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1. Introduction

The evaluation of the cross-sections for hadron-hadraadtmns needs the sufficiently pre-
cise knowledge of parton distribution functions (PDFs) aadon fragmentation functions (FFs),
which are the important part of any cross-section. The pt@seof PDFs and FFs can be taken
from processes of the deep-inelatic scattering (DIS) el -collisions, respectively. In this re-
port we will concentrate only for the high-energy limits odbPs and FFs, which are needed for
modern experiments studied on LHC collider.

1.1 PDFs

The experimental data from HERA on the DIS structure fumc(i8F)F, [1]-[3], its deriva-
tive dInF,/dIn(1/x) [4] and the heavy quark parB&® andF£® [5] enable us to enter into a very
interesting kinematical range for testing the theoretidahs on the behavior of quarks and gluons
carrying a very low fraction of momentum of the proton, thecadled smallx region. In this limit
one expects that the conventional treatment based on thehDodr—Gribov-Lipatov—Altarelli—
Parisi (DGLAP) equations [6] does not account for contiitoug to the cross section which are
leading inasIn(1/x) and, moreover, the parton densities are becoming large eexito develop a
high density formulation of QCD. However, the reasonableagent between HERA data and the
next-to-leading-order (NLO) and next-to-next-to-leagtiorder (NNLO) approximations of pertur-
bative QCD has been observed f > 2 Ge\2 (see reviews in [7] and references therein) and,
thus, perturbative QCD could describe the evolutiorFpfnd its derivatives up to very [0\@?
values, traditionally explained by soft processes.

The standard program to study tkéehavior of quarks and gluons is carried out by compar-
ison of data with the numerical solution of the DGLAP equatj6]* by fitting the parameters of
the PDFx-profile at some initian and the QCD energy scafe[9]-[12]. However, for analyzing
exclusively the lowx region, there is the alternative of doing a simpler analpgisising some of
the existing analytical solutions of DGLAP evolution in tlesv-x limit [13]-[16]. This was done
so in [13] where it was pointed out that the HERA smatlata can be interpreted in terms of the
so-called doubled asymptotic scaling (DAS) phenomenatedlto the asymptotic behavior of the
DGLAP evolution discovered many years ago [17].

The study of [13] was extended in [14, 15, 16] to include thidiparts of anomalous dimen-
sions of Wilson operator$. This has led to predictions [15, 16] of the smalksymptotic PDF
form in the framework of the DGLAP dynamics starting at so@gewith the flat function

fa(Q3) = Aa (hereaftera=q,g), (1.1)

where f, are the parton distributions multiplied lyand A are unknown parameters to be deter-
mined from the data.

1At small x there is another approach based on the Balitsky—Fadin-ekutapatov (BFKL) equation [8], whose
application is out of the scope of this work.
2|n the standard DAS approximation [17] only the singulatpaf the anomalous dimensions were used.
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1.2 FFs and average jet multiplicities

Collisions of particles and nuclei at high energies usuphiyduce many hadrons and their
production is a typical process where nonperturbative phesmna are involved. However, for par-
ticular observables, this problem can be avoided. In padic thecounting of hadrons in a jet
that is initiated at a certain scal@ belongs to this class of observables. Hence, if the SQake
large enough, this would in principle allow perturbative Q€ be predictive without the need to
consider phenomenological models of hadronization. Nbe#rss, such processes are dominated
by soft-gluon emissions, and it is a well-known fact thatsurch kinematic regions of phase space,
fixed-order perturbation theory fails, rendering the usafjeesummation techniques indispens-
able. As we shall see, the computation of average jet migitips (AJMs) indeed requires small-
resummation, as was already realized a long time ago [18Rdh [18], it was shown that the
singularities forx ~ 0, which are encoded in large logarithms of the kintlh*(1/x), spoil per-
turbation theory, and also render integral observableslirdefined, disappear after resummation.
Usually, resummation includes the singularities from afless according to a certain logarithmic
accuracy, for which itestores perturbation theory.

Smallx resummation has recently been carried out for timelikettapdj fuctions in theMS
factorization scheme, which is generally preferable teepsgcthemes, yielding fully analytic ex-
pressions. In afirst step, the next-to-leading-logarith(MLL) level of accuracy has been reached
[19, 20]. In a second step, this has been pushed to the nexxteto-leading-logarithmic (NNLL),
and partially even to the next-to-next-to-next-to-leagiagarithmic (N'LL), level [21]. Thanks to
these results, we were able in [22, 23] to analytically cotaplie NNLL contributions to the evolu-
tions of the gluon and quark AJMs with normalization factewaluated to NLO and approximately
to next-to-next-to-next-to-order @LO) in the \/0s expansion. The previous literature contains a
NLL result on the smalk resummation of timelike splitting fuctions obtained in agsiae-gluon
scheme. Unfortunately, this is unsuitable for the comlamatvith available fixed-order correc-
tions, which are routinely evaluated in tMS scheme. A general discussion of the scheme choice
and dependence in this context may be found in Refs. [24].

The gluon and quark AJMs, which we denote(ag(Q?))q and (nn(Q?))q, respectively, rep-
resent the average numbers of hadrons in a jet initiated dyangr a quark at scal®. In the
past, analytic predictions were obtained by solving theaéiqus for the generating functionals in
the modified leading-logarithmic approximation (MLLA) ineR [25] through NLO in the ex-
pansion parametey/as, i.e. throughﬁ(ag/z). However, the theoretical prediction for the ratio
r(Q%) = (M(Q%))g/ (M (Q?))q given in Ref. [25] is about 10% higher than the experimenédhdt
the scale of th&® boson. An alternative approach was proposed in Ref. [26&reva differential
equation for the gluon-to-quark AJM ratio was obtained & KhLLA within the framework of the
colour-dipole model, and the constant of integration, Whgsupposed to encode nonperturbative
contributions, was fitted to experimental data. A constdisedto the gluon and quark AJMs jet
multiplicities was also introduced in Ref. [27].

Recently, we proposed a new formalism [28, 22, 23] that sotkie problem of the apparent
good convergence of the perturbative series and does nateeany ad-hoc offset, once the effects
due to the mixing between quarks and gluons are fully inadud®ur result is a generalization
of the result obtained in Ref. [25]. In our new approach, thaperturbative informations to the
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gluon-to-quark AJM ratio are encoded in the initial coratis of the evolution equations.

This contribution is organized as follows. Section 2 camageneral formulae for th@?-
evolution of PDFs and FFs. The generalized DAS approachesepited in Section 3. Sections
4 and 5 contain basic formulae @f-dependence of FFs at lowand the AJMs, respectively. In
Section 6 we compare our formulae with the experimental ftatéhe DIS SFF, and the AJMs
and present the obtained results. Some discussions cantdifothe conclusions. The procedure
of the diagonalization and its results for PDF and SF Mellonments can be found in AppendixA.

2. Approach
Here we breifly touch on some points concerning theoretiadl @f our analysis.

2.1 Strong coupling constant

The strong coupling constant is determined from the renbratéon group equation. More-
over, the perturbative coupling constam{Q?) is different at the leading-order (LO), NLO and
NNLO approximations. Indeed, from the renormalizationugrequation we can obtain the fol-
lowing equations for the coupling constant

1 1 Q?
— = [Boln|{ = 2.1
o oy~ (i) @
at the LO approximationm and

1 1 al" (@) (1+biag O (M2))] _ o3
o~ o o e o0 (vg) @2
at the NLO approximation.
At NNLO level alN-0(Q?) = a5(Q?) is more complicated and it is given by

1 1 as(Q®) |14 bias(M2) + bya2(M2) ( b%) <Q2>
- +byln +lb—= ) 1=FIh|{=]|.
@@ amz) " | amg) | Trba@) Tk | T\ 2) ! TR (e
(2.3)
The expression for looks:
2 by + 20,a(Q?) b1+2bzas('\/l§)>
— | arctan———~ —arctan———+—=~ for f =3,4,5;A >0,
VA ( VA VA

)L [bl +20285(Q%) — V=B by + 2bpa(M3) + v -4
V=0 | by +20pa(Q%) + V-4 b+ 2byas(M2) —/—A

whereA = 4b, — bf andb; = 3/ B are read off from the QCIB-function:

} forf=6; A<DO,

B(as) = —Boai—BlaS—Bza§+-.-=—ﬁoa§<1+b1as+bza§+..->, (2.4)

where
2857 5033 ‘ 325 (2

2 38
=11—_f =102— —f = —— 2.5
BO 3 Bl 3 BZ 2 18 + 54 ) ( )

with f being the number of active quark flavours.



Parton distributions Anatoly Kotikov

2.2 PDFs and DIS SH~,
The DIS SF can be represented as a sum of two terms:
Fa(x, Q%) = F2'S(x, Q%) + F3(x, @), (2.6)

the nonsinglet (NS) and singlet (S) parts. At this pointslétitroduce PDFs, the gluon distribu-
tion function fq(x, Q%) and the singlet and nonsinglet quark distribution functidg(x, Q%) and

fus(x, Q%) %
s, Q) = zf (% Q%) =V (x,Q) +S(xQ),
fns(x, Q%) = zqu'\'s (x,Q%), f'S(x,Q%) =fi(x,Q%) — T fs(x,Q?), (2.7)

whereV (x, Q%) = uy(x,Q?) +dy(x,@?) is the distribution of valence quarks astk, Q%) is a sum
of sea parton distributions set equal to each other.
There is a direct relation between SF moments(Q?) and those of PDFs

. 1 . 1
MG = [ ot 2R Q). i(nQ?) = [ oo 2(x Q) (j=NSSOC). (28
0 0
which has the following form

MaS(Q%) = Cns(n,as(Q?)) - fas(n, @), (2.9)
My(Q?) = e<CS(n>3s(Q2)) -f5(n, Q%) +Cqy(n,as(Q%)) - f(n, Q2)> : (2.10)

with Cj(n,as(Q?)) (j = NS S,G) are the Wilson coefficient functions. The constanlepends on
weak and electromagnetic charges and is fixed for electrogtagcharges to

1 f
=1 %eg. (2.11)
Note that the NS and valence quark parts are negledgiblenak land, thus,F3(x,Q?) =
FZ(X> Qz) andS(X, Qz) = fS(n> Qz) = fQ(nv Qz)
2.3 Q°-dependence of SF moments

The coefficient function€q(n, aS(QZ)) =Csg(n,a5(Q?)) andCqy(n, as(Q?)) are further expressed
through the functionBS)(n) anng)(n), respectively, which are known exactly [29, 30]
Ca(has(@) =1-0F+as-Be' (N +&-BY )+ 0(@), (a=(09)  (212)

whered? is the Kroneker symbol.

