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Early we found three types of equations for unstable leptons. Two of them are connected with

the unstable charged leptons (µ±, τ±), the third is connected with a massive unstable neutrino.

Analysis of tau lepton group (further group∆3) points to existence of doubles toτ±-leptons, that

is (τ∗)±-leptons. Together they form a quartet state, or a multiplet. Existence ofτ andτ∗ is con-

nected with that the group∆3 has two nonequivalent irreducible representations with dimension

equal to four. Each of two nonequivalent representations describes a particle and antiparticle like

Dirac’s equation. Particles from different nonequivalent representations are not identical. Their

quantum numbers coincide not completely. Therefore in this case it is possible to observe three

various wave phenomena. Identical particles from the same nonequivalent representation can in-

terfere. Particle and antiparticle from the same nonequivalent representations can annihilate. The

leptons from different nonequivalent representations of the same quartet can oscillate.
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1. Introduction

Lepton sector is recognized in modern particle physics as a key area and connecting link with
astrophysics and cosmology. The increasing diversity of experimental facts beginning make high
demands to description of the lepton sector as a whole. Advanced requirements concerning to co-
ordination with fundamental principles, strict conclusion, internal consistency of sector, taking into
account all it components and maximal freedom from phenomenological assumptions. Classical
articles [1] and [2] serve as an examples in this case.

In resent years we have developed a holistic approach for the description of lepton sector [3],
[4], [5]. The result is a complete and closed set of equations for massive and massless, charged
and neutral, stable and unstable leptons in the framework of the Lorentz group and five initial
assumptions. The completeness of the set of equations means it is impossible to complete it in any
of classes of equations massive or massless, stable or unstable, charged or neutral. It is naturally
to call our approach as the Dirac algorithm [6]. Its main feature looks like the answer to the
question - what accurate and meaningful result can be obtained in the lepton sector, based on a few
assumptions, non of which can be rejected? Those were found five. The criterion of impossibility
to be rejected means here a minimum of assumptions, without which it is impossible to derive
Dirac equation.

The initial suppositions are:

1. the equations must be invariant and covariant under homogeneous Lorentz transformations
taken into account all four connected components;

2. the equations must be formulated on the base of irreducible representations of the groups
determining every lepton equation;

3. conservation of four-vector of probability current must be fulfilled and fourth component of
the current must be positively defined;

4. the lepton spin is supposed equal to 1/2;

5. every lepton equation must be reduced to Klein-Fock-Gordon (KFG) equation;

It is easy to see that the set of assumptions is not excessive. It follows also from the algorithm
that if a quantum object has the property to be a particle, it should be described by the equation of
Dirac type. If the object has in addition wave properties , then its equation must be reduced to an
equation of (KFG) type. This is equation of wave front propagation including de Broglie waves
also. Dirac’s decomposition [1] of (KFG) equation into two factors, every of which describes a
particle, is concrete implementation of the wave-particle duality. It is easy to see that in addition to
the Dirac algorithm here the Heisenberg idea is realized about the need to build a theory not on the
basis of fundamental particles, but on the basis of fundamental symmetries.

2. Notes on the stable lepton equations

Articles [1], [2] and [7] created sufficient conditions for unified formulation of stable lepton
equations. Each of the equation associated with it own group. All they are not isomorphic to each
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other. Therefore, the structure of each lepton equation is individual. Structure means here the
presence of constituents that allow us to distinguish one equation from the other and to form on
their basis operators that admit physical interpretation. Four connected components of the Lorentz
group are the minimal substructures for all stable lepton equations. They are represented in the
wave equations by means of infinitesimal form, they have the first weight numberl0 = 1/2 and
they are Lee algebras for connected components. On the other hand this subgroups are maximal
invariant subgroup also. We denote them as following:

1. groupdγ → is related to proper orthochronous representation;

2. group fγ → ia related to improper orthochronous,〈P〉- conjugate representation;

3. groupbγ → is related to proper antichronous,〈T〉- conjugate representation;

4. groupcγ → is related to improper antichronous,〈PT〉- conjugate representation.

