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...
Wife raised the small child
To witness his last breath:

"Look son, and lern
How men go to their rest

And think on vengeance
From your mother’s breast!"

(Lermontov, Ballad)

Mikhail Lermontov was born on October 15 (October 3 in old style) in 1814 in Moscow.
In 1837 the poet was exiled to the Caucasus for his poem "Poet’s Death".
Lermontov’s poems "Demon" "Mtsyri" his great novel "A Hero of Our Time" and
his play "Masquerade" are masterpieces of Russian literature.
On July 15th, 1841 the poet was killed. He was not even 27 at that time.

1. New Physics

We say that we find New Physics when either we find a phenomenon which is forbidden by SM
in principal - this is the qualitative level of New physics - or we find significant deviation between
precision calculations in SM of an observable quantity and corresponding experimental value.

In 1900, the British physicist Lord Kelvin is said to have pronounced: "There is nothing
new to be discovered in physics now. All that remains is more and more precise measurement."
Within three decades, quantum mechanics and Einstein’s theory of relativity had revolutionized the
field. Today, no physicist would dare assert that our physical knowledge of the universe is near
completion. To the contrary, each new discovery seems to unlock a Pandora’s box of even bigger,
even deeper physics questions.

2. Renormdynamics

Renordynamics unifies
Different renormgroups in one society.

Quantum field theory (QFT) and Fractal calculus (FC) provide Universal language of funda-
mental physics (see e.g. [Makhaldiani, 2011]). In QFT existence of a given theory means, that
we can control its behavior at some scales (short or large distances) by renormalization theory
[Collins, 1984]. If the theory exists, than we want to solve it, which means to determine what
happens on other (large or short) scales. This is the problem (and content) of Renormdynamics.
The result of the Renormdynamics, the solution of its discrete or continual motion equations, is the
effective QFT on a given scale (different from the initial one).

We can invent scale variable λ and consider QFT on D+1+1 dimensional space-time-scale.
For the scale variable λ ∈ (0,1] it is natural to consider q-discretization, 0 < q < 1, λn = qn, n =

0,1,2, ... and p - adic, nonarchimedian metric, with q−1 = p - prime integer number.
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The field variable φ(x, t,λ ) is complex function of the real, x, t, and p - adic, λ , variables. The
solution of the UV renormdynamic problem means, to find evolution from finite to small scales with
respect to the scale time τ = lnλ/λ0 ∈ (−∞,0). Solution of the IR renormdynamic problem means
to find evolution from finite to the large scales, τ = lnλ/λ0 ∈ (0,∞). This evolution is determined
by Renormdynamic motion equations with respect to the scale-time. In multiplicatively renormal-
ization case φ(x, t,λ ) = Z(λ ,λ0)φ(x, t,λ0), where Z(λ ,λ0) is real function of p-adic variable λ .
As a concrete model, we take a relativistic scalar field model with lagrangian

L =
1
2

∂µφ∂ µφ− m2

2
φ2− g

n
φn, µ = 0,1, ...,D−1 (2.1)

The mass dimension of the coupling constant is

[g] = dg = D−n
D−2

2
= D+n− nD

2
. (2.2)

In the case

n =
2D

D−2
= 2+

4
D−2

= 2+ ε(D)

D =
2n

n−2
= 2+

4
n−2

= 2+ ε(n) (2.3)

the coupling constant g is dimensionless, and the model is renormalizable.
We take the euklidean form of the QFT which unifies quantum and statistical physics problems.

In the case of the QFT, we can return (in)to minkowsky space by transformation: pD = ip0, xD =

−ix0.

The main objects of the theory are Green functions - correlation functions - correlators,

Gm(x1,x2, ...,xm) =< φ(x1)φ(x2)...φ(xm)>

= Z−1
0

∫
dφ(x)φ(x1)φ(x2)...φ(xm)e−S(φ) (2.4)

where dφ is an invariant measure,

d(φ +a) = dφ. (2.5)

For gaussian actions,

S = S2 =
1
2

∫
dxdyφ(x)A(x,y)φ(y) = φ ·A ·φ (2.6)

the QFT is solvable,

Gm(x1, ...,xm) =
δ m

δJ(x1)...J(xm)
lnZJ|J=0,

ZJ =
∫

dφe−S2+J·φ = exp(
1
2

∫
dxdyJ(x)A−1(x,y)J(y))

= exp(
1
2

J ·A−1 · J) (2.7)

This solution is based on the solution of the linear motion equations with sources∫
A(x,y)φ(y)dy = J(x) (2.8)

Nontrivial problem is to calculate correlators for non gaussian QFT. This case, in the perturbative
theory or beyond, the canonical-classical dimensions of fields of particles and constants, receive
(non)perturbative ’anomalous’ corrections and become fractal objects.
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2.1 Effective action

Generating functional for connected correlators is

F(J) = lnZJ,
δF(J)
δJ(x)

=
1
ZJ

δZJ

δJ(x)
≡< φ(x)>J≡ φ(x)− (2.9)

is observable value of the field, generated by source J. We have

δ
δJ

(F(J)− J ·φ)|φ=const = 0, (2.10)

so

J ·φ−F(J) = Sq(φ) = S(φ)+R(φ)

= ∑
n≥1

1
n!

