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1. Introduction

One of the primary goals of physics is to understand the variety of physical reality in a unified
way: a single mathematical framework in which all fundamental forces and units of matter can be
described together in a manner that is internally consistent, and consistent with current and future
observations. The greatest advances have been steps towards this goal: the unification of terrestrial
and celestial mechanics by Newton; of optics with the theories of electricity and magnetism by
Maxwell; of geometry and the theory of gravitation by Einstein; of electromagnetism with weak
interactions, but the work of unification can be completed if gravity is included. Experiments
at the LHC and elsewhere should let us complete the Standard Model, but a unified theory will
require first of all a solution of the conceptual problems and probably radically new ideas. Thus,
motivation for our study is clear. Here we should like to understand the physical meaning of the
fourth dimension. What does it means? The mathematical space is a smooth manifold. A smooth
manifold or C∞-manifold is a differentiable manifold for which all the transition maps are smooth.
That is, derivatives of all orders exist; so it is a Ck-manifold for all k. An atlas on the topological
space M is a collection of pairs (Uα ,φα) called charts, where Uα are open sets that cover M, and
for each index α

φα :Uα → Rn

is a homeomorphism of Uα onto an open subset of n-dimensional real space. An equivalence
class of such atlases is said to be a smooth structure. The underlying space Rn is the space of
n-tuples of real numbers (q1,q2, · · · ,qn) with usual topology. Here we should like to emphasize
that coordinates q1,q2, · · · ,qn should be evidently considered on equal footing but space-time is a
mathematical space whose points must be specified by both space and time coordinates. Hence,
it is clear that there is no regular method to introduce space coordinates and time coordinate in
the framework of a smooth manifold alone. Our goal is to recognize a regular transition from the
mathematical space to space-time and with this derive new information about the nature of space
and time. To this end, we consider the Dirac equation in the mathematical space. A comparison
will be produced of the Dirac theory of the electron with spin in the simplest four- dimensional
mathematical space and the original Dirac theory in the Minkowski space-time. New representa-
tions about nature of space, time, rotation, quark-lepton symmetry and confinement will be derived
from this consideration.

2. Dirac equation in a mathematical space

Fundamental concepts, symmetries, and dynamical equations of the theory of dark matter are
derived in [1] from the simple relation (the only first principle of a unified physics): everything in
the concept of a mathematical space and a mathematical space in everything. It was shown that the
electromagnetic field is the singlet state of the dark matter field and hence the last can be consid-
ered as a generalized electromagnetic field and a simple solution was given to the old problem of
connecting the electomagnetic field with geometrical concept of parallel transport. To learn more
about interactions between matter and dark matter on the microscopic level (and to recognize the
fundamental role of internal symmetry in this case), the general covariant Dirac equation was de-
rived and natural generelization was considered. In accordance with this consideration, the Dirac
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equation in the four-dimensional mathematical space reads

iγµDµψ = mψ, (2.1)

where Dµ are linear differential operators

Dµ = E i
µ∂i = E1

µ
∂

∂q1 +E2
µ

∂
∂q2 +E3

µ
∂

∂q3 +E4
µ

∂
∂q4

and E i
µ are a quadruplet of linear independent vector fields which puts in correspondence to the

ground state of the generalized electromagnetic field and will be considered as of a frame field.
The gamma matrices γµ are normalized as follows:

γµγν + γνγµ = 2ηµν , ηµν = ηµν = diag(1,−1,−1,−1).

The world indices of vectors are denoted by latin letters i, j,k, · · · = 1,2,3,4, and the greek letters
enumerate the gamma matrices and the vector fields in question µ,ν · · ·= 0,1,2,3. For simplicity,
we consider the case when the vector part of the srength tensor of the ground state

U i
jk = E i

µ(∂ jE
µ
k −∂kEµ

j )

is equal to zero, U i
ik = 0. Here Eµ

i are components of four covector fields which one can construct
purely algebraically from E i

µ , so that E i
µEµ

j = δ i
l holds valid.

