

eas +e−1/as
+e−as, (7)

where we combained first two terms into one. Thus we have presented the original function as the
sum of the purely non-perturbative and purely perturbative terms.

Let us consider one more simple example:

sin
(

eas +e−1/as

)
.
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We again nullify in the above function the non-perturbative objecte−1/as to get the purely pertur-
bative function sin(eas). Again we subtract and add this perturbative functin to the original one:

sin
(

eas +e−1/as

)
=
[
sin
(

eas +e−1/as

)
−sin(eas)

]
+sin(eas) . (8)

Here in the square brackets we have the purely non-perturbative function and outside - the purely
perturbative one.

The general rule is as follows. In an original function which is a mix of perturbative and
non-perturbative contributions one should nullify all non-perturbative objects getting in this way
a purely perturbative function. Then one should subtract and add this perturbative function to the
original one. The difference of the original function and the purely perturbative one will form the
purely non-perturbative contribution.

Let us now return to the analysis of the spectral dencity. We note that non-perturbative contri-
butions can not exactly cancel the perturbative contribution in the continuous interval 0< q2 < 4m2

π

because of the different dependence onas. To get that∆Π(q2) = 0 at 0< q2 < 4m2
π in agreement

with experiments one should move perturbative gluon and quark thresholds aboveq2 = 4m2
π . That

is why we should introduce the non-zero Lagrangian gluon masses.
The first naive objection here is that nobody trusts perturbation theory below the two-pion

threshold, i.e. that the corresponding perturbative series is heavily divergent in this energy region.
But for us here only the principal existence of the pertubative series with finite coefficients below
the two-pion threshold is of importance independently on the question of its divergence.

Thus one obtains the following restrictions on the (perturbative pole) masses of gluons and
quarks

(3Mgl)2 > 4m2
π , (9)

4M2
u > 4m2

π .

Although the restriction onMu seems to be quite strong for the lightest u-quark it is not excluded
from the first principles.

To construct QCD with massive gluons we will follow the approach of [3]. Presently this
is the only known way to get (on mass-shell) renormalizable theory of massive gluons without
color scalars (color scalars are rejected by experiments). Within this approach one starts from a
renormalizable theory with scalar fields using the Englert-Brout-Higgs mechanism of spontaneous
symmetry breaking [4] and after transition to the unitary gauge removes remaining massive scalar
fields. Thus we add to the massless QCD Lagrangian (1) the scalar part to begin with the following
general Lagrangian

LQCD+scalars=−1
4

Fa
µνFa

µν + iψ f γµDµψ f −mf ψ f ψ f + (10)

(
DµΦ

)+
DµΦ+

(
DµΣ

)+
DµΣ−λ1

(
Φ+Φ−v2

1

)2−λ2
(
Σ+Σ−v2

2

)2

−λ3
(
Φ+Φ+Σ+Σ−v2

1−v2
2

)2−λ4
(
Φ+Σ

)(
Σ+Φ

)
+Lg f +Lgc+counterterms,

where we introduced two tripletsΦ(x) andΣ(x) of complex scalar fields in the fundamental rep-
resentation of theSU(3) color group to get all gluon massive.Lg f is the gauge fixing part of the

4
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QCD with massive gluons Sergey Larin

Lagrangian in some chosen gauge andLgc is the corresponding gauge compensating part with the
Faddeev-Popov ghost fields.

We can choose the following shifts of scalar fields by the quantitiesv1 and v2 to generate
masses of all eight gluons

Φ(x) =

 φ1(x)+ iφ2(x)+v1

φ3(x)+ iφ4(x)
φ5(x)+ iφ6(x)

 , Σ(x) =

 σ1(x)+ iσ2(x)
σ3(x)+ iσ4(x)+v2

σ5(x)+ iσ6(x)

 . (11)

Choosing for simplicityv1 = v2 ≡ v one obtains the following massive terms for gluons in the
Lagrangian

LM = m2
gl

[
(A1)2 +(A2)2 +(A3)2 +

1
2
(A4)2+ (12)

1
2
(A5)2 +

1
2
(A6)2 +

1
2
(A7)2 +

1
3
(A8)2

]
,

wherem2
gl ≡ g2v2 is the gluon mass parameter of the theory.