∫
dx1dx2...dxnΓn(x1,x2, ...,xn)φ(x1)φ(x2)...φ(xn),

δSq

δφ(x)
= J(x);

δ 2Sq

δφ(x1)δφ(x2)
=

δJ(x2)

δφ(x1)
=

δJ(x1)

δφ(x2)
= Γ2(x1,x2) (2.11)

R(ϕ) - is quantum corrections to the classical action.
The connected part of the two point correlator - propagator, is

< φ(x1)φ(x2)>c=< φ(x1)φ(x2)>−< φ(x1)>< φ(x2)>

=
1

Z(J)
δ 2Z(J)

δJ(x1)δJ(x2)
− 1

Z(J)
δZ(J)
δJ(x1)

1
Z(J)

δZ(J)
δJ(x2)

= Γ2(x1,x2) (2.12)

2.2 One loop approximation and zeta-function regularization

When the classical motion equation has a solution φc, we can consider the quantum corrections
in the harmonic or one-loop approximation

Sq(φc +χ) = S(φc)+χS(2)(φc)χ + ..., (2.13)

In the case of the action

S(φ) =
∫

dDx(
1
2

φ(∆+m2)φ +U(φ))

χS(2)(φc)χ =
∫

dxD(
1
2

χ(∆+m2 +U ′′(φc))χ),

F(φc) =−S(φc)+
1
2

tr lnA, A = (∆+m2 +U ′′(φc)),

detA = (∏an = e∑n lnan) = etr lnA (2.14)

In the zeta-function regularization format,

ζA(s) = ∑
n

λ−s
n = trA−s,

tr lnA =−ζ ′A(0) (2.15)
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2.3 Convergence of Perturbation Theory Series

Perturbation theory series (PTS) have the following qualitative form

f (g) = f0 + f1g+ ...+ fngn + ..., fn = n!P(n)

f (x) = ∑
n≥0

P(n)n!xn = P(δ )Γ(1+δ )
1

1− x
, δ = x

d
dx

(2.16)

So, we reduce previous series to the standard geometric progression series. This series is convergent
for |x| < 1 or for |x|p = p−k < 1, x = pka/b, k ≥ 1. With proper nomalization of the expansion
parametre, the coefficients of the series are rational numbers and if experimental data indicates for
some prime value for g, e.g. in QED

g =
e2

4π
=

1
137.0...

(2.17)

then we can take corresponding prime number and consider p-adic convergence of the series. In
the case of QED, we have

f (g) = ∑ fn p−n, fn = n!P(n), p = 137, | f |p ≤∑ | fn|p pn (2.18)

In the Yukawa theory of strong interactions (see e.g. [Bogoliubov, Shirkov, 1959]), we take
g = 13,

f (g) = ∑ fn pn, fn = n!P(n), p = 13,

| f |p ≤∑ | fn|p p−n <
1

1− p−1 (2.19)

So, the series is convergent. If the limit is rational number, we consider it as an observable value of
the corresponding physical quantity.

Note also, that the inverse coupling expansions, e.g. in lattice(gauge) theories,

f (β ) = ∑rnβ n, (2.20)

are also p-adically convergent for β = pk. We can take the following scenery. We fix coupling
constants and masses, e.g in QED or QCD, in low order perturbative expansions. Than put the
models on lattice and calculate observable quantities as inverse coupling expansions, e.g.

f (α) = ∑rnα−n,

αQED(0) = 1/137; αQCD(mZ) = 0.11...= 1/32 (2.21)

In the period between 1935 and 1965, many attempts at formulating a theory of the strong in-
teraction based on elementary fields for baryons and mesons were made. In particular, uncountable
PhD theses were written, based on local interactions of the Yukawa type, using perturbation theory
to analyze them, despite the fact that the coupling constants invariably turned out to be numerically
large. Absolutely nothing worked even half way.

In MSSM (see [Kazakov, 2004]) coupling constants unifies at α−1
u = 26.3±1.9±1. So,

23.4 < α−1
u < 29.2 (2.22)

5



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (2.23)

Only one!
Proposal: take the value α−1

u = 29.0... which will be two orders of magnitude more precise
prediction and find the consequences for the SM scale observables.