Since
γµDµ = γ0D0 + γ1D1 + γ2D2 + γ3D3,

then to get a regular transition from the mathematical space to space-time, we need to introduce
the system of coordinates x1,x2,x3, t in which the linear differential operator D0 takes the form

D0 = E i
0∂i →

∂
∂ t

.

To this end, let us consider the system of ordinary differential equations

dqi

dt
= E i

0(q
1,q2,q3,q4).

It is well known that this system has a unique solution

q1 = f1(q1
0,q

2
0,q

3
0,q

4
0, t), · · · ,q4 = f4(q1

0,q
2
0,q

3
0,q

4
0, t),

which satisfies the condition

q1
0 = f1(q1

0,q
2
0,q

3
0,q

4
0, t0), · · · ,q4

0 = f4(q1
0,q

2
0,q

3
0,q

4
0, t0).

Let the initial point P(q1
0,q

2
0,q

3
0,q

4
0) belongs to the 3d surface S which is parameterised by the

coordinates x1,x2,x3

q1
0 = h1(x1,x2,x3), q2

0 = h2(x1,x2,x3), q3
0 = h3(x1,x2,x3), q4

0 = h4(x1,x2,x3).
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The surface S should be chosen so that the variables x1,x2,x3, t define a new system of coordinates
in the mathematical space and the tetrad take the following form:

E i
0 = (0,0,0,1), E i

1 = (E1
1 ,E

2
1 ,E

3
1 ,0), E i

2 = (E1
2 ,E

2
2 ,E

3
2 ,0), E i

3 = (E1
3 ,E

2
3 ,E

3
3 ,0).

The surface so defined will be called the characteristic surface of space-time, the variables x1,x2,x3

will be called the space coordinates and accordingly the t the time coordinate. We conclude that
the space-time is a causal structure on the mathematical space which is defined by the vector field
or congruence of lines. We recall that the congruence of lines is a set of lines characterized by that
the only element of the set crosses every point of a manifold or its part. The lines belonging to the
congruence do not intersect and fill either the whole manifold or its part. In the mathematical space
equipped by the causal structure equation (1) takes the Hamiltonian form

i
∂
∂ t

ψ = Hψ,

where the operator H does not contain the partial derivative up to t. After this general consideration
we start to learn the simplest four- dimensional mathematical space R4.

3. Internal properties of the 4d euclidian space

Points of R4 have the vector
q = (q1, q2, q3, q4)

and the quaternion representations

q = q1i+q2 j+q3k+q41,

with the usual linear structure. The quaternion algebra is defined as usual

i2 = j2 = k2 =−1, i j =− ji = k, jk =−k j = i,ki =−ik = j.

The scalar product
p ·q = p1q1 + p2q2 + p3q3 + p4q4

can be written in the quaternion form in two ways

p ·q =
1
2
(pq+qp) =

1
2
(pq+qp), (3.1)

where q =−q1i−q2 j−q3k+q41 . The scalar product is invariant with respect to the right and left
turn dilatations

q ⇒ q̃ = sq, ⇒ q̃ = qt, (3.2)

since
p̃ · q̃ = ss(p ·q), p̃ · q̃ = tt (p ·q).

We suppose that q and λq, where λ is number, are equivalent. For a given q, equations q =

sq, q = qt have only trivial solutions s = t = 1 and the absence of fixed points under turn di-
latations exhibits a fundamental property of the space in question: the existence of two simply
transitive groups of transformations.