All subgroups are connected among themselves by discrete transformations〈T〉, 〈P〉, 〈PT〉.
The listed subgroups have order equal to 16 and each is generated by three generators. The

structure of stable lepton equations is very simple. All they have order equal to 32. Therefore, the
corresponding lepton do not disintegrate.

One of the condition for formulation stable lepton equations is the presence of four genera-
tors. Three of them must anticommute, thereby ensuring the presence of one or another connected
components as a subgroup of 16 order. If the fourth generator to choose anticommutative with first
three, we get equations for massive leptons. If the fourth generator commutes with first three, we
get equations for massless leptons. The only requirement is that each generator of any equation
boils dawn to the fact that it order should be two or four. Only in this case the result is value of spin
equal to 1/2. Simple calculations show [5] that changing only the order of generators (two or four)
we can get a complete set of 32 order group, suitable for describing equations for stable leptons.

A single relativistic basis and individual differences of wave equations has lead to the structural
formations - doublet, singlet and quartet lepton states. Doublets are states associated with equations
that describe only particle and antiparticle. The singlets are states that do not have antiparticles.
The quartets are the states that within a single group de scribe two doublet states, i.e. two pairs
of particle-antiparticle. The structure here is the support of individual observable properties. It is
expression of causality. Only due to the structure we receive opportunity to associate properties
and quantum numbers of lepton with evident or hidden carriers of required characteristics.

The set of initial assumptions together with well known group theoretical limitations and re-
quirements allows us to get five and only five equations similar to Dirac one, i.e. groups of equa-
tions for stable leptons. Their structural composition, i.e. the set of subgroupsdγ , bγ , cγ , fγ looks
like this:

1. The Dirac equation —
Dγ(II ): {dγ , bγ , fγ};

2. The equation for a doublet of massive neutrinos —
Dγ(I): {dγ , cγ , fγ};
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3. The equation for a quartet of massless neutrinos —
Dγ(III ): {dγ , bγ , cγ , fγ};

4. The equation for a masslessT-singlet —
Dγ(IV ): {bγ};

5. The equation for a masslessP-singlet —
Dγ(V): {cγ}.

Individuality of stable equation structures are obvious.

3. Unstable leptons

Unstable leptons by the fact of its existence and experimentally observable distinctions from
stable one to prove the incompleteness of their theoretical description. The theory is forced under
pressure of experiments to ascribe unstable leptons own quantum numbers, but it can not indicate
that is the carriers of these numbers. Taking the distinctions of these two lepton types, the theory
at the beginning proclaimed(µ−e)-universality and then began speaking on(µ−e)-problem [8].
Thus, the problem of unstable lepton description was recognized as an unresolved task.

Further extension of the lepton set for account of unstable one can be associated with involve-
ment of fifth generator. It is possible to conserve the covariance of equations, if to choose fifth
generator anticommutative with respect four previous. Reasons for this are as follows. The product
of five anticommuting generators (Γ6 = Γ1Γ2Γ3Γ4Γ5) is the center of the group, i.e. it is an element
multiple to unity. So we can use the fifth degree of freedom in stable equations and connectΓ5 (by
means ofΓ6) with mass numberm. The covariance is conserved. The equations are obtained here
more complex structures than stable one.

It was found that the initial assumption allow the formulation of three types of wave equations.
Two of them are related with unstable charged leptons (µ,τ), the third is related with a massive
unstable neutrino. On the basis of structural differences naturally arose the distinctions between
stable and unstable leptons.

Structural components for unstable leptons are the maximal subgroups which allow us easily
and uniquely to distinguish between structure of one unstable group from another. They, on one
hand, are different combinations of the same connected components and at the same time they are
groups of stable leptons embedded into the unstable groups. So the extension of the Dirac group
(Dγ(II )) by means of one anticommuting generatorΓ5 (such thatΓ2

5 = I ) leads to∆1 group. This
group has structural invariant [9], [5] equal toIn[∆1] = −1. If one to extend Dirac group with the
generatorΓ5 such thatΓ2

5 =−I , than we obtain group∆3. Structural invariant in this case equal to
In[∆3] = 0. Finally, the extension of massive neutrino groupDγ(I) by means of generatorΓ2

5 =−I
leads to the group∆2 with the structural invariant equal toIn[∆1] = 1.