Let us make more explicit the formal representation of (2.16)

f (x) = ∑
n≥0

P(n)n!xn = P(δ )Γ(1+δ )
1

1− x
,

= P(δ )
∫ ∞

0
dte−ttδ 1

1− x
= P(δ )

∫ ∞

0
dt

e−t

1+(−x)t
, δ = x

d
dx

(2.24)

This integral is well defined for negative values of x. The Mathematica answer for the correspond-
ing integral is

I(x) =
∫ ∞

0
dt

e−t

1+ xt
= e1/xΓ(0,1/x)/x, Im(x) ̸= 0, Re(x)≥ 0, (2.25)

where Γ(a,z) is the incomplete gamma function

Γ(a,z) =
∫ ∞

z
dtta−1e−t (2.26)

For x = 0.001, I(x) = 0.999
Note that, y = I(x) is the formal solution of the following differential equation

x2y′+(x+1)y = 1, y = ∑
n≥0

(−1)nn!xn (2.27)

Indeed,

∑
n≥0

(−1)nn!nxn+1 + ∑
n≥0

(−1)nn!xn+1 +1−∑
n≥0

(−1)n(n+1)!xn+1 = 1 (2.28)

There are qualitative difference between positive and negative values of x for the integral and se-
ries representations of I(x). In the differential equation on signs of x qualitatively depends only
coefficient (x+1), which has zero for negative x.

3. The Goldberger-Treiman Relation and the Pion-Nucleon Coupling Constant

The Goldberger-Treiman relation (GTR) [Goldberger, Treiman, 1958] plays an important role
in theoretical hadronic and nuclear physics. GTR relates the Meson-Nucleon coupling constants to
the axial-vector coupling constant in β -decay:

gπN fπ = gAmN (3.1)

where mN is the nucleon mass, gA is the axial-vector coupling constant in nucleon β -decay at
vanishing momentum transfer, fπ is the π decay constant and gπN is the π−N coupling constant.

6
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Since the days when the Goldberger-Treiman relation was discovered, the value of gA has
increased considerably. Also, fπ decreased a little, on account of radiative corrections. The main
source of uncertainty is gπN .

If we take

απN =
g2

πN

4π
= 13⇒ gπN = 12.78 (3.2)

the proton mass mp = 938MeV and fπ = 93MeV, from (3.1), we find

gA =
fπgπN

mN
=

93×
√

52π
938

= 1.2672 (3.3)

which is in agreement with contemporary experimental value gA = 1.2695(29)
In an old version of the unified theory [Heisenberg 1966], for the απN the following value were

found

απN = 4π(1− m2
π

3m2
p
) = 12.5 (3.4)

Determination of gπN from NN,NN̄ and πN data by the Nijmegen group [Rentmeester et al, 1999]
gave the following value

gπN = 13.05± .08, ∆ = 1− gAmN

gπN fπ
= .014± .009,

13.39 < απN < 13.72 (3.5)

This value is consistent with assumption gπN = 13⇒ απN = 13.45
Due to the smallness of the u and d quark masses, ∆ is necessarily very small, and its deter-

mination requires a very precise knowledge of the gπN coupling (gA and fπ are already known to
enough precision, leaving most of the uncertainty in the determination of ∆ to the uncertainty in
gπN).

In the dimensionless ratio, fπ/mp = 93/938, the numerate 93 = 3× 31 = Nc/αlu, α−1
lu =

31, Nc = 3

3.1 Vector meson dominance

Following the pion, the rho is the most prominent meson. Vector mesons play an important
role when considering the interaction of hadrons with electromagnetic fields. In the vector meson
dominance model the hadrons couple to photons exclusively through intermediate vector mesons.
The equality of the ρ meson self-coupling g and the coupling to nucleons gρN and pions gρπ ,
the universality of the ρ meson coupling, plays an important role in vector meson dominance
[Sakurai, 1969] and is a consequence of the existence of a consistent EFT with ρ mesons, pions,
and nucleons. Indeed, one can rewrite the Lagrangian of [Weinberg, 1968] in terms of renormalized
fields and couplings, thereby introducing the basic Lagrangian

LR = N̄(iγ∂ −M)N− 1
2

π(∂ 2 +m2)π− 1
4
(∂µρa

ν −∂νρa
µ)

2 +
1
2

M2
ρρ2

+gN̄γµtaNρa
µ +gπρεabcπa∂ µπbρc

µ −g(ρµ ×ρν) ·∂ µρν − g2

4
(ρµ ×ρν)

2 (3.6)

Requiring that the results are UV finite introduces relations between the couplings of the theory
[Djukanovic et al, 2004], gπρ = g. The coupling g is directly related to the width of the ρ meson.