4
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Now we introduce two natural frames intrinsically connected with the space in question. The
standard frame

c1 = (1, 0, 0, 0) c2 = (0, 1, 0, 0) c3 = (0, 0, 1, 0) c4 = (0, 0, 0, 1),

c1 = i, c2 = j, c3 = k, c4 = 1

gives rise to the pair of right-handled moving frames

m1 = iq, m2 = jq, m3 = kq, m4 = 1q, n1 = qi, n2 = q j, n3 = qk, n4 = q1.

m1 = ( q4, −q3, q2, −q1 )

m2 = ( q3, q4, −q1, −q2 )

m3 = ( −q2, q1, q4, −q3 )

m4 = ( q1, q2, q3, q4 )

n1 = ( q4, q3, −q2, −q1 )

n2 = ( −q3, q4, q1, −q2 )

n3 = ( q2, −q1, q4, −q3 )

n4 = ( q1, q2, q3, q4 )

It is easy to see that

ma ·mb = qq̄δab, na ·nb = qq̄δab, (a,b = 1,2,3,4).

Let us consider the running point T (q1, q2, q3, q4), and the twelve coherent points

A(q4,−q3, q2,−q1), B(q3, q4,−q1,−q2), C(−q2, q1, q4,−q3),

K(q4, q3,−q2,−q1), L(−q3, q4, q1,−q2), M(q2,−q1, q4,−q3),

Ā(−q4, q3,−q2, q1), B̄(−q3,−q4, q1, q2), C̄(q2,−q1,−q4, q3),

K̄(−q4,−q3, q2, q1), L̄(q3,−q4,−q1, q2), M̄(−q2, q1,−q4, q3).

The distance function is defined as usual

d2
PQ = (p1 −q1)

2
+(p2 −q2)

2
+(p3 −q3)

2
+(p4 −q4)

2
.

With this it is easy to see that

d2
AB = d2

AC = d2
BC = d2

TA = d2
T B = d2

TC = 2qq̄,

d2
ĀB̄ = d2

ĀC̄ = d2
B̄C̄ = d2

T Ā = d2
T B̄ = d2

TC̄ = 2qq̄

and
d2

KL = d2
KM = d2

LM = d2
T K = d2

T L = d2
T M = 2qq̄,

d2
K̄L̄ = d2

K̄M̄ = d2
L̄M = d2

T K̄ = d2
T L̄ = d2

T M̄ = 2qq̄,

5
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where dAB is the distance between the points A and B. We see a pair of regular tetrahedrons and a
dual one with a common vertex T : TABC and T KLM, T ĀB̄C̄ and T K̄L̄M̄. These tetrahedrons give
a visual representation of the frames in question

mµ nµ , −mµ −nµ , (µ = 1,2,3)

and discover the nature of rotational motion. Let q = q(t) be a trajectory in R4. When point T
moves along this trajectory, the tetrahedrons TABC and T KLM are pulsed and rotated with respect
to each other. And the same for the dual tetrahedrons T ĀB̄C̄ and T K̄L̄M̄.

The matrix of scalar products

Pµν = mµ ·nν , (µ, ν = 1,2,3)

describes this relative rotational motion.
The scalar products of the tangent vector q̇ = dq/dt with the vectors of dual frames ma and

na, (a = 1,2,3,4)

m1 ·
dq
dt

= q4 dq1

dt
−q3 dq2

dt
+q2 dq3

dt
−q1 dq4

dt
,

m2 ·
dq
dt

= q3 dq1

dt
+q4 dq2

dt
−q1 dq3

dt
−q2 dq4

dt
, m3 ·

dq
dt

=−q2 dq1

dt
+q1 dq2

dt
+q4 dq3

dt
−q3 dq4

dt
,

n1 ·
dq
dt

= q4 dq1

dt
+q3 dq2

dt
−q2 dq3

dt
−q1 dq4

dt
,

n2 ·
dq
dt

=−q3 dq1

dt
+q4 dq2

dt
+q1 dq3

dt
−q2 dq4

dt
, n3 ·

dq
dt

= q2 dq1

dt
−q1 dq2

dt
+q4 dq3

dt
−q3 dq4

dt
,

m4 ·
dq
dt

= n4 ·
dq
dt

= q1 dq1

dt
+q2 dq2

dt
+q3 dq3

dt
+q4 dq4

dt
are invariant with respect to the left and right turn dilatations. The invariants

Ωµ =
1
2

mµ ·
dq
dt

, Ω̃µ =
1
2

nµ ·
dq
dt

, (µ = 1,2,3)

are components of angular velocity of rotation of tetrahedron TABC with respect to tetrahedron
T KLM and vice versa. These invariants play the important role in the rigid- body dynamics as well.
Thus, a kinematics of rotational motion has an adequate representation in the four dimensions.