It is well known [1] the defining relations for the Dirac group looks as

γµγν + γνγµ = 2δµν , µ,ν = 1,2,3,4 (3.1)

Taking in to account above mentioned definitions we can write following expressions.
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Group ∆1 has the following defining relations:

ΓµΓν +ΓνΓµ = 2δµν , (µ,ν = 1,2,3,4,5) (3.2)

As a result we obtain the following composition:

∆1{Dγ(II ), Dγ(III ), Dγ(IV )}, In[∆1] =−1. (3.3)

Group ∆3 has the following defining relations:

ΓsΓt +ΓtΓs = 2δst, (s, t = 1,2,3,4),
ΓsΓ5 +Γ5Γs = 0, (s= 1,2,3,4),
Γ2

5 =−I .

(3.4)

It follows from here:

∆3{Dγ(II ), Dγ(I), Dγ(III )}, In[∆3] = 0. (3.5)

Group ∆2 has the following defining relations:

ΓsΓt +ΓtΓs = 2δst, (s, t = 1,2,3),
ΓsΓ4 +Γ4Γs = 0, (s= 1,2,3),
Γ2

4 =−I .
ΓuΓ5 +Γ5Γu = 0, (u = 1,2,3,4),
Γ2

5 =−I .

(3.6)

We obtain in this case:

∆2{Dγ(I), Dγ(III ), Dγ(V)}, In[∆2] = 1. (3.7)

All three groups have its own structures.
One can show that∆1 and∆3 are related to the equations for charged particlesµ andτ re-

spectively. Group∆2 is related to equation for massive, unstable neutral particle. All three groups
have some common properties. Their order is equal to 64. The center of each group contains four
elements and each has 34 conjugate classes. As a result, every of groups has 32 one-dimensional
irreducible representations and two nonequivalent four-dimensional representations. In addition,
each of groups is composed by three and only three maximal invariant subgroups. Their order is
equal to 32. Each of these subgroups is isomorphic to one of five groups of stable leptons. The
set of thirty second order subgroups in every∆-groups is its own nonrecurrent. The centers of the
groups∆1 and∆2 have the same compositionsI ,−I , I ,−I . The center of the∆3-group has a differ-
ent compositionI ,−I , iI ,−iI . This distinction leads to the fact that nonequivalent four-dimensional
representations are associated with a separate description of particle and antiparticle for group∆1

and∆2. In the∆3-group each nonequivalent representation is associated with the doublet equation,
i.e.they describe a particle and antiparticle like dirac equation. By definition the particles from
different nonequivalent representations are not identical.
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4. Peculiarities of the equations for description of tau-leptons

Let us choose four Hermitian generators on the basis of defining relation (3.4)Γ1,Γ2,Γ3,Γ4.
They are generators of the Dirac equationDγ(II ). This is always possible because taken separately
groupDγ(II ) and∆3 have four dimension irreducible representations. The fifth generatorΓ5 is
antihermitian by definition. With their help, the wave equation on the basis of∆3 can be written in
the form

ih̄Γ5∂ψ/∂ t = (−ih̄cΓ1∂/∂x− ih̄cΓ2∂/∂y− ih̄cΓ3∂/∂z+mc2Γ4)ψ (4.1)

Multiplying equation (4.1) from the left byΓ−1
5 , we obtain equality

ih̄∂ψ/∂ t = (−ih̄cΓ−1
5 Γ1∂/∂x− ih̄cΓ−1

5 Γ2∂/∂y− ih̄cΓ−1
5 Γ3∂/∂z+mc2Γ−1

5 Γ4)ψ. (4.2)

It is obvious that four operatorsα = {α1 = Γ−1
5 Γ1,α2 = Γ−1

5 Γ2,α3 = Γ−1
5 Γ3} andβ = Γ−1

5 Γ4 are
Hermitian. Equation (4.2) by virtue of the form and properties of it terms satisfies conservation of
probability current

∂ (ψ†ψ)/∂ t =−c·div(ψ†αψ), (4.3)

whereψ† denotes hermitian conjugate solution and the value ofj = c · div(ψ†αψ) is a flow of
probability. Thus a density of probability satisfies requirement of positive definiteness(ψ∗

1ψ1 +
ψ∗

2ψ2 +ψ∗
3ψ3 +ψ∗

4ψ4). Hereψ∗
1 denotes complex conjugation of valueψ1.