3Unlike the standard case, here PDFs are multiplied. by
(i

4For the integral and even complewalues, the coefficienBa)( n) andZ '2)( n) (a,b = q,g) can be obtained using
the analytic continuation [31].
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The Q?-evolution of the PDF moments can be calculated within a é&aork of perturbative
QCD (see e.qg. [30, 32]). After diagonalization (see Appedi, we see that the quark and gluon
densities contain the so called-"- and ” — "-components

fa(n,Q?) =f1(n, Q%) +f;(n.Q%) (a=q.0), (2.13)

which in-turn evaluated already independently:

v (n)

} " hENQ), (2.14)

as(Q?)

££(n.Q2) = (.G} [@

where

(RO = (B o) s oRm) @)

is the anomalous dimensions of the-"- and " — "-components, which are obtained from the
elements of the martix of the LO anomalous quark and gluomataus dimensions.
At LO, the normalization coefficients (n,Q3) have the form

fa(n.Q}) = f2(n,Qp), (2.16)

where®

fa(n> Qg) = fs(n, Q(z)) - 0n +f9(n> QS) : Brb fg;(nv Q(z)) = fg(nv Q(z)) ’ (l_ C{n) +f(1(n> Qg) “&n,
fa(n,Q5) = fa(n,Q§) —f5 (n,Qf) (2.17)

e m—y2m) O v (n)
n s B = n= (2.18)
" O -9 Yo —y2m) vJ() " VOO

Above LO, the normalization factofg (n, Q) become to be

and

Q) = F£(n.QR). (1—as(Q5)Zfi(n) —a§<@5>zﬂ<n))

+I(n,Q)- (Qo)( T al )+as<Q%>Z§La<n>>, (2.19)
where (see Appendix A, whe@fi = —Vfi, Zj(pj;a = —Vﬁiﬂ, (i=1,2)
1
Zﬁt(n) = 26 [Vii Vi ] Zi:p q(n) = 2B0+V:t V(Q Vi:p (2.20)
1

2200 = = [Vl - () - Pz )bﬁyﬁ[ CESES Rt .iq]

@ () — 1
Zizal) = 4By + v (n) — % (n) [yﬂ Mﬂ e >b1_ %yi' 4 q]

5To conrary [30] we replacé, by .. Another expressions for the projectarg, 8, ands, can be found in [33].
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z1) g(n) = 20 ) = 28 (), 20 g(n) = 28 o(n)- T

vy F UV (i=1,2) (2.21)
v (n) — v (n)

Here yiki(n) and yﬂ(n) are the elemens of matrices of anomalous dimensions, wiaieé been
obtained after diagonalization fropég)(n) (a,b=q,9g) (latter taken in the exact form from [34]):
K K
= Yoo (N) - o+ Yo' (n 5n+Vs<1q) n 'Bn+Vég)(”)'(1—an)

£k = = (W0 + S ) ) ) = A )
7 ) = )~ ()~ 5 n)) @2.22)

The functionH;(n, Q%) up to NNLO may be represented as

HE(MQP) — 1+as<02>(zii<> 29 n )) <Q2>(zﬂ<> Zﬁ.am)) 0 (@),

(2.23)
where (see [30] and Appendix A)
5(2 2 1 1 5(2 2 1 1
22 = 2%+ ¥ 2320 284 = 2% )+ ¥ 23 27,
=t isT
(0) (0)
=(2 ~(2 Vog (N) — y="(N
22 ) =22 (n .—‘(‘g)( ) TO)( ), (2.24)
Yo' (n) —yi" ()

2.4 Fragmentation functions and their evolution

When one considers AJM observables, the basic equatior isrte governing the evolution
of FFsD4(x, u?) for the gluon—quark-singlet systean= g,q. In Mellin space, it reads:

2 J DCI(O‘)vl‘lz) _ PQCI(O‘)vaS) PQQ(w>aS) Dq(o‘)vuz) 292
I.l —2 2 - 2 9 ( . 5)
ou? \ Dg(w,pu?) Pog(@, 8s) Pog(w, as) Dg(w, u*)
where Py (w, as), with a,b = g,q, are the timelike splitting function$ w = n— 1, with n be-

ing the standard Mellin moments with respecitxtoThe standard definition of the hadron AJMs
corresponds to the first Mellin moment, with= 0 (see, e.g., Ref. [35]):

1
(h(Q))a= Uo dxx*“Da(X, Qz)} =Da(w=0,Q), (a=g,0q). (2.26)
w=0
The timelike splitting function®p(w, as) in Eq. (2.25) may be computed perturbativelyai
Pan(@,a5) = ¥ a™RY (w). (2.27)
K=0

The functionsPa('g)(w) for k=0, 1,2 in theMS scheme may be found in Refs. [36, 37, 38] through
NNLO and in Refs. [19, 20, 21] with smat+esummation through NNLL accuracy.

5p,p = fy;b/z, WhereyeiID are the timelike anomalous dimensions.
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2.5 Diagonalization of FFs

As it was in the spacelike case (see subsection 2.3 and App&)dt is not in general possible
to diagonalize Eq. (2.25) because the contributions toithelike-splitting-function matrix do not
commute at different orders. The usual approach is then i \arseries expansion about the
LO solution, which can in turn be diagonalized. One thuststiay choosing a basis in which the
timelike-splitting-function matrix is diagonal at LO (se=g., Ref. [30] and Appendix A),

p©

CON (st B (S S

with eigenvaluesPﬂ(w). In one important simplification of QCD, namely” = 4 super Yang-
Mills theory, this basis is actually more natural than tgeq) basis because the diagonal splitting
functionst(Ek:)g/V :4(0)) may there be expressed in all orders of perturbation themgna universal
function Plfﬁ(w) with shifted arguments [39].

It is convenient to represent the change of FF basis orderdsr dork > 0 as [30]” :

D+(Q), Ug) = (l - a(D)DS(O‘)v HOZ) - Eng(w> u3)7 Di(o‘)v HOZ) = a(DDS(w7 Ug) + Eng(o‘)v HOZ)
(2.29)
This implies for the components of the timelike-splittigiction matrix that

PY (@) = auPl (@) + £l (0) + BuP (@) + (1— ae) P (),

k k k 1-a4 k K K k
PY (w) = Sl(w)—(Péq><w>+ - wPéq><w>), P ()P (@) +Pig (@) — P (@),

w

P (0) = PX (@) (Pé?(w) - ‘j—jpé?(w)) — R (w) - (P“Nw) - Z—jpé?(w)) . (2.30)

wherea,,, ., andg, are given in Eq. (2.18).

Note, howerver, that the approach (2.28) is not so conveirid- case, because we would like
to keep the diagonal part &f(w,as) matrix without an expansion os. So. below our approach
to solve Eq. (2.25) differs from the usual one (see [30]) Witenthe solution expanding about the
diagonal part of the all-order timelike-splitting-funati matrix in the plus-minus basis, instead of
its LO contribution. For this purpose, we rewrite Eq. (2.28)he following way:

(Pi(wag) 0 0 PY (w) 0 0D

In general, the solution to Eq. (2.25) in the plus-minus $aan be formally written as
M2 dp?
D(k?) =Tz {exp /u 2 “%Pu?)} D(Kd). (2.32)
0
whereT, . denotes the path ordering with respecptoand

D= <B+>. (2.33)

"The difference in the diagonalization to compare with thacstike case considered above is foIIowir;éig) —
fZPéa) and, thusBy < €w.
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As anticipated, we make the following ansatz to expand atfmidiagonal part of the timelike-
splitting-function matrix in the plus-minus basis:

2 3472 2 42
Te {exp [ %P(EZ)} — 7 () exp [ [ %P%TZ)] 21, (239)
where
PP(w) = <g++(w) g(w)> (2.35)

is the diagonal part of Eq. (2.31) ads a matrix in the plus-minus basis which has a perturbative
expansion of the form

Z(u?) =1+ a(u?)2W + 0(ad). (2.36)

Changing integration variable in Eqg. (2.34), we obtain

a(W’) dag as(H?)  dag _
Ta, exp/ —= P(ag) p = Z Y(as(p?)) exp / —= PP(ag) | Z(as(pd)). (2.37)
) { ai) B@) )} BSP) | By (| 20
Substituting then Eq. (2.36) into Eq. (2.37), differentigtit with respect taas, and keeping only
the first term in thexs expansion, we obtain the following condition for tA&) matrix (see Section
8.1 for the similar procedure in the spacelike case):

p(0)D p(1)0D 0 p(l) (w)
yALE —ZW = pOD(g) = - . 2.38
Bo Bo (@) PV (w) 0 (2.38)
Solving it, we find:
(1)
P
ZH(w)=0, zZH(w 22(%) (2.39)

' ot P ()P (@)

At this point, an important commentis in order. In the corti@mal approach to solve Eq.(2.25),
one expands about the diagonal LO matrix given in Eq. (2\2Bile here we expand about the all-
order diagonal part of the matrix given in Eq. (2.31). The inaiton for us to do this arises from
the fact that the functional dependencePpf (w, as) on as is different after resummation.