To quantize the rotational motion, let us introduce the 4d operator ∇

∇4 = (
∂

∂q1 ,
∂

∂q2 ,
∂

∂q3 ,
∂

∂q4 ,)

and setting

Mν =
1
2
(mν ·∇4), Nν =

1
2
(nν ·∇4), (ν = 1,2,3)

we have six antihermitian operators of angular momentum of a rotational motion. Factor 1
2 is

essential since natural commutation relations hold valid

6
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M1M2 −M2M1 = M3, N1N2 −N2N1 =−N3

and so on. The operator of dilatations

D = (m4 ·∇4) = q1 ∂
∂q1 +q2 ∂

∂q2 +q3 ∂
∂q3 +q4 ∂

∂q4

has important meaning as well since it commutes with the operators of angular momentum

DMν −MνD = 0, DNν −NνD = 0, (ν = 1, 2, 3)

and will play a key role in the description of the rotational motion on the quantum level. Now we
shall introduce two natural frame fields in the space in question and consider the Dirac equations
associated with these quadruplets of linear independent vector fields.

4. Global frame field

Let
a = (a1, a2, a3, a4)

be a constant unit vector, then a global natural frame field in R4 is defined as follows

E0 = (a1, a2, a3, a4), E1 = (−a4,−a3, a2, a1),

E2 = (a3,−a4,−a1, a2), E3 = (−a2, a1,−a4, a3).

We put
D0 = E0 ·∇4, D1 = E1 ·∇4, D2 = E2 ·∇4, D3 = E3 ·∇4

then the Dirac equation in the 4d Euclidian space reads

iγµDµψ =
mc
h̄

ψ. (4.1)

Since
γµDµ = γ0D0 + γ1D1 + γ2D2 + γ3D3,

then to get a regular transition from the Dirac equation in question to the original Dirac equation,
we need to introduce the system of coordinates x1,x2,x3, t in which the linear differential operator
D0 takes the following form:

D0 = E i
0∂i = ai∂i →

∂
∂ t

.

To this end (see section two) we need to solve the system of equations

dqi

dt
= ai.

The general solution is a straight line that goes through the fixed point q0 = (q1
0, q2

0, q3
0, q4

0) :

q(t) = a(t − t0)+q0. (4.2)

7
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We define the 3d characteristic surface S in the space of initial data as follows:

a ·q0 = t0. (4.3)

The general solution to equation (6) has the form

q0 = t0E0 + xE1 + yE2 + zE3.

Substituting this representation into formula (5) we have

q = tE0 + xE1 + yE2 + zE3.

The Dirac equation in the coordinates t, x, y, z has the ordinary form

i(γ0 ∂
∂ t

+ γ1 ∂
∂x

+ γ2 ∂
∂y

+ γ3 ∂
∂ z

)ψ =
mc
h̄

ψ.

One can work in either the coordinates q1, q2, q3, q4 (that are considered on equal footing) or the
coordinates t, x, y, z but the first approach looks like more fundamental because the direction of the
vector a is not fixed, and this distinctive degeneration is not visible in the second approach.