After the chosen shifts the following four combinations of scalar fields

φ1 +
λ3

λ1 +λ3
σ3, σ3, σ1 +φ3, σ2−φ4 (13)

become massive Higgs particles.
The following eight combinations

σ1−φ3, φ4 +σ2, φ2−σ4, φ2 +σ4, φ5, φ6, σ5, σ6 (14)

become massless Goldstone ghosts.
Now one can make transition to the unitary gauge. All ghost fields as usual disappear from the

Lagrangian. Following the approach of [3] one can remove in the unitary gauge all Higgs fields
from the Lagrangian preserving on mass-shell renormalizability of the theory.

To give the derivation of this statement let us consuder as an example the simplified case (the
generalization to the above case will be straightforward). Let us consider the known model given by
the initial SU(2)-invariant Lagrangian of interaction of vector bosons and scalar fields possessing
the spontaneously broken symmetry

L =−1
4

Fa
µνFa

µν +
(
DµΦ

)+
DµΦ−λ

(
Φ+Φ−v2)2

(15)

with the doublet of scalar fieldsΦ(x) in the fundamental representation of the group.
HereDµΦ =

(
∂µ − ig τ

2
aWa

µ

)
Φ is the covariant derivative,τa are the Pauli matrices,λ > 0,

v2 > 0. (This model can be considered as the Standard Model of electroweak interactions without
U(1)-interaction and fermions. The derivation given below can be applied also to the complete
Standard Model, theγ5- matrix being treated within dimensional regularization according to the
technique of [5].)

To get the complete Lagrangian one makes the shift of the scalar field

Φ(x) =
1√
2

(
iφ1(x)+φ2(x)√

2v+ χ(x)− iφ3(x)

)

5
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QCD with massive gluons Sergey Larin

fixes the gauge and adds ultraviolet counterterms. Let us consider two gauges: the widely used
Rξ -gauge [6], [7] with an arbitrary parameterξ and the unitary gauge.

In theRξ -gauge one gets the theory described by the Lagrangian

LRξ
=−1

4
Fa

µνFa
µν +

m2

2
Wa

µWa
µ −mWa

µ ∂µφ
a +

1
2

∂µφ
a
∂µφ

a +
1
2

∂µ χ∂µ χ (16)

−M2

2
χ

2 +
g
2

Wa
µ (φa

∂µ χ −χ∂µφ
a + ε

abc
φ

b
∂µφ

c)+
mg
2

χWa
µWa

µ

+
g2

8
(χ

2 +φ
a
φ

a)W2
µ −

gM2

4m
χ(χ

2 +φ
a
φ

a)− g2M2

32m2 (χ
2 +φ

a
φ

a)2

− 1
2ξ

(∂µWa
µ +ξmφ

a)2

+∂µca(∂µca−gε
abccbWc

µ)−ξm2caca− g
2

ξmχcaca +
g
2

ξmε
abccacb

φ
c

+counterterms

This theory describes three physical massive vector bosons with the massm= gv/
√

2, and the phys-
ical Higgs fieldχ with the massM = 2λv. Here are also Goldstone ghostsφa and Faddeev-Popov
ghostsca with massesξm2. The structure of the counterterms (consistent with gauge invariance
and Slavnov-Taylor identities [8, 9] to ensure unitarity) is well known, see e.g. [10].

This is the renormalizable gauge, i.e. Green functions are finite. The corresponding propaga-
tors in momentum space are

< T(Wa
µWb

ν ) >=−iδ ab
(

gµν −kµkν/m2

k2−m2 +
kµkν/m2

k2−ξm2

)
(17)

< T(φa
φ

b) >=−iδ ab 1
k2−ξm2

< T(cacb) >=−iδ ab 1
k2−ξm2

< T(χχ) >=−i
1

k2−M2

In the unitary gauge defined by the gauge conditionφa = 0 one has the Lagrangian

LU =−1
4

Fa
µνFa

µν +
m2

2
Wa

µWa
µ +

1
2

∂µ χ∂µ χ − M2

2
χ

2 (18)

+
mg
2

χWa
µWa

µ +
g2

8
χ

2Wa
µWa

µ −
gM2

4m
χ

3− g2M2

32m2 χ
4 +counterterms

The propagators in the unitary gauge are obtained from those of theRξ -gauge in eq.(17) by taking
the limit ξ → ∞. The theory in the unitary gauge is renormalizable only on mass-shell, i.e. Green
functions are divergent atε → 0 but the S-matrix elements are finite. In this gauge all unphysical
particles (longitudinal quanta of vector fields and ghosts) are absent and unitarity of the theory is
manifest.