Now reverting the change of basis specified in Eqg. (2.29), maktfie gluon and quark-singlet
fragmentation functions to be given by

a l1-a _ -
Do(e07) =~ 220" (@04%) + (122 ) D (022, Do) =D (0, 42)+ D (4.
w w
(2.40)
As expected, this suggests to write the gluon and quarketiigpgmentation functions in the
following way:
Da(w, %) = D3 (@, %) + D5 (w,1?),  a=g,q, (2.41)

whereD} (w, u?) evolves like a plus component aBy (w, u?) like a minus component.
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We now explicitly compute the functior3: (w, u?) appearing in Eq. (2.41). To this end, we
first substitute Eq. (2.34) into Eq. (2.32). Using Egs. (2&d (2.39), we then obtain

D (e, p?) = B (w, 1) T+ (@, 12, 1) — a2 (W) D~ (w, 1) T (0, 12, 1),
D (w,1?) = B (w,ud) T (0, % 1) — as(1?)Z\” () D* (w0, ud) T (w0, w2 1), (2.42)
where
5% (w, u3) = D*(w, u) +as(12) 2\ (w) DT (w, 1d), (2.43)
and , B
To(w, 12, pé) = exp [/asa::;) % P.4(w,as) (2.44)

has a RG-type exponential form. Finally, inserting Eq. 22.#to Eq. (2.40), we find by compari-
son with Eq. (2.41) that

Da (@, 4?) = Dy (w, ) T (w, 42, 1§) Ha (w, 12, (2.45)
where
« Og = . 1—Ogpa_
D;}L(wa HOZ) - _E_wD(J:]r(w7 “3)7 Dg ((JJ, HOZ) - Tqu ((JJ, qu)a
w w
D (@, 45) =D" (w,1§), Dg (w,u5) =D~ (w, f), (2.46)

andHJ (w, u?) are perturbative functions given by

HE (0, 12) = 1—as(u?) 2 J(w) + 0(ad). (2.47)
At 0(as), we have
W W, (10w W o
- w
2 oo =-20w)(1522) L 2 e =2 249

whereZ(ilj)F(a)) is given by Eq. (2.39).

3. Generalized DAS approach

The flat initial condition (1.1) corresponds to the case wparion density tend to some con-
stant value ak — 0 and at some initial vaIuQ%. The main ingredients of the results [15, 16],
are:

A. Both, the gluon and quark singlet densities are presenteirits of two components ¢
and ”"— ") which are obtained from the analyti®’>-dependent expressions of the corresponding
("+"and ”—") PDF moments.

B. The twist-two part of the " component is constant at smallat any values of?,
whereas the one of the{?” component grows ap? > Q% as

“ ~ ~ 1 O
~ €M g0 = 2\/“d+|SNLO — (dy+ +|dy | b1) puro] In (;) , PNLO = 2In’2;(/)x) , (3.1

10
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whereo andp are the generalized Ball-Forte variables,

al'“°(Q})
o)
andfy and; are given in Eq. (2.5)

~ 12 - 412
) , Pno=aa0(Q) —aO(Q?), dy=-2-, dip=—>. (3.2

Sveo =1In ( Bo 278

3.1 Parton distributions and the structure function F,
The results for parton densities aRglare following:

e The structure functiom has the form:

FrO(xQ%) = efq0(xQ%), faro(x Q%) = fiox Q%)+ fo(xQ%) (3.3)

at the LO approximation, whereis the average charge square (2.11), and

2
R0 = e famox @) + 3 (@ ook @) )
fano (%, Q%) = fino(% Q%) + fanio(x Q%) (3.4)
at the NLO approximation.

e The smallx asymptotic results for the LO parton densitikﬁo are
4 N _
falo(x @) = (Ag+ §Aq> lo(0L0) & 9+%° + O(pLo), (3.5)
f 4 ~ 5
foLo (X, Q) = 9 (Ag+ §Aq> pLoii(oio) €790 + O(pLo), (3.6)

fg_.LO(X’ Qz) = _gAqe_d7&O + O(X)7 fq_.LO(X7 Qz) = Aqe_d7&0 + O(X)7 (37)
where8
20f ~ lef
276"~ 27Bo
are the regular parts of the anomalous dimensehr(®) andd_ (n), respectively, in the limit
n— 1°. Herenis the variable in Mellin space. The functiohs(v = 0,1) are related to the
modified Bessel functioh, and to the Bessel functiak by:

(o) = { ly(0), if s>0 (3.9)

iV (io), i2=-1, ifs<0’

At the LO, the variables o andp o are given by Eq. (3.1) whep=0, i.e.

A 1
0o =2/|ds|soln (;) , PLo= 2I:(L10/x) ; (3.10)

and the variable o is given by Eq. (3.2) witlai®(Q?) as in Eq. (2.1).

8The dependence on the colour fact6gs= 3, Cr = 4/3 in Egs. (3.2), (3.8) and (3.17) can be found in [16].
9We denote the singular and regular parts of a given quakityin the limitn — 1 byk/(n— 1) andk, respectively.

11
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e The smallx asymptotic results for the NLO parton densitigs are
fanio(% Q) = Ajnio(Q% QB)io(0uLo) &40 PrPo 4+ O(pyio), (3.11)

fano 6 Q%) = Alnio [( +7a's\lLo(Q2)) pnLol1(Onio)

+20a§L0<Q2>Io<aNLo>] et (Vo Dm0 4 Olpo). (312

fanio (% Q%) = Agnio(Q2 QF)ed (BswoD-puo 1 O(x), (3.13)
fq_NLO (X, Q AqN oe‘d JsnLo—D-prio + O(x), (3.14)

where(by = B1/Bo)
D. —duy —dyby (3.15)

and similar forD_. andD.,

f
Aol @) = (1- Q) A
f 80f
= <1+ (3+55)a"°(Qu) - ﬁasNL‘%Q)) A
AaNLO(Q27Q%) = Ag— A;NLO(QO’ Q%). (3.16)

The coupling constards(Q?) is introduced in Eq. (2.2). The variableh, cf++ d, andd_
are diven in Egs. (3.2) and (3.8), respectively. The nonzer@blesd. ., d__ andd?_
(a=q,g) have the form

f

8 1643 2f [68 13f]\ —¢ _ 80f —g

d++_E<3653 33{2 9 |:9 _452_243:|>7d+_ 617d7+__3_2_77
16 13 23 13f q 13f

d__ gﬁo <2(3—352+ 4 + f |:4ZZ_T8 %]) 5 d+_ —23— 12Zz—ﬁ, (317)

with {3 and{, are Eller functions.

4. Resummation in FFs

As already mentioned in Introduction, reliable computasi@f AJMs require resummed an-
alytic expressions for the splitting functions because laae to evaluate the first Mellin moment
(corresponding tav = 0), which is a divergent quantity in the fixed-order pertti@approach.
As is well known, resummation overcomes this problem, asaletnated in the pioneering works
by Mueller [18] and others [40].

In particular, as we shall see in previous subsection, reseanexpressions for the first Mellin
moments of the timelike splitting functions in the plus-msnbasis appearing in Eqg. (2.28) are
required in our approach. Up to the NNLL level in tMS scheme, these may be extracted from
the available literature [18, 19, 20, 21] in closed analfdien using the relations in Eq. (2.30).

12
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For future considerations, we remind the reader of an assunrgiready made in Ref. [20]
according to which the splitting functiorBﬁkl(w) and Pikz(w) are supposed to be free of sin-
gularities in the limitcwo — 0. In fact, this is expected to be true to all orders. This idately
true at the LL and NLL levels for the timelike splitting fumehs, as was verified in [20]. This is
also true at the NNLL level, as may be explicitly checked kseiting the results of Ref. [21] in
Eq. (2.30). Moreover, this is true through NLO in the spadaeetiase [15] and holds for the LO and
NLO singularities [41, 42, 39] to all orders in the framewatkthe BFKL dynamics [8], a fact that
was exploited in various approaches (see, e.g., Refs. B}eferences cited therein). We also
note that the timelike splitting functions share a numbesioiple properties with their spacelike
counterparts. In particular, the LO splitting functiong éne same, and the diagonal splitting func-
tions grow like Inw for w — o at all orders. This suggests the conjecture that the ddobkerithm
resummation in the timelike case and the BFKL resummatidgharspacelike case are only related
via the plus components. The minus components are devoidgilarities asv — 0 and thus are
not resummed. Now that this is known to be true for the first¢horders of resummation, one has
reason to expect this to remain true for all orders.

Using the relationships between the components of thetigglifunctions in the two bases
given in Eq. (2.30), we find that the absence of singularfteso=0in P__(w,as) andP, _ (w, as)
implies that the singular terms are related as

. £ . . a .
Pgs(!]ng(w> a-S) = _a_ngsgl]ng(w> a-S)7 P(?gl]ng(wv aS) = _S_:P(?(!,]ng(wv a5)7 (41)
where, through the NLL level?

Ay Ca w Te CeTe 2
Lo Al P(142F 4 O(w?). 4.2
€ CJ 6<+CA c,i)}r () 4-2)

An explicit check of the applicability of the relationshipsEgs. (4.1) forRj(w,as) with i, j = g,9
themselves is performed in the Appendix of Ref. [23]. Of @auyrthe relationships in Eqgs. (4.1)
may be used to fix the singular terms of the off-diagonal tikeebplitting functionsPyg(w, as)
and Py (w, as) using known results for the diagonal timelike splitting €tions Pyg(w, as) and
Py (w, as). Since Refs. [19, 38] became available during the premaratf Ref. [20], the relations
in Egs. (4.1) provided an important independent check ratian a prediction.