Now it is important to show the definition of interval in the 4d Euclidian space. The interval
in R4 is defined as follows. Let

qs = 2a(a ·q)−q

be the vector symmetrical to the vector q with respect to the vector a. Then in the coordinates
q1, q2, q3, q4 the interval can be written as follows:

s2 = q ·qs = 2(a ·q)2 −q ·q = (q ·q)cos2θ ,

where θ is an angle between a and q. It is easy to see that in the coordinates t, x, y, z,

s2 = t2 − x2 − y2 − z2.

We see that the existence of a natural global frame in the 4d Euclidian space and the bilateral
symmetry presupposes the existence of Minkowski space-time and hence the known causal struc-
ture discovered here as a preferred system of coordinates defined by the given direction in the 4d
Euclidian space. The causal structure may be considered in this case as spontaneous breaking of
isotropy of the four- dimensional Euclidian space. The global frame field defines a metric as usual

gi j = ηµνEµ
i Eν

j = 2aia j −δi j.

5. Local frame field

Let
q = (q1, q2, q3, q4)

be a radius-vector, then a natural local frame field in the 4d Euclidian space can be represented as
a quadruplet of orthogonal unit vector fields

E0 = (
q1

τ
,

q2

τ
,

q3

τ
,

q4

τ
), E1 = (

−q4

τ
,
−q3

τ
,

q2

τ
,

q1

τ
),

8
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E2 = (
q3

τ
,
−q4

τ
,
−q1

τ
,

q2

τ
), E3 = (

−q2

τ
,

q1

τ
,
−q4

τ
,

q3

τ
),

where
τ =

√
q ·q) =

√
(q1)2 +(q2)2 +(q3)2 +(q4)2

is the length of the radius-vector. The metric defined by the local frame field has a simple repre-
sentation gi j = ηµνEµ

i Eν
j = 2tit j −δ i j. We again put

D0 = E0 ·∇, D1 = E1 ·∇, D2 = E2 ·∇, D3 = E3 ·∇

but here the operator ∇ is defined as follows:

∇ = ∇4 −
3

2τ2 q

since the vector part of the tensor U i
jk, defined above, is not equal to zero in this case. The Dirac

equation describing the rotational motion on the quantum level takes the following form:

iγµDµψ =
mc
h̄

ψ. (5.1)

Let us consider how to equip the 4d Euclidian space with a preferred system of coordinates (a
space-time structure) in the case of the rotational motion. The general solution of the system of
equations

dqi

dτ
=

qi√
(q1)2 +(q2)2 +(q3)2 +(q4)2

can be written in two ways
qi(τ) = qi

0
τ
τ0
, τ ∈ [τ0,∞)

where the initial data belong to the 3d sphere

q0 ·q0 = τ0
2.

and
qi(τ) = qi

0τ, τ ∈ [0,∞)

where the initial data belong to the unit 3d sphere

q0 ·q0 = 1.

The characteristic surface in this case can be parameterized by the Euler angles, θ , φ ,γ In the
coordinates τ, θ , φ,γ, we have

D0 =
∂

∂τ
− 3

2τ
, D1 =

1
τ

(
−cotθ cosγ

∂
∂γ

− sinγ
∂

∂θ
+

cosγ
sinθ

∂
∂φ

)
,

D2 =
1
τ

(
−cotθ sinγ

∂
∂γ

+ cosγ
∂

∂θ
+

sinγ
sinθ

∂
∂φ

)
, D3 =

1
τ

∂
∂γ

.

Let us pay attention to the following internal properties of the four-dimensional Euclidian
space: kinematical picture and nature of rotational motion; existence of two space-time or causal

9



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
2
3

Spin, gravity, confinement Ivanhoe Pestov

structures. In one case, the space-time structure may be geometrically represented as the congru-
ence of parallel 3d planes and the congruence of parallel straight lines orthogonal to these planes.
In the other case, the space-time structure is defined as the congruence of the 3d sphere with a
common centre and the congruence of rays orthogonal to the 3d spheres. A physical interpretation:
we put forward the idea that the behavior of leptons is defined by the first causal structure, and the
physics of quarks is tightly connected with the new causal structure, which represents a rotating
matter. The latter provides understanding and rational proof of quark-lepton symmetry, quark con-
finement (confinement is not a force because in any case there is a more powerful one),conservation
of the so called baryon number (read new causal structure). Equations (4), (7) and machinery of
the electroweak theory provide the new theoretical basis for understanding of the world of leptons
and quarks.