7
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3.2 Pion-nucleon coupling constant

In the previous πρN model of pion-nucleon interaction [Di Giacomo, Paffuti, Rossi, 1992]

LπN = g(N̄γµtaN + εabcπb∂ µπc)ρa
µ , (3.7)

pion interacts with nucleon through the exchange of the vector meson ρ(mρ = 750 MeV,T = 1),
the amplitude of ρ0→ π+π− decay is

M = gεµ(kπ−− kπ+)µ , (3.8)

the decay width is

Γ =
1

2mρ
|M|2(1− 4m2

π
m2

ρ
)

1
2

1
8π

=
g2

48π
mρ(1−

4m2
π

m2
ρ
)

3
2 (3.9)

and for fine structure coupling constant we have

απρN =
g2

4π
=

Γ
mρ

12

(1− 4m2
π

m2
ρ
)

3
2

=
12.

5(1− 4×142

752 )
3
2
= 3.006 = 3.0.. (3.10)

for Γ = Γρππ = 150MeV,mπ = 140MeV,mρ = 750MeV. So, in this strong coupling model the
expansion parameter is a prime number, αg = 3.

3.3 Kawarabayashi-Suzuki- Riazuddin-Fayyazuddin relation and rho meson mass

The KSRF relation [Kawarabayashi, Suzuki, 1966], [Riazuddin, Fayyazuddin, 1966],

gπρ =
M2

ρ

2g f 2
π
, (3.11)

when g = gπρ reduce to the following

απρN =
M2

ρ

8π f 2
π
= 3, (3.12)

Than

Mρ = 2
√

6π fπ = 799MeV, fπ = 92MeV. (3.13)

If we take the experimental value of the mass, we obtain

Mρ = 775.5±0.4, fπ =
Mρ

2
√

6π
= 89.4 (3.14)

If we take experimental values of Mρ and fπ , for απρN we find

απρN =
M2

ρ

8π f 2
π
= 2.83 (3.15)

8
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4. Neutral pion to two photon decay

After integrating out all heavy and trapped particles, we would expect the effective Lagrangian
for

π0→ 2γ (4.1)

to be given by the unique gauge and Lorentz-invariant term with no more than two derivatives:

Lπγγ = gπ0εµνρσ FµνFρσ (4.2)

where g is an unknown constant with the mass dimension m−1.

The rate for π0→ 2γ is

Γ(π0→ 2γ) =
g2m3

π
π

(4.3)

One might naively expect g to be of order

g =
a2

Fπ
, a =

e
4π

, (4.4)

where Fπ = 190MeV is used as a typical strong interaction mass scale.
In 1949, using the pre-QCD theory of pions and nuclons with interaction lagrangian

LπNN = igπNπaN̄2taγ5N, (4.5)

Steinberger calculated the contribution to g from triangle graphs with a single proton loop

g =
e2gπN

32π2mN
= a2 gπN

2mN
, a =

e
4π

. (4.6)

From Goldberger-Treiman relation we have
gπN

2mN
=

gA

2 fπ
, (4.7)

so,

g =
a2

Fπ
gA, gA = 1.25, Fπ = 2 fπ = 184MeV (4.8)

Using

g =
a2

Fπ
, a =

e
4π

, Fπ = 190MeV,( fπ = 190/2 = 95) (4.9)

Γ(π0→ 2γ) =
g2m3

π
π

=
a4m3

π
πF2

π
=

α2m3
π

16π3F2
π
= 1.0×1016s−1 (4.10)

The observed rate is

Γ(π0→ 2γ)exp = (1.19±0.08)×1016s−1, (4.11)

which is in good agreement with the estimation. The observed rate in KeV ′s is

Γ(π0→ 2γ)exp = (7.7±0.4)×10−3 KeV, (4.12)

9
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5. Renormdynamics of QCD

It is sixty years since Yang and Mills (1954) performed their pioneering work on gauge the-
ories. In the standard model of particle physics, the strong force is described by the theory of
quantum chromodynamics (QCD). At ordinary temperatures or densities this force just confines
the quarks into composite particles (hadrons) of size around 10−15 m = 1 femtometer = 1 fm (cor-
responding to the QCD energy scale ΛQCD=200 MeV) and its effects are not noticeable at longer
distances. However, when the temperature reaches the QCD energy scale (T of order 1012 kelvins)
or the density rises to the point where the average inter-quark separation is less than 1 fm (quark
chemical potential µ around 400 MeV), the hadrons are melted into their constituent quarks, and
the strong interaction becomes the dominant feature of the physics. Such phases are called quark
matter or QCD matter or Gluquar. The strength of the color force makes the properties of quark
matter unlike gas or plasma, instead leading to a state of matter more reminiscent of a liquid. At
high densities, quark matter is a Fermi liquid, but is predicted to exhibit color superconductivity at
high densities and temperatures below 1012 K.