We take here the opportunity to point out that Egs. (2.45) @) together with Eq. (4.2)
support the motivations for the numerical effective applothat we used in Ref. [28, 23] to study
the gluon-to-quark AJM ratio. In fact, according to the fimgs of Ref. [28, 23], substituting
w = Wef, Where

Weff = 2 V 2C:Aa& (43)

into Eqg. (4.2) exactly reproduces the result for the avemglgen-to-quark jet multiplicity ratio
r(Q?) obtained in Ref. [44]. In the next section, we shall obtaipiaved analytic formulae for the
ratio r (Q?) and also for the average gluon and quark jet multiplicities.

1076 have a possibility to compare different approximatiahis convenient to keep the general forms of the colour
factorsCa = 3,Cr = 4/3 in the present and the next sections.
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Here we would also like to note that, at first sight, the ststin w = e should induce a
Q? dependence to the diagonalization matrix. This is not ttse,chowever, because to double-
logarithmic accuracy th®? dependence afs(Q?) can be neglected, so that the faatigy/e,, does
not recieve anyQ? dependence upon the substitutian= wef. This supports the possibility to
use this substitution in our analysis and gives an explanatf the good agreement with other
approaches, e.g. that of Ref. [44]. Nevertheless, thistutisn only carries a phenomenological
meaning. It should only be done in the factny /&, but not in the RG exponents of Eq. (2.44),
where it would lead to a double-counting problem. In fack tfangerous terms are already re-
summed in Eq. (2.44).

In order to be able to obtain the AJMs, we have to first evaltredirst Mellin momoments of
the timelike splitting functions in the plus-minus basisccarding to Eq. (2.30) together with the
results given in Refs. [18, 21], we have

PN (0 = 0) = yo(1— K1y + K2)8), (4.4)
where
1 Ti 2C
— Py —0) — _ = P12
W =P (w=0)=+/2Chas, Ki = 17 [11+4CA <1 Ca >] , (4.5)
1 Tr Cr T2 Cr C?
Ko = — [1193-576(, — 56— | 5+2— 165 (14+4——-12— 4.6
2~ 288 &2 CA< + CAH * c? o cz)’ (4.6)
and C
F
PY N (w=0) = = Py (w=0), (4.7)
where 16 2 Ti 2C
PNNLL () — 0y = =2Teae— 5Te 17— 4-F (1- 2F ) | (2c.a3) Y2 4.8
qg (w ) 3 Fas 3 F Ca Ca ( Aas) ( )

For theP, _ component, we obtain
PNNLL (= 0) = 0(&2). (4.9)

Finally, as for theP__ component, we note that its LO expression produces a firote/anishing
term for w = 0 that is of the same order &, as the NLL-resummed results in Eq. (4.4), which
leads us to use the following expression for lhe component:

8T-Cr

PNNLL () — ) = —
T (w=0) e

as+ 0(a2), (4.10)

at NNLL accuracy.
We can now perform the integration in Eq. (2.44) through tidLN level, which yields

S NNLL 2 A2 TENLL(QZ) NNLL /~2 NLL /2 2+ d-
Ti (O,Q 7Q0) - TENLL (Q%)a T (Q ) =T (Q ) = (aS(Q )) ) (4.11)
4C N
TN = exp{iﬁov"(i\DZ) [1+ (b — 2CaKz) as(Q)] } (@)™, 4.12)
where B 8T:C 2CAK
_ P _ olrbr _ Laka
b, = By’ d_ NN d, o (4.13)
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5. Multiplicities

According to Egs. (2.44) and (2.45), ther components are not involved in the AJOF
evolution, which is performed ab = 0 using the resummed expressions for the plus and minus
components given in Eq. (4.4) and (4.10), respectively. Yeéenaw ready to define the average
gluon and quark jet multiplicities in our formalism, namely

(h(Q))a=Da(0,Q%) =D (0.Q°) + D, (0,Q%), (a=g.q). (5.1)
On the other hand, from Eqgs. (2.45) and (2.46), it follows tha

. Di0Q)  apHi@®) L, D;(0Q) 1-ayH (@)
=50 T e Al @) YT B0 6™ € He (@O
(5.2)

Using these definitions and again Eq. (2.45), we may writeegdrexpressions for the gluon and
quark AJMs:

(M(Q%))g = Dy (0,Q5)T1°%(0,Q% Q§)Hy (0,Q%) + Dy (0,Q)r— (Q%)T™%(0,Q% Q§)H, (0.Q?),

Dg (0,Q3) . - - _
(M(Q@)s = <y TH90.Q%. QMg (0.Q%) + B (0. T™*%0.Q%. QHg (0.9 (5:3)
At the LO inag, the coefficients of the RG exponents are given by
CA

r (@) = r(@)=0, H7(0,Q")=1  Di(0Q})=D(0,QF). (54

It would, of course, be desirable to include higher-ordarextions in Egs. (5.4). However,
this is highly nontrivial because the general perturbasitreictures of the functionbl} (w, u?)
and Z, - a(w,as), which would allow us to resum those higher-order corretdjoare presently
unknown. Fortunatly, some approximations can be made. ©wotle hand, it is well-known that
the plus components by themselves represent the dominatribzdions to both the gluon and
quark AJMs (see, e.g., Ref. [45] for the gluon case and Ré}.fg¥ the quark case). On the other
hand, Eg. (5.2) tells us thaxg (O, Q?) is suppressed with respect @y, (O, Q?) becauseary, ~ 1+
0(w). These two observations suggest that keepin@?) = 0 also beyond LO should represent
a good approximation. Nevertheless, we shall explain bé&low to obtain the first nonvanishing
contribution tor_(Q?). Furthermore, we notice that higher-order correctiondd§e(0,Q?) and
DX (0, Q3) just represent redefinitions BE: (0, Q3) by constant factors apart from running-coupling
effects. Therefore, we assume that these corrections caadlected.

Note that the resummation of thet components was performed similarly to Eq. (2.44) for
the case of parton distribution functions in Ref. [15]. Suebummations are very important be-
cause they reduce tig¥ dependences of the considered results at fixed order inrpation theory
by properly taking into account terms that are potentiadlsgé in the limitcw — 0 [47, 48]. We
anticipate similar properties in the considered case,wdch is in line with our approximations.
Some additional support for this may be obtained frahn= 4 super Yang-Mills theory, where the
diagonalization can be performed exactly in any order ofysbation theory because the coupling
constant and the corresponding martices for the diagatadiz do not depended dp?. Conse-
quently, there are nﬂ(ik}F_a(w) terms, and onI)Pj(Ekj)E(w) terms contribute to the integrand of the RG
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exponent. Looking at the r.h.s. of Egs. (2.43) and (2.47)indeed observe that the corrections of
O'(as) would cancel each other if the coupling constant were scalegendent.

We now discuss higher-order correctionsrtqQ?). As already mentioned above, we intro-
duced in Ref. [28] an effective approach to perform the remation of the first Mellin moment of
the plus component of the anomalous dimension. In that appraesummation is performed by
taking the fixed-order plus component and substituting: w.s, Wherewss is given in Eq. (4.3).
We now show that this approach is exact’t¢,/as). We indeed recover Eq. (4.5) by substituting
w = wefr in the leading singular term of the LO splitting functiéq  (w, ag),

4Cpas

PO (w) = +0(w). (5.5)
We may then also substitute = wei in EqQ. (5.2) before taking the limit it = 0. Using also
Eqg. (4.2), we thus find

Ca

1-—
Cr

r(Q) =

2a5(Q?)Ca ( +0(as), (5.6)

CeTe
3

1421F 4
Ca C2

which coincides with the result obtained by Mueller in R&#4]. For this reason and because, in
Ref. [49], the gluon and quark AJMs evolve with only one RGangnt, we inteprete the result in
Eq. (5) of Ref. [25] as higher-order corrections to Eqg. (5®pmplete analytic expressions for all
the coefficients of the expansion throu@fﬁag’/z) may be found in Appendix 1 of Ref. [25]. This
interpretation is also explicitely confirmed in Chapter 7Ru#f. [50] through?'(as).

Since we showed that our approach reproduces exact anagtilts at (,/as), we may safely
apply it to predict the first non-vanishing correctionrt Q?) defined in Eq. (5.2), which yields

@)= 2 o, 57)

However, contributions beyond(,/ds) obtained in this way cannot be trusted, and further inves-
tigation is required. Therefore, we refrain from considgrsuch contributions here.

For the reader’s convenience, we list here expressionsmwitherical coefficients for, (Q?)
throughﬁ(ag/z) and forr_(Q?) through&'(,/as) in QCD withns = 5:

r.(Q%) = 2.25—2.18249,/as(Q?) — 27.54a5(Q?) + 10.8462a% *(Q?) + 0(a2),  (5.8)
r_(Q?) = —2.72166y/as(Q2) + 6 (as). (5.9)

We denote the approximation in which Eqgs. (4.11)—(4.12) @) are used as LG NNLL,
the improved approximation in which the expressionrfafQ?) in Eq. (5.4) is replaced by Eq. (5.8),
i.e. Eqg. (5) in Ref. [25], as N_Oapproer NNLL, and our best approximation in which, on top of
that, the expression far (Q?) in Eq. (5.4) is replaced by Eq. (5.9) a$Mapprox+ NLO + NNLL.
We shall see in the next Section, where we compare with thergrpntal data and extract the
strong-coupling constant, that the latter two approxioraiare actually very good and that the last
one yields the best results, as expected.
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In all the approximations considered here, we may summairizenain theoretical results for
the gluon and quark AJMs in the following way:

(M(Q%))g = N(QF)T[*%0,Q% QF) + nx(Qf) r—(Q*)T'*%(0, Q% Qf),
T1°5(0,Q%,Q3)

(M(@))s = m(QP) 5 +2(QF) T1°%(0,Q%, QF), (5.10)
r+(Q?)
where
2 o2 Pa(0.Q) -1 (FDs0.F) o +(Q)Ds(0.Q)) ~De(0. Q) . 1,
m(Qp) =r+(Qp) " (QD)—r_(Q2) » o(Qp) = (D) —r_(Q2) - (5.11)
The gluon-to-quark AJM ratio may thus be written as
2 ((@g _ oo [LH T (@RQT0.2. Q) /T0.R R (61,
"= @y TV r i er@ 0@ e O
where @)
R(QZ) = 250), 5.13
(QO) nl(ch)) ( )

It follows from the definition off [*5(0, @2, Q3) in Eq. (4.11) and from Eq. (5.11) that, fQ? = QZ,
Egs. (5.10) and (5.12) become

2
(h(Q))g = Dg(0.Q8),  (M(Q®)q = Ds(0,Q). r(Q(%):%’gg; (5.14)

These represent the initial conditions for 198 evolution at an arbitrary initial scal@g. In fact,
Eqg. (5.10) is independ (@%, as may be observed by noticing that

190, Q% Q§) = T™(0, Q% Q) T1*(0.Q4, @), (5.15)

for an arbitrary scal€; (see also Ref. [51] for a detailed discussion of this point).
In the approximations wittn_(Q?) = 0 [22], i.e. the LO+ NNLL and N*LOapprox+ NNLL
ones, our general results in Egs. (5.10), and (5.12) caléaps

(M(Q?))g = Dg(0,Q4) T*%(0, Q% Q).