The action for the point particle associated with the rotational motion can be written in the
following form:

S =−mc

q∫
p

√
1− τ2ω2dτ ,

where ω = dl/dτ and dl is the element of the arc on the unit 3d sphere. Really,
→
du ·

→
du=

dτ2 + τ2dl2, and
→
u ·

→
du= τdτ. On this ground one can develop the classical mechanics in the

new frameworks.
In conclusion of this section, we formulate the Maxwell equations in the framework of the new

causal structure. Let Ai be the vector potential of the electromagnetic field. The gauge invariant
tensor of the electromagnetic field is defined as usual Fi j = ∂iA j −∂ jAi. The strength of the electric
field is a general covariant and gauge invariant quantity that is defined by the equation Ei = tkFik,

where in our case tk = tk = qk/τ.
The rotor of the vector field A = (A1, A2, A3, A4) is defined as a vector product of ∇4 and A

rotA = ∇4 ×A, (rotA)i = ei jklt j∂kAl =
1
2

ei jklt j(∂kAl −∂lAk),

where ei jkl are the contravariant components of the Levi-Civita tensor normalized as e1234 = 1.
The general covariant and gauge invariant definition of the magnetic field strength is given by the

formula H = rotA, H i = (rotA)i. Thus, Hi = tk ∗
F ik, where

∗
F i j = gikg jl

∗
Fkl = 1

2 gikg jleklmnFmn. It
is evident that vectors E and H are orthogonal to q

q ·E = 0, q ·H = 0.

Below, the Maxwell equations are written in the form that is most suitable for solution:

(D0 ·∇4)H+
2
τ

H =−rotE, (5.2)

(D0 ·∇4)E+
2
τ

E = rotH+ eJ, (5.3)

∇4 ·E = eψ̄γ0ψ, ∇4 ·H = 0, (5.4)

where the current J is given by the expression

J = E1ψ̄γ1ψ +E2ψ̄γ2ψ +E3ψ̄γ3ψ.

10
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6. Connection with three dimensional space

To complete the picture of rotational motion and throw light on some other questions, we
consider here properties of natural mappings of the four-dimensional Euclidian space onto the
three-dimensional one. Let φ(x,y,z) be a differentiable function of the cartesian coordinates x,y,z
of the three-dimensional euclidian space and three differentiable functions

x = x(q1,q2,q3,q4), y = y(q1,q2,q3,q4), z = z(q1,q2,q3,q4)

define a mapping of R4 onto E3. Let us calculate the result of the action of the linear differential
operator

L = ξ i(q1,q2,q3,q4)
∂

∂qi

on the function φ(x,y,z). Using the chain rule we have

Lφ(x,y,z) = (Lx)
∂φ
∂x

+(Ly)
∂φ
∂y

+(Lz)
∂φ
∂ z

.

If functions

Lx = ξ i ∂x
∂qi , Ly = ξ i ∂y

∂qi , Lz = ξ i ∂ z
∂qi

of the variables q1,q2,q3,q4 can be presented as functions of the variables x,y,z, then setting

Lx = vx(x,y,z), Ly = vy(x,y,z), Lz = vz(x,y,z),

one can calculate the result of the action of the operator L with the help of the new differential
operator

V = vx
∂
∂x

+ vy
∂
∂y

+ vz
∂
∂ z

,

which can be considered as transform of the operator L under the mapping in question. After these
general remarks let us consider natural mapping of R4 onto E3. It is well known that a rotation with
dilatation of the vector v = v1i+ v2 j+ v3k can be presented as follows:

v → svs̄.