QCD is the theory of the strong interactions with, as only inputs, one mass parameter for each
quark species and the value of the QCD coupling constant at some energy or momentum scale
in some renormalization scheme. This last free parameter of the theory can be fixed by ΛQCD,
the energy scale used as the typical boundary condition for the integration of the Renormdynamic
(RD) equation for the strong coupling constant. This is the parameter which expresses the scale
of strong interactions, the only parameter in the limit of massless quarks. While the evolution of
the coupling with the momentum scale is determined by the quantum corrections induced by the
renormalization of the bare coupling and can be computed in perturbation theory, the strength itself
of the interaction, given at any scale by the value of the renormalized coupling at this scale, or
equivalently by ΛQCD, is one of the above mentioned parameters of the theory and has to be taken
from experiment.

The RD equations play an important role in our understanding of Quantum Chromodynamics
and the strong interactions. The beta function and the quarks mass anomalous dimension are among
the most prominent objects for QCD RD equations. The calculation of the one-loop β -function in
QCD has lead to the discovery of asymptotic freedom in this model and to the establishment of
QCD as the theory of strong interactions [’t Hooft, 1972, Gross, Wilczek, 1973, Politzer, 1973].

The MS-scheme [’t Hooft, 1973] belongs to the class of massless schemes where the β -function
does not depend on masses of the theory and the first two coefficients of the β -function are scheme-
independent.

The Lagrangian of QCD with massive quarks in the covariant gauge is

L =−1
4

Fa
µνFaµν + q̄n(iγD−mn)qn

− 1
2ξ

(∂A)2 +∂ µ c̄a(∂µca +g f abcAb
µcc)

Fa
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν , (Dµ)kl = δkl∂µ − igta

klA
a
µ , (5.1)

Aa
µ ,a = 1, ...,N2

c − 1 are gluon; qn,n = 1, ...,n f are quark; ca are ghost fields; ξ is gauge param-
eter; ta are generators of fundamental representation and f abc are structure constants of the Lie

10
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algebra [ta, tb] = i f abctc, we consider an arbitrary compact semi-simple Lie group G. For QCD,
G = SU(Nc),Nc = 3.

The RD equation for the coupling constant is

ȧ = β (a) = β2a2 +β3a3 +β4a4 +β5a5 +O(a6),

a =
αs

4π
= (

g
4π

)2,
∫ a

a0

da
β (a)

= t− t0 = ln
µ2

µ2
0
, (5.2)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
To calculate the β -function we need to calculate the renormalization constant Z of the coupling

constant, ab = Za, where ab is the bare (unrenormalized) charge. The expression of the β -function
can be obtained in the following way

0 = d(abµ2ε)/dt = µ2ε(εZa+
∂ (Za)

∂a
da
dt

)

⇒ da
dt

= β (a,ε) =
−εZa
∂ (Za)

∂a

=−εa+β (a), β (a) = a
d
da

(aZ1) (5.3)

where

β (a,ε) =
D−4

2
a+β (a) (5.4)

is D−dimensional β−function and Z1 is the residue of the first pole in ε expansion

Z(a,ε) = 1+Z1ε−1 + ...+Znε−n + ... (5.5)

Since Z does not depend explicitly on µ , the β -function is the same in all MS-like schemes, i.e.
within the class of renormalization schemes which differ by the shift of the parameter µ . Note that,
presentation of Z in the form of expansion (5.5) is formal. If we take ε = 1/p we can give the
expansion p-adic sense. So, we will have renormalization factors Z as analitic functions of p-adic
argument.

For quark anomalous dimension, RD equation is

ḃ = γ(a) = γ1a+ γ2a2 + γ3a3 + γ4a4 +O(a5),

b(t) = b0 +

∫ t

t0
dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β (a). (5.6)

To calculate the quark mass anomalous dimension γ(g) we need to calculate the renormalization
constant Zm of the quark mass mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we
find the function γ(g) in the following way

0 = ṁb = Żmm+Zmṁ = Zmm((lnZm)
·+(lnm)·)

⇒ γ(a) =−d lnZm

dt
= ḃ =−d lnZm

da
da
dt

=−d lnZm

da
(−εa+β (a))

= a
dZm1

da
, b =− lnZm = ln

m
mb

, (5.7)

where RD equation in D−dimension is

ȧ =−εa+β (a) = β1a+β2a2 + ... (5.8)
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and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in MS-scheme

Zm(ε,g) = 1+Zm1(g)ε−1 +Zm2(g)ε−2 + ... (5.9)

Since Zm does not depend explicitly on µ and m, the γm-function is the same in all MS-like schemes.

5.1 Reparametrization and General Method of Solution of the RD Equation

RD equation,

ȧ = β1a+β2a2 + ... (5.10)

can be reparametrized,

a(t) = f (A(t)) = A+ f2A2 + ...+ fnAn + ...= ∑
n≥1

fnAn, (5.11)

Ȧ = b1A+b2A2 + ...= ∑
n≥1

bnAn,

ȧ = Ȧ f ′(A) = (b1A+b2A2 + ...)(1+2 f2A+ ...+n fnAn−1 + ...)