-fres 0’ QZ’ QZ D O, QZ o
(M(Q?))s = Dg(O, Q%)W + [Ds<o, Q) -~ %Q%;’)] 0,7 Q).
r(QZ) — r+(Q2) (516)

r(Q?) (DsOR)ri () _ 1) I*0LP]"
|+ (Mo ) ova

The NNLL-resummed expressions for the gluon and quark AJMsngby Eq. (5.10) only
depend on two nonperturbative constants, nani&§0,Q3) and Ds(0,Q3). These allow for a
simple physical interpretation. In fact, according to Exqlé), they are the average gluon and quark
jet multiplicities at the arbitrary scal®,. We should also mention that identifying the quantity
r. (Q?) with the one computed in Ref. [25], we assume the scheme depee to be negligible.
This should be justified because of the scheme independermzeggh NLL established in Ref. [20].
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Figure 1: F»(x,Q?) as a function ok for differentQ? bins. The experimental points are from H1 [1] (open
points) and ZEUS [2] (solid points) & > 1.5 Ge\2. The solid curve represents the NLO fit. The dashed
curve (hardly distinguishable from the solid one) repreésdme LO fit.

We note that theQ? dependence of our results is always generatechy(i@?) according to
Eq. (2.4). This allows us to express Eq. (4.11) entirely im&of as(Q?). In fact, substituting the
QCD values for the color factors and choosmg= 5 in the formulae given in Refs. [22, 23], we
may write at NNLL

R TreS(QZ) d2—|—d30 (QZ)
Tres 27 2\ + 7 Ties 2 :adl 27 Tres 2 —ex S ad4 27
(5.17)
where
d; = 0.38647 d, =2.65187 dz3 = —3.87674 d; =0.97771 (5.18)
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Table 1: The result of the LO and NLO fits to H1 and ZEUS data for diffédew Q2 cuts. In the fitsf is

fixed to 4 flavors.

| [ A Aq [ Q@[GeVF [ x?*/nop. |
Q% > 1.5GeV?

LO 0.7844+-.016 | 0.801E£.019| 0.3044.003 754/609
LO&an. 0.932:-.017 | 0.7074.020| 0.339+.003 632/609
LO&(fr. 1.022+.018 | 0.650+.020| 0.356+.003 547/609
NLO -0.200+.011 | 0.903+.021 | 0.495+.006 798/609
NLO&an. 0.310+.013 | 0.640+.022 | 0.702+.008 655/609
NLO&fr. 0.180+.012 | 0.780+.022 | 0.661+.007 669/609
QZZO.SGe\/2

LO 0.641+.010 | 0.937A.012| 0.295+.003| 1090/662
LO&an. 0.846+.010 | 0.771£.013| 0.328+.003 803/662
LO&fr. 1.1274.011 | 0.534+.015| 0.358+.003 679/662
NLO -0.192+.006| 1.084.012| 0.478+.006| 1229/662
NLO&an. 0.2814-.008 | 0.634+-.016| 0.680+.007 633/662
NLO&fr. 0.205+.007 | 0.650+.016 | 0.589+.006 670/662

6. Comparison with experimental data

Here we compare our formulae with experimental data for DFE8x, Q) and for the AJMs.
In the DIS case, we limite ourselves by consideration onty $iFF,(x,Q?). The comparison of
the generalized DAS approach predictions with the datahferstoped InF,/dIn(1/x) [4] and for
the heavy parts df, [5] can be found in Refs. [52, 48] and [53], respectively (ak® the review
[54]). An estimation of the cross-sections of very hightggeneutrino and nucleon scattering has
been found in [55].

6.1 DIS SFFR,

Using the results of section 3 we have analyzed HERA datk;fat smallx from the H1 and
ZEUS Collaborations [1, 2, 3].

In order to keep the analysis as simple as possible, wé fix4 andas(M2) = 0.1166 (i.e.,
A¥ =284 MeV) in agreement with the more recent ZEUS results [2].

As it is possible to see in Fig. 1 (see also [15, 16]), the tivist approximation is reasonable
atQ? > 2 Ge\A. At smallerQ?, some modification of the approximation should be consitlere
In Ref. [16] we have added the higher twist corrections. Eoormalon model of higher twists,
we have found a good agreement with experimental data attesgelower Q? values:Q? > 0.5
GeV? (see Figs. 4 and 5 in Ref. [16]), but we have added 4 additipagmeters: amplitudes of
twist-4 and twist-6 corrections to quark and gluon densitie

Moreover, the results of fits in [16] have an important prayethey are very similar in LO and
NLO approximations of perturbation theory. The similarigyrelated to the fact that the smaill-
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Figure 2: x dependence d#;(x, Q?) in bins of Q?. The experimental data from H1 (open points) and ZEUS
(solid points) are compared with the NLO fits f@¢ > 0.5 Ge\? implemented with the canonical (solid
lines), frozen (dot-dashed lines), and analytic (dashaek)i versions of the strong-coupling constant. For
comparison, also the results obtained in Ref. [16] throufiftb@sed on the renormalon model of higher-twist
terms are shown (dotted lines).

asymptotics of the NLO corrections are usually large andhtieg (see, for exampl&s-corrections
[41, 42] to BFKL kernel [81%). Then, the LO form~ as(Q?) for some observable and the NLO
one~ as(Q?)(1—Kas(Q?)) with a large value oK are similar, becaus&y o > ALo*? and, thus,
as(Q?) at LO is considerably smaller them(Q?) at NLO for HERAQ? values.

In other words, performing some resummation procedure(asdsrunberg’s effective-charge
method [56]), one can see that the results up to NLO apprdiomanay be represented as
as(Q%), whereQ%; > Q2. Indeed, from different studies [57, 58, 59], it is well knothat at

111t seems that it is a property of any processes in which gluomisnot quarks play a basic role.
12The equality ofas(M2) at LO and NLO approximations, wheM; is theZ-boson mass, relatésy o andALo:

/\f\ﬁzo = 284 MeV (as in [2]) corresponds o o = 112 MeV (see [16]).
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smallx values the effective argument of the coupling constantgbdi thenQ?. As it was shown
in [60], the usage of the effective scale in the generaliz&& Rpproach improves the agreement
with data for SFR(x, Q?).

Here, to improve the agreement at sm@fl values without additional parameters, we mod-
ify the QCD coupling constant. We consider two modificatiomhich effectively increase the
argument of the coupling constant at sn@flvalues (in agreement with [57, 58, 59]).

In one case, which is more phenomenological, we introdueezfng of the coupling constant
by changing its argumern®® — Q? + Mg, whereM, is thep-meson mass (see [61]). Thus, in the
formulae of the Section 2 we should do the following replaeatn

as(Q?) — ar (Q?) = as(Q*+ M) (6.1)

The second possibility incorporates the Shirkov—Soloxigea [62]-[65] about analyticity of
the coupling constant that leads to the additional its pategendence. Then, in the formulae of
the previous section the coupling constagQ?) should be replaced as follows:

AO(Q) = as(@) - = Do 62)
" Po Q2 —Nfo
at the LO approximation and
1 A
aan(Qz) = as(Qz) - %m + (6.3)

at the NLO approximation, where the symbol stands for terms which have negligible contribu-
tions atQ > 1 GeV [62]3.

Figure 2 and Table 1 show a strong improvement of the agreewignexperimental data for
F, (x2 values decreased almost 2 times!).

6.1.1 HI®ZEUS data

Here we have analyzed the very precise H1&ZEUS dat&f¢8]. As can be seen from Fig. 3
and Table 2, the twist-two approximation is reasonableor 4 Ge\2. At lower Q? we observe
that the fits in the cases with “frozen” and analytic strongalimg constants are very similar (see
also [66]) and describe the data in the 1@% region significantly better than the standard f (
values decreased:23 times!) Nevertheless, fa@? < 1.5 Ge\? there is still some disagreement
with the data, which needs to be additionally studied. Irtipaar, the BFKL resummation [8]
may be important here [67]. It can be added in the general&8 approach according to the
discussion in Ref. [54].

6.2 Average multiplicity and experimendal data

Now we show the results in [23] obtained from a global fit to #vailable experimental data
of our formulas in Eq. (5.10) in the L® NNLL, N3LOapprox+ NNLL, and N*LOgpprox+ NLO +

13Note that in [63, 65] more accurate, but essentially more nsome approximations @n(Q?) have been
proposed. We limit ourselves by above simple form (6.2)3)@nd plan to add the other modifications in our future
investigations.
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Figure 3: x dependence df,(x,Q?) in bins of @>. The combined experimental data from H1 and ZEUS
Collaborations [3] are compared with the NLO fits ¢ > 0.5 Ge\? implemented with the standard (solid
lines), frozen (dot-dashed lines), and analytic (dashesk)i versions of the strong coupling constant.