Similarly, it turns the covariant formulation of the equation. We multiply (4.1) from the left
by Γ4 and transfer all additives to the left side

(ih̄Γ4Γ5∂/∂ t + ih̄cΓ4Γ1∂/∂x+ ih̄cΓ4Γ2∂/∂y+ ih̄cΓ4Γ3∂/∂z−mc2)ψ = 0. (4.4)

One can verify by direct calculation that the four generators(Γ4Γ5), (Γ4Γ1), (Γ4Γ2), (Γ4Γ3) gen-
erate the Dirac group (Dγ(II )). The first generator is hermitian, other are antihermitian. One can
verify that the same subgroup (Dγ(II )) may be generated by another set of four generators, each
of which is Hermitian:Γ′4 = (Γ4Γ5), Γ′1 = (Γ1Γ5), Γ′2 = (Γ2Γ5), Γ′3 = (Γ3Γ5). Introducing the
notationx4 = ict we obtain the usual expression for the Dirac type equation in covariant form

Γ′µ∂ψ/∂xµ +(mc/h̄)ψ = 0, (µ = 1,2,3,4). (4.5)

Equations (4.2) and (4.5) are evidence that each non-equivalent representation of the∆3 group
is associated with the description of particle and antiparticle like Dirac equation. If the generators of
equations (4.4) to replaceΓ5 →−Γ5, leavingΓ1,Γ2,Γ3,Γ4 without changes, then we get equation
for another nonequivalent representation.

Γ′µ∂ψ/∂xµ − (m∗c/h̄)ψ = 0, (µ = 1,2,3,4). (4.6)

Every of equations(4.5) and (4.6) is reduced to Klein-Fok-Gordon equation separately. Therefore,
we have no grounds to claim thatm= m∗. However, in any case, we get two pairs of non-identical
particles.

Reduction of equations for particles to the wave equation of (KFG) type is checking their wave
properties. Particles of non-equivalent of a single quartet also exhibit wave properties in form more
complex than the usual (KFG) equation. In this case, in addition to the normal derivatives of the
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second order (∂ 2/∂ t2,∂ 2/∂x2, ...) addition members appear. They can be of two types. Ifm= m∗,
than we obtain elements with mixed derivatives apart from usual terms of (KFG) equation.

2Γ5Γ1∂ 2/∂x∂ t +2Γ5Γ2∂ 2/∂y∂ t +2Γ5Γ3∂ 2/∂z∂ t (4.7)

If m 6= m∗, than we obtain in addition terms with derivatives of the first order of following type

(m−m∗)Γ1Γ4∂/∂x+(m−m∗)Γ2Γ4∂/∂y+(m−m∗)Γ3Γ4∂/∂z (4.8)

These results are qualitative indications on possibility of oscillations. They are based on very
general principles.

5. Summary and outlook

The existence of a quartet state of tau-leptons, if it gets experimental confirmation, will allow
us to understand the different manifestations of wave nature of particles from single point of view.
Identical particles can interfere. Particles and antiparticles annihilate if they are related to one
doublet equation. Leptons belonging to different inequivalent representations, oscillate, if they are
associated with a single quartet group.

The structure of the tau-lepton group together with the other two groups of unstable leptons
indicates internal self-consistency of lepton sector as a whole, obtained on the basis of proposed
algorithm. Indeed, the extension of two groups of stable leptons using fifth generator has lead three
different groups. Moreover the structural composition of all three groups are different and contains
particular set of group stable leptons as substructures and nothing beyond them. In this case, it
is possible to speak not only about the completeness but also about closure of the resulting set of
equations for all lepton sector.

The study of the structure of tau-leptons, free from excessive phenomenological assumption,
has special meaning. Tau-leptons decay through many channels, including purely leptonic and
channels involving hadrons in the final states. Such situation makes this research domain unique to
study the structure of leptons and hadrons on a single relativistic basis. If to speak on a perspective
of a detailed study of single physical vacuum or about the problem of formation of the complex on
the basis of simple, it will be hardly successful without a unified description of both leptonic and
hadronic sectors.
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