= β1(A+ f2A2 + ...+ fnAn + ...)+β2(A2 +2 f2A3 + ...)+ ...

+βn(An +n f2An+1 + ...)+ ...

= β1A+(β2 +β1 f2)A2 +(β3 +2β2 f2 +β1 f3)A3+

...+(βn +(n−1)βn−1 f2 + ...+β1 fn)An + ...

= ∑
n,n1,n2≥1

Anbn1n2 fn2δn,n1+n2−1 (5.12)

= ∑
n,m≥1;m1,...,mk≥0

Anβm f m1
1 ... f mk

k f (n,m,m1, ...,mk),

f (n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk δm,m1+m2+...+mk ,

b1 = β1, b2 = β2 + f2β1−2 f2b1 = β2− f2β1,

b3 = β3 +2 f2β2 + f3β1−2 f2b2−3 f3b1 = β3 +2( f 2
2 − f3)β1,

b4 = β4 +3 f2β3 + f 2
2 β2 +2 f3β2−3 f4b1−3 f3b2−2 f2b3, ...

bn = βn + ...+β1 fn−2 f2bn−1− ...−n fnb1, ... (5.13)

so, by reparametrization, beyond the critical dimension (β1 ̸= 0) we can change any coefficient but
β1.

We can fix any higher coefficient with zero value, if we take

f2 =
β2

β1
, f3 =

β3

2β1
+ f 2

2 , ... , fn =
βn + ...

(n−1)β1
, ... (5.14)

In the critical dimension of space-time, β1 = 0, and we can change by reparametrization any
coefficient but β2 and β3.

From the relations (5.13), in the critical dimenshion (β1 = 0), we find that, we can define the
minimal form of the RD equation

Ȧ = β2A2 +β3A3, (5.15)

12
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We can solve (5.15) as implicit function,

uβ3/β2e−u = ceβ2t , u =
1
A
+

β3

β2
(5.16)

then, as in the noncritical case, explicit solution will be given by reparametrization representation
(5.11) [Makhaldiani, 2013].

If we know somehow the coefficients βn, e.g. for first several exact and for others asymp-
totic values (see e.g. [Kazakov, Shirkov, 1980]) than we can construct reparametrization function
(5.11) and find the dynamics of the running coupling constant. This is similar to the action-angular
canonical transformation of the analytic mechanics (see e.g. [Faddeev, Takhtajan, 1990]).

Statement: The reparametrization series for a is p-adically convergent, when βn and A are
rational numbers.

Let us take the the anomalous dimension of some quantity

γ(a) = γ1a+ γ2a2 + γ3a3 + ... (5.17)

and make reparametrization

a = f (A) = A+ f2A2 + f3A3 + ... (5.18)

γ(a) = γ1(A+ f2A2 + f3A3 + ...)+ γ2(A2 +2 f2A3 + ...)+ γ3(A3 + ...)+ ...

= Γ1A+Γ2A2 +Γ3A3 + ...

Γ1 = γ1, Γ2 = γ2 + γ1 f2, Γ3 = γ3 +2γ2 f2 + γ1 f3, ... (5.19)

When γ1 ̸= 0, we can take Γn = 0, n≥ 2, if we define fn as

f2 =−
γ2

γ1
, f3 =−

γ3 +2γ2 f2

γ1
=−γ3−2γ2

2/γ1

γ1
, ... (5.20)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1 f−1(a) = γ1(a+ γ2/γ1a2 + γ3/γ1a3 + ... :) (5.21)

5.2 Parton Model, Valence Quarks and αs = 2

The parton distribution functions (PDFs) of the proton are of fundamental importance for
modern particle physics. They describe our current knowledge about the internal structure and
symmetries of this basic building block of matter and represent an important baseline for nuclear
structure and deconfinement studies, they also enter in the theoretical description of all hadron
collider experiments, precision determinations of Standard Model parameters and new physics
searches, in particular those at the energy frontier of the Large Hadron Collider (LHC), as only
partonic, but not hadronic cross sections are calculable in perturbative QCD.

While it has been well established in the perturbative regime at high energies, QCD still lacks
a comprehensive solution at low and intermediate energies, even 40 years after its invention. In
order to deal with the wealth of non-perturbative phenomena, various approaches are followed with
limited validity and applicability. This is especially also true for lattice QCD, various functional

13
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methods, or chiral perturbation theory, to name only a few. In neither one of these approaches
the full dynamical content of QCD can yet be included. Basically, the difficulties are associated
with a relativistically covariant treatment of confinement and the spontaneous breaking of chiral
symmetry, the latter being a well-established property of QCD at low and intermediate energies. As
a result, most hadron reactions, like resonance excitations, strong and electroweak decays etc., are
nowadays only amenable to models of QCD. Most famous is the constituent-quark model (CQM,
1964), which essentially relies on a limited number of effective degrees of freedom with the aim of
encoding the essential features of low- and intermediate-energy QCD.