NNLL approximations, so as to extract the nonperturbatisastantsDg(0,Q3) and Ds(0, Q3).
We have to make a choice for the sc&lg which, in principle, is arbitrary. In [23], we adopted
Qo =50 GeV.

The gluon and quark AJMs extracted from experimental datngty depend on the choice
of jet algorithm. We adopt the selection of experimentabdadm Ref. [68] performed in such
a way that they correspond to compatible jet algorithms. cBipally, these include the gluon
AJM measurements in Refs. [68]-[72] and quark ones in Ré8&, T3], which include 27 and 51
experimental data points, respectively. The results(fatQZ))q and (nn(Q3))q at Qo = 50 GeV
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Table 2: The results of LO and NLO fits to H1 & ZEUS data [3], with varidosver cuts onQ?; in the fits
the number of flavors is fixed to 4.

| [ A Ar | QBIGeV| || x/nd.f.|
Q? > 5Ge\?

LO 0.623t0.055 | 1.204+0.093 | 0.437:0.022 1.00
LO&an. 0.796+0.059 | 1.103:0.095 | 0.494+0.024 0.85
LO&r. 0.782+0.058 | 1.110+0.094 | 0.485+0.024 0.82
NLO -0.252+0.041 | 1.335:0.100 | 0.700+0.044 1.05
NLO&an. 0.102:0.046 | 1.029:0.106 | 1.017:0.060 0.74
NLO&fr. -0.132+0.043 | 1.219+0.102 | 0.793+0.049 0.86
Q? > 3.5Ge\?

LO 0.542+0.028 | 1.089+0.055 | 0.369+0.011 1.73
LO&an. 0.758:0.031 | 0.962+0.056 | 0.433+0.013 1.32
LO&r. 0.775£0.031 | 0.950:0.056 | 0.432+0.013 1.23
NLO -0.310:0.021 | 1.246+0.058 | 0.556+0.023 1.82
NLO&an. 0.116+0.024 | 0.867:0.064 | 0.909+:0.330 1.04
NLO&fr. -0.135+0.022 | 1.067+0.061 | 0.678+0.026 1.27
Q? > 2.5Ge\f

LO 0.526+0.023 | 1.049+0.045 | 0.352+0.009 1.87
LO&an. 0.761:0.025 | 0.919:0.046 | 0.422+0.010 1.38
LO&r. 0.794+0.025 | 0.900:0.047 | 0.425:0.010 1.30
NLO -0.322:0.017 | 1.212+0.048 | 0.517+0.018 2.00
NLO&an. 0.132+0.020 | 0.825+0.053 | 0.898+0.026 1.09
NLO&fr. -0.123+0.018 | 1.016+0.051 | 0.658+0.021 1.31
Q? > 0.5Ge\2

LO 0.366+0.011 | 1.052:0.016 | 0.295:0.005 5.74
LO&an. 0.665:0.012 | 0.804:0.019 | 0.356+0.006 3.13
LO&r. 0.874+0.012 | 0.575+0.021 | 0.368+0.006 2.96
NLO -0.443+0.008 | 1.260+0.012 | 0.387:0.010 6.62
NLO&an. 0.121+0.008 | 0.656+0.024 | 0.764+0.015 1.84
NLO&fr. -0.071:0.007 | 0.712:0.023 | 0.529+0.011 2.79

LO+NNLL | N3LOgpprox+ NNLL | N3LOgpprox+ NLO + NNLL
(nn(Q3))gq | 2431+0.85 24.02+0.36 24.17+0.36
(nn(Q3))q | 15.49+0.90 15.83+0.37 15.89+0.33
Xaof 18.09 3.71 2.92

Table 3: Fit results for(n,(Q3))g and (ny(Q3))q at Qo = 50 GeV with 90% CL errors and minimum values xf ;
achieved in the LG- NNLL, N3LOapprox+ NNLL, and N3LOapprox+ NLO + NNLL approximations.

together with the3 ; values obtained in our L& NNLL, N3LOapprox+ NNLL, and N*LOgapprox+
NLO + NNLL fits are listed in Table 3. The errors correspond to 90%aSlexplained above. All
these fit results are in agreement with the experimental daiaking at thex2 ; values, we observe
that the qualities of the fits improve as we go to higher ordesshey should. The improvement is
most dramatic in the step from LONNLL to N3LOapprox+ NNLL, where the errors omnh(Q§)>g
and <nh(Q(2,)>q are more than halved. The improvement in the step fro?’h%pproer NNLL

to N3LOappr0X—|— NLO + NNLL, albeit less pronounced, indicates that the inclusifrthe first
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Figure 4: The average gluon (upper curves) and quark (lower curveshigtiplicities evaluated from Eq. (5.10),
respectively, in the LG- NNLL (dashed/gray lines) andCTLlOapprox+ NLO + NNLL (solid/orange lines) approxima-
tions using the corresponding fit results for(Qg))g and (nn(Q3))q from Table 3 are compared with the experimental
data included in the fits. The experimental and theoretinakttainties in the RLOapproer NLO + NNLL results are
indicated by the shaded/orange bands and the bands enbletsegen the dot-dashed curves, respectively.

correction tar_(Q?) as given in Eq. (5.7) is favored by the experimental data. Wve lverified that
the values of3; are insensitive to the choice @b, as they should. Furthermore, the central values
converge in the sense that the shifts in the step fr&tmpproer NNLL to N3LOapprox+ NLO +
NNLL are considerably smaller than those in the step from+L®NLL to N3LOapprox+ NNLL

and that, at the same time, the central values after eactastemntained within error bars before
that step. In the fits presented so far, the strong-couplimgtant was taken to be the central value
of the world avarageas(s)(m%) = 0.1184 [74]. In the next Section, we shall incIudéS)(nﬁ)
among the fit parameters.

In Fig. 4, we show as functions @ the gluon and quark AJMs evaluated from Eg. (5.10)
at LO+ NNLL and NLOgpprox+ NLO + NNLL using the corresponding fit results fom,(Q3))q
and (n,(Q3))q at Qo = 50 GeV from Table 3. For clarity, we refrain from including fig. 4 the
N3LOapprox+ NNLL results, which are very similar to the%Oapprox+ NLO+NNLL ones already
presented in Ref. [22]. In the %Lloapproer NLO + NNLL case, Fig. 4 also displays two error
bands, namely the experimental one induced by the 90% Cksavrothe respective fit parameters
in Table 3 and the theoretical one, which is evaluated byingrthe scale parameter betwe@p2
and 2.

While our fits rely on individual measurements of the gluod gonark AJMs, the experimental
literature also reports determinations of their ratio; BReés. [27, 68, 70, 72, 75], which essentially
cover all the available measurements. In order to find out @i our fits describe the latter
and thus to test the global consistency of the individual sueaments, we compare in Fig. 5 the
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Figure 5: The average gluon-to-quark jet multiplicity ratio evakefrom Eq. (5.12) in the L@ NNLL (dashed/gray
lines) and P@LOapprox+ NLO + NNLL (solid/orange lines) approximations using the copasding fit results for
(Nn(Q3))g and (nn(Q3))q from Table 3 are compared with experimental data. The esprial and theoretical un-
certainties in the ﬁLOapproer NLO + NNLL result are indicated by the shaded/orange bands antghds enclosed
between the dot-dashed curves, respectively. The predigiven by Eq. (5.8) [25] is indicated by the continuousygra
line.

experimental data on the gluon-to-quark AJM ratio with owaleations of Eq. (5.12) in the L®
NNLL and N3LOapprox+ NLO + NNLL approximations using the corresponding fit resultarro
Table 3. As in Fig. 4, we present in Fig. 5 also the experimetd theoretical uncertainties in
the N3LOapprox+ NLO + NNLL result. For comparison, we include in Fig. 5 also thedicgon of
Ref. [25] given by Eq. (5.8).

Looking at Fig. 5, we observe that the experimental data arg well described by the
N3LOappr0X+ NLO + NNLL result for Q values above 10 GeV, while they somewhat overshoot
it below. This discrepancy is likely to be due to the fact (fi@alowing Ref. [68], we excluded the
older data from Ref. [27] from our fits because they are inistest with the experimental data
sample compiled in Ref. [68].

The Monte Carlo analysis of Ref. [26] suggests that the aeeuon and quark jet mul-
tiplicities should coincide at abo = 4 GeV. As is evident from Fig. 5, this agrees with our
N3LOapprox+ NLO + NNLL result reasonably well given the considerable ungsties in the
small-Q? range discussed above.

As is obvious from Fig. 5, the approximation ifiQ?) by r (Q?) given in Eq. (5.8) [25] leads
to a poor approximation of the experimental data, whichhmegztoQ values of about 50 GeV. It
is, therefore, interesting to study the higR-asymptotic behavior of the average gluon-to-quark
jet ratio. This is done in Fig. 6, where théboapproer NLO + NNLL result including its exper-
imental and theoretical uncertainties is compared withaggroximation by Eq. (5.8) way up to

25



Parton distributions Anatoly Kotikov

10 100 1000 10t 10°
2
V@

Figure 6: High-Q extension of Fig. 5.

N3LOapprox+ NNLL | N3LOgpprox+ NLO + NNLL
(M(R@))q 2418+ 0.32 2422+ 033
(Nn(Q3))q 15.86+0.37 15.88+0.35
al®(m@) | 0.1242+0.0046 0.1199+ 0.0044
Xdot 2.84 2.85

Table 4: Fit results for(n(Q2))g and(n(Q2))q at Qo = 50 GeV and formd® (m2) with 90% CL errors and minimum
values ofx2 achieved in the RLOapprox-+ NNLL and N3LOgapprox+ NLO -+ NNLL approximations.