Let us consider the quaternions

R1 = qiq̄, R2 = q jq̄, R3 = qkq̄,

T1 = q̄iq, T2 = q̄ jq, T3 = q̄kq.

Under the left turn dilatations q → sq, the quaternions R1, R2, R3, transform as follows Rµ →
sRµ s̄, (µ = 1,2,3). Under the right turn dilatations q → qt̄, the quaternions T1, T2, T3 trans-
form similarly to Rµ, Tµ → tTµ t̄, (µ = 1,2,3). We see that the coordinates of the quaternions
in question can be considered as cartesian coordinates of E3. We denote these coordinates as
xµ ,yµ ,zµ , (µ = 1,2,3) and, respectively, ξµ ,ηµ ,ζµ , (µ = 1,2,3),

Rµ = (xµ ,yµ ,zµ), Tµ = (ξµ ,ηµ ,ζµ).

11
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The vectors Rµ , and Tµ have the same length and constitute the right-handled orthogonal bases
since

R1 ×R2 = qq̄R3, R1 · (R2 ×R3) = (qq̄)3, T1 ×T2 = qq̄T3, T1 · (T2 ×T3) = (qq̄)3.

Here we are slightly detained to give a simple and important geometrical interpretation of
Cartan spinors [2],[3], which is tightly connected with the complex-analytic structures on R4. To
this end, let us consider the complex null vectors

W1 = R2 +
√
−1R3, W2 = R3 +

√
−1R1, W3 = R1 +

√
−1R2.

Calculating components of these vectors we have

W1 = (u1, v1, w1, ) = (2ξ1ξ2, ξ 2
1 −ξ 2

2 , −
√
−1ξ 2

1 −
√
−1ξ 2

2 ),

where ξ1 = q2 +
√
−1q3, ξ2 = q1 +

√
−1q4,

W2 = (u2, v2, w2, ) = (−
√
−1η2

1 −
√
−1η2

2 , 2η1η2, η2
1 −η2

2 ),

where η1 = q3 +
√
−1q1, η2 = q2 +

√
−1q4,

W3 = (u3, v3, w3, ) = (ζ 2
1 −−ζ 2

2 , −
√
−1ζ 2

1 −
√
−1ζ 2

2 , 2ζ1ζ2)

where ζ1 = q1 +
√
−1q2, ζ2 = q3 +

√
−1q4.

Studying the behavior of the pairs (ξ1, ξ2), (η1, η2), (ζ1, ζ2) under the turn dilatations we
conclude that these pairs are spinors. It is also evident that Cartan spinor is simply the system of
complex coordinates on R4. The general theory of complex manifolds is explained in [4]. Actually,
it is shown that there are three canonical systems of complex coordinates defined by the complex
structures i, j, k. The turn dilatations in the complex coordinates coinside with spinor transforma-
tions. To introduce the spinor with the so called dotted indices, one simply needs to consider the
vectors

W̄1 = R2 −
√
−1R3, W̄2 = R3 −

√
−1R1, W̄3 = R1 −

√
−1R2.

Thus, it is evident that the spinors do not represent a new geometrical quantity.
Now it is time to prolong and write out expressions for the coordinates xµ ,yµ ,zµ , (µ = 1,2,3)

and ξµ ,ηµ ,ζµ , (µ = 1,2,3). We have

x1 = (q1)2 − (q2)2 − (q3)2 +(q4)2, y1 = 2q1q2 +2q3q4, z1 = 2q1q3 −2q2q4,

x2 = 2q1q2 −2q3q4, y2 =−(q1)2 +(q2)2 − (q3)2 +(q4)2, z2 = 2q1q4 +2q2q3,

x3 = 2q1q3 +2q2q4, y3 =−2q1q4 +2q2q3, z3 =−(q1)2 − (q2)2 +(q3)2 +(q4)2.

and

(ξ1, η1, ζ1) = (x1, x2, x3), (ξ2, η2, ζ2) = (y1, y2, y3), (ξ3, η3, ζ3) = (z1, z2, z3).