6
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To consider renormalization for our purpose it is convenient to use the Bogoliubov-Parasiuk-
Hepp subtraction scheme [11]. As it is well known in this scheme a counterterm of e.g. a primi-
tively divergent Feynman diagram is the truncated Taylor expansion of the diagram itself at some
fixed values of external momenta. Hence counterterms of mass dependent diagrams are also mass
dependent. Needless to say that subtractions should respect Slavnov-Taylor identities.

Let us consider S-matrix elements in theRξ -gauge without external Higgs bosons (i.e. with
external W-bosons only in this simplified model). We will analyze the dependence of diagrams
on the Higgs massM by using for convinience the expansion in largeM (after renormalization
but before the removing regularization). The algorithm for the large mass expansion of Feynman
diagrams is given e.g. in [12] (where it is quite reasonably checked in calculations of the 4-loop
diagrams for the Z-boson decay into hadrons). It can be rigorously derived with the technique of
[13].

We separate all diagrams into physical ones which are not nullified in the limitξ → ∞ and
unphysical ones which are nullified. In this limit the propagator of the W-boson reduces to the
known unitary form

lim
ξ→∞

< T(Wa
µWb

ν ) >=−iδ ab lim
ξ→∞

(
gµν −kµkν/m2

k2−m2 +
kµkν/m2

k2−ξm2

)
= (19)

=−iδ abgµν −kµkν/m2

k2−m2

The propagators of the Goldstone bosonsφa and ghostsca vanish in this limit and correspondingly
all diagrams which contain these propagators are also nullified. The limit is a little bit subtle
for diagrams containing ghosts loops coupled to the Hogs boson since the corresponding coupling
constant itself contains the parameterξ in the Lagrangian, see eq.(16). For example in the one-loop
case one gets

lim
ξ→∞

ξ
2
∫

ddp
1

(p2−ξm2)((p+q)2−ξm2)
=
∫

ddp = 0 (20)

where zero is obtained due to the famous property of dimensional regularization to nullify scaleless
integrals. The limitξ → ∞ commutes with integrations in Feynman integrals within dimensional
regularization.

Thus in our notations the physical diagrams are the diagrams which do not contain Goldstone
bosons propagators or ghosts propagators and the unphysical diagrams are the diagrams which
contain such propagators.

Within the large-M expansion the physical diagrams withχ-propagators contain either terms
with integer negative powers ofM2

1
M2n , n = 1,2,3, ...

or terms with non-integer powers ofM2 (non-integer powers containε)

1

M2(k+lε) , k− integer, l − positive integer

This is because each vertex with the large factorM2 has three or four attachedχ-propagators due
to the structure of the Higgs boson self-coupling.

7
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In contrast, unphysical diagrams can have polynomial inM terms due to the four-φ vertex
with the large factorM2. But they areξ -dependent (they are nullified in the limitξ → ∞) and this
polynomial terms cancel in S-matrix elements.

In the renormalizableRξ -gauge one can present ultraviolet renormalization in a standard form
of the Bogoliubov-Parasiuk R-operation for individual diagrams. This ensures that after renormal-
ization theM-dependent terms are finite atε → 0 separately fromM-independent terms. Thus if
one removes allM-dependent terms one is left with a finite expression.

On the Lagrangian level it means in the unitary gauge that one removes fromLU all terms
containing the fieldχ and also allM-dependent terms in the counterterms. This should be done in
the unitary gauge because in theRξ -gauge some diagrams containing propagators of Higgs particle
can give contributions not depending on the Higgs massM. In contrast in the unitary gauge all
diagrams containing Higgs propagators give only contributions depending onM so there is one to
one correspondence betweenM-dependent diagrams and terms in the Lagrangian containing the
Higgs fieldχ

The resulting theory is on mass-shell finite. This is the massive Yang-Mills theory

LYM =−1
4
(∂µWa

ν −∂νWa
µ +

z1

z2
g fabcWb

µWc
ν )2 +m2Wa

µWa
µ +counterterms.