Q =100 TeV. We observe from Fig. 6 that the approximation apguea the IQLOapproer NLO +
NNLL result rather slowly. Both predictions agree withiretiretical errors a@ = 100 TeV, which
is one order of magnitude beyond LHC energies, where thegtdirabout 10% below the asymp-
totic valueCp/Cg = 2.25.

6.2.1 Determination of strong-coupling constant from aveage multiplicity

In the previous Section, we toajés)(nﬁ) to be a fixed input parameter for our fits. Motivated
by the excellent goodness of ouPINDapprox+ NNLL and N®LOgpprox+ NLO + NNLL fits, we
now include it among the fit parameters, the more so as thehusld be sufficiently sensitive
to it in view of the wideQ? range populated by the experimental data fitted to. We fit €0 th
same experimental data as before and agairQaut 50 GeV. The fit results are summarized in
Table 4. We observe from Table 4 that the results of tﬁb%pprox+ NNLL [51] and N3LOapprox+
NLO + NNLL fits for (n\(Q3))q and (n(Q3))q are mutually consistent. They are also consistent
with the respective fit results in Table 3. As expected, tHaesof xgof are reduced by relasing
crs(S)(nﬁ) in the fits, from 3.71t0 2.84 in theNOapprox+ NNLL approximation and from 2.95 to
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2.85 in the l\?LOapproer NLO + NNLL one. The three-parameter fits strongly conf'm@(rrﬁ),
within an error of 3.7% at 90% CL in both approximations. Theliision of ther_(Q?) term has
the beneficial effect of shiftingii> (m2) closer to the world average, 184-£ 0.0007 [74]. In
fact, our I\FLOapprox+ NLO + NNLL value, 01199+ 0.0044 at 90% CL, which corresponds to
0.1199+ 0.0026 at 68% CL, is in excellent agreement with the former.eNbat similarcrs(S)(m%)
valu has been otained recently [76] in an extension of the MBapproach.

7. Conclusions

We have shown th@?-dependences of the $% at smallx values and of AJMs in the frame-
work of perturbative QCD. We would like to stress that a gogeeament wit the experimental data
for the variables cannot be obtained without a proper camattbn of the cotributions of both the
“+” and “—” components.

The “+” components contain all large logarithmg1rix) as far as DIS Sk, and also for the
average jet multiplicities. The large logarithms are resed using famous BFKL approach [8]
in the PDF case and another famous MLLA approach [50] in thedde.* Nevertheless, the
contributions of the ~” components are very important to have a good agreement exbleri-
mental data: they come with the additional free parametd@eover, the “” components have
other shapes to compare with the™ones. For example, in the AJM case the™component is
responsable for the difference in t@8-dependences of quark and gluon multiplicities. Indeesl, th
“—" component gives essential contribution to the quark AJ¥rmi to the gluon one.

In the case of DIS SIF,, our results are in very good agreement with precise HERA dat
Q? > 23 Ge\?, where perturbative theory can be applicable. The apjticaf the “frozen” and
analytic coupling constantsy (Q?) and aan(Q?) improves the agreement with the recent HERA
data [3] for smallQ? values,Q? > 0.5 Ge\2.

Prior to our analysis in Ref. [22, 23], experimental data fom gluon and quark AJMs could
not be simultaneously described in a satisfactory way maialcause the theoretical formalism
failed to account for the difference in hadronic contentsMeen gluon and quark jets, although
the convergence of perturbation theory seemed to be webruomhtrol [25]. This problem was
solved by including the “” components governed %0, Q% Q3) in Egs. (5.10) and (5.12).
This was done for the first time in Ref. [22]. The quark-sindle” component comes with an
arbitrary normalization and has a sl&@f dependence. Consequently, its numerical contribution
may be approximately mimicked by a constant introduced ¢catlerage quark jet multiplicity as
in Ref. [27].

Motivated by the goodness of our fits in [22, 23] with fixed \&bf as(S) (m2), we then included
crs(S)(m%) among the fit parameters, which yielded a further reductibpﬁgf. The fit results are
listed in Table 4.

1“Note, however, that in the case of DIS SFwe use obly the first two orders of the perturbation theory and
“+" component resum by DGLAP equation [6]. The resummatioddea the Bessel-like form of thet” component.
Including all orders of the perturbation theory should I¢éa@ power-like form as it was predicted in the framework of
BFKL approach [8] (see discussion in [54]).
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8. Appendix A

For diagonalization of quark and gluon interaction it isewsry to introduce the correspond-
ing matrixU, which diagonalize exactly the LO AD

A (0) o
c(Enan)e - () e

1-q

- an an—1 A1 1 ="
U= , U™ = n A2
(Bn Bn ) ( 1 15:'" (A2)

anda, and 3, have been defined in the main text, in Eq. (2.18).
At higher orders the anomalous dimensions are transforraddllaws

Yo (1) véi%(n)) - <y<_“>(,-> y<i>+(n>>
(Vég (1) g (n) v vy ) (A3)

where exact representations f;zﬂ)i(n) and yﬂi(n) were given in the main text, in Eq. (2.22).

where

8.1 Diagonalization of the renormalization group exponent

Consider the renormalization group exponent (hereaftéhénAppendix Aas = as(Q?) and

as = as(Q3))
R as !/ /
\M%@;kwﬂéfgﬁaﬂ, (A4)
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in the following form

A~

O)(n) In B

7~ =V A/(0) 7
o5 V@) =V (a) WO (a,3)V (@),  (AS)

W(as,as) =V (as) exp [

where the matri¥/ (as) contains high order coefficients.
To find the matrix/ (a), it is better to find the derivation

d .
EW(as,Hs)- (A6)
The L.h.s. of (A5) leads to
d . RICORS ~1(0) -1
dasw(a&as)—z (as)v(aS)W (8s,85) V™7 (3s).- (A7)
For the r.h.s. of (A5), we have
d .~ | dy o VO 1) 51
ﬁw(as,as)—lasv(as)—v(as) 2B a—S]W (8s,85) V™ "(@s). (A8)

Thus, the matri¥/ (as) obeys the following equation

v (/0) -
- <2g?;i) + i) Vi) (A9

d -~ 1
—V + —
dag (3) as

where the second term in the .h.s. is the commutator of theceay® (n) andV (as).
Now we consider LO, NLO and NNLO approximataions separately

8.1.1 LO

AtLO, the matrix\7(as) = | and the renormalization group exponent have the form

W(as,as) =W (ag,35) = | \* o | (A10)
o (%)
where 0
. (n)
dy(n) = TN (A11)
8.1.2 NLO

At NLO, the matrices/ (as) andV ~1(as) has the form

~ ~

V(as) =1 +aV®, Vias) =1 —av®, (A12)
and the Eq. (A9) can be replaced by one

7o ,\7(1>(n)] -0, PO (A13)

7 (1)
2V (n)+ Bo B B2
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Applying the matriced) 1 andU to left and right sides of above equation, respectively, and
using Eq. (A3) fori = 1 and the representation

(i) (s 0)
G-NOmy = (V—.—(”) V—.)+(”)> , (A14)
+

(1) @)y 20+ (M- (n) 1) (1)
2\ n V n) -=—/*+-_/ " 7/
&) ZB;(m)?n) 0)(n) o 6 g - -2 (r(l)(n) F(J(n)> (A15)
V7 (n)- V+Bo 8 2V, (n) Po \ FZ2(n) T2 (n)
where
r () =y () — 2 (mbr, T8 () = 5. (n) (A16)
The Eq. (A15) leads to the results
(1) 1)
(1) ree(n (1) Vi:p(n)
Vii(n) = — , Viz(n) = — (A7)
2o 280+ 7 () — 2 (m)
8.1.3 NNLO
At NNLO, the matriced/ (as) andV ~*(as) has the form
A ~ 2 (2 2 (2 ~ ~ ~
V(as) =l +aV¥ +a2v@ v-la)=1—-aVv® a2 RRVARI TG IR VEIR VLY (A18)
and the Eq. (A9) can be replaced by one
R 70 - 1 R R -
@ 7om o L 15@ 0+ 90 (VO ) — by ) — 710 ®
W)+ | L= 5 720+ 900 (9 (0) b ) = 9O m) (29 () + o) |

(A19)
Applying the matrices) ~* andU to left and right sides of above equation, respectively, and
using Egs. (A3) and (A14) far= 1 andi = 2, we have the following matrix equation

2 2 480+ (n) -y
( v (n) vﬁﬁ(n) R <r<_2)_(n) r.(n)
vE2(m) : )

4Bty (m)—y” (n) @ B \r'Pm rﬂ(n)> (A20)

rEL) = 2w+ 3 OV —by (AL + 1 VL) — (b —b) 00,

rE) = v+ 5 AT OV ) = by (M )+ 7 V() (A21)
The Eq. (A20) leads to the results
(2) (2
V@ = =0 oo o riz(n) A22
==(") agy 4B+ 2 (n) — Y% () A2

2 (2 A
Taking in brascets the relation betwed andV given in the last relation of (A18), we
have

VR = VA - 3 VIOVE, VR = VM- 5 VIOVE D), k23)
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8.2 Q? evolution of parton distributions

In the matrix form, theQ? evolution of parton distributions
[fa(Q®),fg(Q*)] = [fa(Q5). fo(QF)] - W(as,as) (A24)
can be represented in the form
[fa(Q?).fg(Q?)] = [fa(Q}).o(QF)] U - (U~ W(asa)U) U™ (A25)

The first part in the r.h.s. is

[f5 (QF), —f$(QF)] .
(A26)

[f4(Q5),fg(Q4)] U = [fq(Qf)an+fg(Q5)Bn, fq(QF) (an — 1) +fo(QF)Bn]
where (see also (2.17) in the main text)

fq (QF) = fq(Qp)an+Tg(QF)Bn. o (Q}) = fq(Qf) (1—an) —fg(Q})Bn. (A7)