The CQM has a long history, and it has made important contributions to the understanding of
many hadron properties, think only of the fact that the systematization of hadrons in the standard
particle-data base follows the valence-quark picture. Namely the Q dependence of the nucleon
form factor corresponds to three-constituent picture of the nucleon and is well described by the
simple equation [Brodsky, Farrar,1973], [Matveev, Muradyan,Tavkhelidze,1973]

F(Q2)∼ (Q2)−2 (5.22)

It was noted [Voloshin, Ter-Martyrosian, 1984] that parton densities given by the following
solution

M2(Q2) =
3

25
+

2
3

ω32/81 +
16
75

ω50/81,

M̄2(Q2) = Ms
2(Q

2) =
3
25
− 1

3
ω32/81 +

16
75

ω50/81,

MG
2 (Q

2) =
16
25

(1−ω50/81),

ω =
αs(Q2)

αs(m2)
, Q2 ∈ (5,20)GeV 2, b = 9, αs(Q2)≃ 0.2 (5.23)

of the Altarelli-Parisi equation

Ṁ = AM, MT = (M2,M̄2,Ms
2,M

G
2 ),

M2 =
∫ 1

0
dxx(u(x)+d(x)), M̄2 =

∫ 1

0
dxx(ū(x)+ d̄(x)),

Ms
2 =

∫ 1

0
dxx(s(x)+ s̄(x)), MG

2 =
∫ 1

0
dxxG(x), Ṁ = Q2 dM

dQ2

A =−a(Q2)


32/9 0 0 −2/3

0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2

 , a = (
g

4π
)2 (5.24)

with the following "valence quark" initial condition at a scale m

M2(m2) = 1, M̄2 = Ms
2 = MG

2 (m
2) = 0, αs(m2) = 2 (5.25)

gives the experimental values

M2 = 0.44, M̄2 = Ms
2 = 0.04, MG

2 = 0.48 (5.26)
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Indeed. The APE has the following form

ẋ1 = a(kx1−bx4),

ẋ2 = a(kx2−bx4),

ẋ3 = a(kx3−bx4),

ẋ4 =−ak(x1 + x2 + x3)+acx4,

k = 32/9, b = 2/3, c = 2 (5.27)

One of the integral of motion of this system is

H = x1 + x2 + x3 + x4 = 1 (5.28)

Indeed,

Ḣ = a(c−3b) = 0. (5.29)

The physical meaning of the integral is the statement that the momentum of the nucleon is equal
to the sum of the constituent quark and gluon momenta. Now, the equation for x4 = x, using the
integral o motion, we reduce to

ẋ = a((k+ c)x− k)⇒
∫ dx

(k+ c)x− k
= adt =− da

β1a

⇒ x4(Q2) =
k

k+ c
+(x40−

k
k+ c

)ω(k+c)/β1 , t = ln
Q2

M2 , ω =
αs(Q2)

αs(M2)

x1 + x2 + x3 = 3x̄ =
c

k+ c
+(3x̄0−

c
a+ c

)ω(k+c)/β1 , 3x̄0 + x40 = 1 (5.30)

Then,

x1− x2 = (x10− x20)ωk/β1 → 0, x1− x3 = (x10− x30)ωk/β1 → 0,

x1,x2,x3→ x̄ =
c

3(k+ c)
=

3
25

, x4→
k

k+ c
=

16
25

, Q2≫M2 (5.31)

The solution of the system is

xn = x̄+ cnωk/β1 +dnω(k+c)/β1 , n = 1,2,3,

x4(Q2) =
k

k+ c
+(x40−

k
k+ c

)ω(k+c)/β1 ,

d1 = d2 = d3 = d, c1 + c2 + c3 = 0 (5.32)

For the VQM,

x10 = 1⇒ x̄+ c1 +d = 1,
x20 = x30 = 0⇒ c2 = c3 = c⇒ x2 = x3, c =−c1/2, d = 1− x̄− c1, x̄+ c+d = 0,

c1 =
2
3
, x̄ =

3
25

, d = 1− 3
25
− 2

3
=

16
75

,
k
β1

=
32
81

,
k+ c

β1
=

50
81

, β1 = 9, x40 = 0 (5.33)

So, for valence quark model (VQCD), αs(m2) = 2. We have seen, that for πρN model απρN =

3, and for πN model απN = 13. It is nice that α2
s +α2

πρN = απN . This relation can be seen, e.g.,
by considering pion propagator in the low energy πN model and in superposition of higher energy
VQCD and πρN models.