Thus the Higgs mechanism can be considered as an efficient mathematical tool to observe
on mass-shell renormalizability of the massive Yang-Mills theory which is far from to be obvious
directly.

It is known that the Higgs theories of vector mesons posses so called tree level unitarity, see
e.g.[14],[15], [16] and references therein. Tree level cross sections of such theories grow at high
energies slowly enough and do not exceed the so called unitary limit imposed by the unitarity
condition. The reversed statement is also proved: from the condition of tree level unitarity follows
that a theory of vector mesons should be a Higgs theory [15]. But one can see that tree level unitarity
is not the necessary condition for renormalizability. Tree level unitarity is violated in the massive
Yang-Mills theory. It indicates that higher order contributions become relevant at high energies
and one looses the perturbative control over the theory. This is due to the presence in external
states of S-matrix elements of longitudinally polarisedW-bosons which wave functions grow with
energy likeE/mwhereE is typical energy of the process. But in the physicalSU(2)×U(1) theory
with inclusion of fermions the massive gauge bosons are highly unstable particles which do not
appear as external states of S-matrix elements in complete calculations and correspondingly tree
level unitarity is present (with or without the Higgs boson).

Let us now return to our Lagrangian (10) with two scalar triplets which after spontaneous sym-
metry breaking has four Higgs particles (13). Following the above approach we can remove in the
unitary gauge all four Higgs fields from the Lagrangian preserving on mass-shell renormalizability
of the theory. The Lagrangian of the resulting QCD with massive gluons is

Lmassive QCD= LM − 1
4

Fa
µνFa

µν + iψ f γµDµψ f −mf ψ f ψ f +counterterms, (21)

whereLM is given in eq.(12).
Let us note that on mass-shell renormalizability does not mean that one should consider quarks

and gluons as free external particles. It means that in theSU(3)×SU(2)×U(1) theory theS-matrix
elements with the physical external particles will be finite.

8
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One can calculate the one-loopβ -function in this theory to obtain for a massless renormaliza-
tion scheme (i.e. a scheme where renormalization group functions do not depend on masses, e.g.
the MS-scheme) the following result

β (as) = µ
2 ∂as

∂ µ2 = ∑
i≥0

βia
i+2
s , (22)

β0 =−7
2

CA +
4
3

TFnf ,

hereCA = 3 is the Casimir operator of the adjoint representation of theSU(3) color group,TF = 1/2
is the trace normalization of the fundamental representation,nf is the number of active quark
flavors.

Thus asymptotic freedom remains valid in the considered theory with massive gluons.
Acknowledgments.The author is grateful to collaborators of the Theory division of INR for

helpful discussions. The work is supported in part by the grant for the Leading Scientific Schools
NS-5590.2012.2.

References

[1] D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343;
H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.
G. ’t Hooft, report at the Marseille Conference on Yang-Mills Fields, 1972.

[2] G. Källen, Helv. Phys. Acta 25 (1952) 417; H. Lehmann, Nuovo Cim. 11 (1954) 342.

[3] S.A. Larin, e-Print: hep-ph/0503198; Phys.Part.Nucl. 44 (2013) 386.

[4] P.W. Higgs, Phys. Lett. 12 (1964) 132.
F.Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321.

[5] S.A. Larin, Phys. Lett. B 303 (1993) 113; e-Print: hep-ph/9302240.

[6] G. ’t Hooft, Nucl. Phys. B 35 (1971) 167.

[7] K. Fujikawa, B.W. Lee and A.I. Sanda, Phys. Rev. D6 (1972) 2923.

[8] A.A. Slavnov, Theor. Math. Phys. 10 (1972) 99.

[9] J.C. Taylor, Nucl. Phys. B 33 (1971) 436.

[10] L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, Front. Phys. 83 (1990)
1.

[11] N.N. Bogoliubov and O.S. Parasiuk, Acta Math. 97 (1957) 227.
K. Hepp, Comm. Math. Phys. 2 (1966) 301.

[12] S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, Nucl. Phys. B 438 (1995) 278.

[13] S.A. Larin, Phys. Lett. B 469 (1999) 220.

[14] C.H. Llewellyn Smith, Phys. Lett. 46 B (1973) 233.

[15] J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Phys. Rev. D 10 (1974) 1145.

[16] J.C. Taylor, Gauge theories of weak interactions, Cambridge University Press, 1976.

9