8.2.1 LO
At the LO, the renormalization group expondht\W (as,as)U has the diagonal form (A10)
and, thus, we have

A A aa . d_(n) dy (n)
[f(Q2),14(Q3)] U - (0~ W(as,35)0) = [fq@%)(?s) ,—fm%)(?s) ] (A28)

Then, for theQ? evolution of parton distributions we have

1 1-a,

fa<Q%><§s)d(n>,—f§<Q%> (%S)d“”)] | (_1 E )

d_(n) de(n) 1—a, (3 d_(n) ] d. ()
:[mQS)(?S) +f;<QS><§SS> 14 (Q3) Bn" (Z) fj(Q%)%(%) ]

= [éfh(@%)(gz)di(n),i;fm%)(§S>di(m] : (A29)

where (see also (2.17) in the main text)

[fa(Q%).fg(Q*)] =

1-ay
(@) = G(R) = 5" = fa(Q)en+1o(Q) (1.
Q) = fJ(Q%)% — —To(@)en+To(QR)an, (A30)
because
g = Int—an) (A31)

B
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8.2.2 NLO
At the NLO, the renormgroup exponedt W (as,as)U has the form

0~ W(as,a)0 = (| + a5\7(1>> U-WWO (a5,35)0 - (| _asv<1>) (A32)
Thus, it is convenient to consider firstly the part
[fq(@3).fo(@})] U - (1+a0®) (A33)
Following to (A26) we can rewrite it as

[f4(Q5).fg(QF)] U ( | +av ) [fq (QF). — (ch))]'< | +agv/* ) [f5(Q4), —T5(QF)]

(A34)
where (see also (2.19) in the main text)
Fr(nQ}) = f(n Q) (1+av(m) — 17 (n QBpav o(n) (A35)
and
Vs =Vik V2= V2 (A36)

We introduce notatlon‘d() Sand .2 { gin (A36), because the corresponding ones in the gluon
case are different (see Eq. (A45) below)
Theas-part of (A32) has the form

o . . (2 ’ 1-avl?)  —a(2) VY
U~'W (as,a5)U <|—asV(1)>= 40, ) [a +(6;S @ (A37)
()" e ()" (a)
Thus, we have
[fq(Qo) fg(Qo)] ( 1W(as as)U)
~ d_(n) . ds(n)
_ [f;(Qg)@SS) (1—asv£1_>)+asf§(qg)<§z> vy,
co (3 DY L w5 (30
- fJ(Qo)<§S> (1—35V++)+asfg(Qo)<;S> V. (A38)

Then, to obtain th&? evolution of parton distributions(Q?) andfg(Q?) we should product
the r.h.s. of (A38) on the matrid ~1. By analogy with the calculations at LO, we have for quark

density

&1

d—(n) (1> - 9 as d+ n (1)
> (1—asV__> +3sfq (QF) (a—s> v~
- =\ d+(n) . =\ d(n)
+ Q) <§> (1 - ESVSQ) +ad, (@) (2) v, (A39)
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Taking together terms in the front ¢fis/as)®, we have

fo(Q?) =5 (@) (as>d(n) (1—as [v,(ll —vfﬂ) +i(Q) (j—:)m(m

(1-a[vi -v]).

(A40)
or in more compact form
2) 2) 2 % 2 (3\ 2
WG = 5 HOQ). G - ) (2)  Hina)
He(n. Q%) = 1-a [V ()~ Vi ()] .. (A41)

For gluon density we have

o l1-—ay (3 d_(n) N 1-a, (@ d, (n)
WO - f@ 2 (2) T (1-av®) raiip L (2) v

dy(n) . d_(n)
QR o B, (as> (1—ésvill)—asf;(Q%)%<§z> vl (A42)

Taking together terms in the front ¢#s/as)®, we have

. 1—ap d-(n) .
(@) = 35 (2) (1—35[V_(1_>—%_1v£1+)]>

a d+(n) an—1
(Qo)B <s> (1—35[V&)— " vS)D, (A43)
n n
or in more compact form

. . - di(n)
W@ = S0 G0 - Tnd)(Z) Hn).

Har(n,Q) = 135 [VEL(m) — Vi | (n), (A44)
where a a1
vﬁﬂ,g(n):vﬁﬂ(n)anj 1,v@,g(n) v (n) ”an (A45)
and (see also (2.19) in the main text)
i i 1-ap 1-ay
Q) = Ty Q) 5™ = Q)5 (L+av™(n) i (n Qe () ="
5 (n,Q3) (1+asv__ ) fg(n,QO)asvﬁ_)(n)O'”O{—_1
nQO( +av () ~ T (Q)avi g(n).
f5(Q)) = (0GB 5 =15 (n.QF) 5" (1+avion0) + 5 (n QB () !
§ Q) (1+avilm) 15 (nQRav ()
— 15 (0,Q8) (1+avY(m) —f5 (n. Qav Y g(n), (A46)
or by analogy with (A35), in the general form,
T (n.QB) =Tz (n.QB) (1+av L (m) ~ 5 (n.QB)asviY o(n), (A47)
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8.2.3 NNLO

At the NNLO, we can perform an analysis, which is very similaithe one in the previous
subsection for the NLO approfimation. The one differencenis terms~ a2 and ~ a2 for the
matricesV andV ~! (see Eq. (A18)).

So, the final resuls have the forfa= q,Q)

fa(n,Q?) = %f' (n,Q%), f4(nQ%) = nQo< ) 3(n,Q%), (A48)

Ha(n.Q?) = 1—as VAL (m) — Vi ()| =22 02 (m) — V2 ()
f(n Q) = fz (n.Q8) (1+avil(m +avi@ () ~£(n,QB) (avil o(m) +8V.2 4(m))

8.3 Q°-dependence of Mellin moments

The Q?-dependence of the singlet paff(Q?) of the Mellin moments can be obtained using
the PDFQ?-dependence (see the previous subsection of the Appenuik)he relation between
the parton densities and the (singlet part of) the Mellin renta given by Egs. (2.9) and (2.10).

Sometimes, it is convenient to obtain directly t@é-dependence of the Mellin moments
M3(Q?). In the matrix form, it has the form (A25)

ME(Q) = [fo( @) fo(@P)] (g;g:;) = [fa(QB).15(Q)] U+ (0 W(ae.3)0) U 2 @222%) ,
(A49)
where
a1 Ge(nas) ) [ Co(na)
; (Cg(n,as)> N (—C+(n,as)> (450)
and
C.(na) = 1+aBY(n)+a2B? (n) (A51)
with
8 () = By~ 5B, (i=12)
8" () — 8§/ + =By () = B+ By () (A52)

The basic idea is to split th@3-dependence to the initial conditiofs(Q3) (A27) and above
LO to fﬁ(n, Q3) (A35) and (A48). TheQ?-dependence combines the PDF one from the previous
subsection and the one in (A51) and (A52). As it was above, iNeonsider LO, NLO and NNLO
cases separately.

Mote here that the Mellin momenmr?(Qg) can be easy extracted from above equation (A49)

B C (n,as) . 70— C (n>aS)
MS(Q3) = [fq(Q3),fg(Q)] ( C:(n,as)> = [fq(Q4),fo(Q)]U -U 1<C2(n7as)>

C_(n,as)

— [fq (@), 14 (R3] <—c+<n7as>

whereC;(n,as) are given by (A51).

) = 3 HGma), (A53)
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8.3.1 LO

Here

d_(n)
% 0 .
M@) = [f(Q).1(Q)] (%) <1> — T MSQ@),  (as4)
=t

d+(n)
MSH(Q) = fiq(Q?))<a—s> (AS5)

8.3.2 NLO
Here we have Eq. (A32)

U~"W(as,3)0 = (I +aV) 0~ WO (a5, a)0 - (1 a0 @) (A56)
which leads taQ3-part (A34))
[fo(@).fo(@})] U (1+aP) = [fq (@), ~F5 ()], (AS7)
with f£(n, Q3) given by (A35).
The Q?-dependent part consists from
0O (a,3)0 (1 -2 (A58)
given by the r.h.s. of Eq. (A37) artai‘lé(n,as) give by the Egs. (A50) with the NLO coefficints
(A51).
So, we have

0O (a5, 3,)0 (1 -a®) 0-¢(n,3)

(2)" " (1-av) () v 1+38%

_35@)"*(”)\,(1) (g)d*( (1-av) (—(1+&B$)>>
as +— as ++

(%)df(n) (1+aS [B(ﬁ v +V,1+>D

A Oy, O (A59)

—<gs) <1+as[|3+ —v+++v+,D

For the Mellin moment$13(Q?) we have produc®? andQj3 parts:
MAQ) = 3 M (@), (A60)
i=

where e

o 3\ ="
W) = e(Z) (1R (no1)
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and
1 1 1 1
R(i) = B( )—V( )—i-V(;)

Note that the eqs (A61)—(A62) can be rewriten as

n (1)
Mr(]S,i)(Qz) _ Mr(]Si)(Q%)<Es>di( ) <1+asRi >

where
SRR =T (@) (1 BY v+ V)
= 15(Q9) (1+as [BY + VY] ) + 5 (Qav
8.3.3 NNLO

Repeating the calculations in the previous case, we have

MS(Q) = T M@,

=1
where ()
+ 5 as) ="
W) = Qp(Z)  (1+arl +aiR?).
whereﬁq(Qg) and R&l) are given by (A48) and (A62), respectively, and
2 2 1) (y, (1 1 ~2) | (2
R? = B2 B (viY viY) v 49

with V2 andVﬁ given by Egs. (A23).
The egs (A66)—(A67) can be rewriten as

v (1+aRY +22R?)
(1+aRY +a2R?)

M (@) = (Qo)(Zi)

where

Q@) =T (@) (1+ar +a§RS§>)

(A62)

(A63)

(A64)

(A65)

(A66)

(A67)

(A68)

(A69)

—15(QB) (1+as [BY + VY| + &2 [BY + BV + V2| ) +1(Q}) avi + a2V 2|
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