Thus, all natural mappings of R4 onto E3 are presented. Now it is interesting to find transforms of
the operators of the angular momenta of the rotational motion. Below, the results of calculations

12
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will be presented only for one case (with comments only with respect to other situations). For
obviousness, let us put x1 = x, y1 = y, z1 = z. After some calculations the following results can
be presented:

M1φ(x, y, z) = 0,

−M2φ(x, y, z) = x3
∂φ
∂x

+ y3
∂φ
∂y

+ z3
∂φ
∂ z

, M3φ(x, y, z) = x2
∂φ
∂x

+ y2
∂φ
∂y

+ z2
∂φ
∂ z

.

It is visible that the operators in question have no transforms. In the other case a picture is more
interesting since

N1φ(x, y, z) = 0
∂φ
∂x

− z
∂φ
∂y

+ y
∂φ
∂ z

,

N2φ(x, y, z) = z
∂φ
∂x

+0
∂φ
∂y

− x
∂φ
∂ z

, N3φ(x, y, z) =−y
∂φ
∂x

+ x
∂φ
∂y

+0
∂φ
∂ z

.

Let us put N = (N1, N2, N3.) and the last relations can be written as follows:

Nφ(x, y, z) = (r×∇)φ(x, y, z).

These relations are valid for all coordinates xµ ,yµ ,zµ , (µ = 1,2,3). If we consider the coordinates
ξµ ,ηµ ,ζµ , (µ = 1,2,3), then the operators N take place of the operators M and vice versa. The
relations

Mφ(ξ ,η ,ζ ) =−(r×∇)φ(ξ ,η ,ζ )

exhibits this exchange. Thus, after the mappings in question we see instead of the operators of the
angular momentum of the rotational motion the operators of the orbital angular momentum of the
point particle. It is interesting that the relation

1
2

Dφ(x, y, z) = x
∂φ
∂x

+ y
∂φ
∂y

+ z
∂φ
∂ z

.

holds valid in all instances.
Let us pay attention to the following important things. The coordinates of the four-dimensional

Euclidian space are not observable but the picture of the rotation is very detailed and beautiful in
this case and can be represented in the descriptive-geometric form. The coordinates of the three-
dimensional Euclidian space are quadratic functions of the coordinates of R4 and are observable but
the harmonic picture of rotation is reduced to the operators of the orbital angular momentum of the
point particle. There is an interesting problem of half-integer orbital angular momentum which is
in the sphere of interests of physicists up to now [2]. From our consideration it follows that eigen-
functions of the operators of angular momentum of the rotational motion can be the eigenfunctions
of the operator of the orbital angular momentum only in the case when these functions are even,
and this is the hidden reason of the integer eigenvalues.

7. Conclusion

In conclusion we give the answer on the following questions. What are the new results in your
article? In what way are these new results timely? Why are these new results significant? 1.A new
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definition of space-time is given. The origin and nature of the rotational motion are recognized.
It is established that on the four-dimensional Euclidian space there are two space-time structures
and one of them is tightly connected with the rotational motion and a simply transitive group of
turn dilatations. On this ground, the new basic equations for description of the so called strong
interactions are suggested. 2. At the present time, quantum chromodynamics has no alternative,
but in the framework of this theory we have no answer to the set of principle questions and hence
new approaches are desirable. From this point of view our suggestion consider the leptons on the
ground of one causal structure and connect the quarks with the other causal structure on the same
four-dimension physical space looks like quite timely. 3. The problem of time and everything
connected with this topic are always significant. The results obtained are significant because they
give a simple and evident explanation of quark-lepton symmetry, quark confinement and baryon
number conservation. From the point of view in question the baryon number conservation means
that quarks cannot change the causal structure in which they live.
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