Note that to αs = 2 corresponds

g =
√

4παs = 5.013 = 5+ (5.34)
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5.3 Renormdynamic functions (RDF)

We will call RDF functions gn = fn(t), which are solutions of the RD motion equations

ġn = βn(g),1≤ n≤ N. (5.35)

In the simplest case of one coupling constant, the function g = f (t), is constant g = gc when
β (gc) = 0, or is invertible (monotone). Indeed,

ġ = f ′(t) = f ′( f−1(g)) = β (g). (5.36)

Each monotone interval ends by UV and IR fixed points and describes corresponding phase of the
system.

Note that, the simplest case of the classical dynamics, the Hamiltonian system with one degree
of freedom, is already two dimensional, so we have not an analog of one charge renormdynamics.
Then the regular Hamiltonian systems of the classical mechanics are defined on the even dimen-
sional phase space, so there is not an analog of the three dimensional renormdynamics for the
coupling constants of the SM.

The fixed points of renormdynamics belong to the set of zeros of the polynomial system of
equations βn(g) = 0,1 ≤ n ≤ N, in the perturbative renormdynamics. Describing qualitative and
numerical properties of the set, finding the number and multiplicity, evaluation and finding the
numerical values of the zeros is the task of contemporary algebraic and computational geometry
[Cox, Little, O’Shea 1998 ].

5.4 Nonperturbative renormdynamic functions

Based on real experiments and computer simulations, quantum gauge theory in four dimen-
sions is believed to have a mass gap. This is one of the most fundamental facts that makes the
Universe the way it is.

In the lattice (gauge) theory approach to the renormdynamics (see, e.g. [Makhaldiani, 1986]),
coupling constant dynamics were calculated for SU(3) Yang-Mills model [Bogolubsky et al, 2009].
The result is in agreement with perturbative calculations at small scales; at an intermediate scale
the coupling constant reaches its maximum(αs ≃ 2); than decrease. So, at the maximum, we
may have nontrivial zero of the β−function, which corresponds to the conformal invariance of the
gluodynamics at this point. Beyond this point we have another phase, strong coupling phase with
decreasing coupling constant similar (identical?!) to the abelian (monopole?) theory.

Note that, in the case of the two coupling constants,

ġ1 = β1(g1,g2),

ġ2 = β2(g1,g2), (5.37)

we can reformulate RD as

g1 ≡ g;g2 = f2(t)≡ τ ,
dg1

dg2
=

dg
dτ
≡ ġ = β (g,τ) =

β1(g,τ)
β2(g,τ)

(5.38)
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and RDF must fulfil corresponding restrictions. E.g. if

g1 = f1(t) = g = f (τ) = f ( f2(t)),g2 = f2(t) = τ (5.39)

So, if we approximate the form of the curve near maximum as

a(t) = ac−b|t− tc|n, (5.40)

for the β−function we obtain

ȧ = β (a, t) = sign(tc− t)bn(
ac−a

b
)

n−1
n . (5.41)

Of course this is not usual β−function, function of a only. It depends also on t. For t > tc we have
perturbative phase. For n > 1, β (ac, t) = 0. Explicit dependence on time variable in one coupling
case indicates on implicit two coupling case.

5.5 Nonperturbative Renormdynamics, AdS/CFT Duality

The AdS/CFT duality provides a gravity description in a (d + 1)-dimensional AdS space-
time in terms of a flat d-dimensional conformally-invariant quantum field theory defined at the
AdS asymptotic boundary [Maldacena, 1999],[Gubser,Klebanov,Polyakov, 1998],[Witten, 1998].
Thus, in principle, one can compute physical observables in a strongly coupled gauge theory in
terms of a classical gravity theory. The β -function for the nonperturbative effective coupling
obtained from the LF holographic mapping in a positive dilaton modified AdS background is
[Brodsky, de Tèramond, Deur, 2010]

β (αAdS) =
dαAdS

lnQ2 =− Q2

4k2 αAdS(Q2)

= αAdS(Q2) ln
αAdS(Q2)

α(0)
≤ 0 (5.42)

where the physical QCD running coupling in its nonperturbative domain is

αAdS(Q2) = α(0)e−Q2/4k2
(5.43)

So, this renormdynamics of QCD interpolates between IR fixed point α(0), which we take as
α(0) = 2, and UV fixed point α(∞) = 0.

For the QCD running coupling [Diakonov, 2003]

α(q2) =
4π

9ln(q2+m2
g

Λ2 )
(5.44)

where mg = 0.88GeV, Λ = 0.28GeV, the β−function of renormdynamics is

β (q2) =−α2

k
(1− cexp(− k

α
)) =−α2

k
+

cα2

k
exp(− k

α
),

k =
4π
9

= 1.40, c =
m2

g

Λ2 = (3.143)2 = 9.88 (5.45)
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for nontrivial (IR) fixed point we have

αIR =
k

lnc
= 0.61 (5.46)

For α(0) = 2, we predict the gluon mass as

mg = Λe
k

2α(0) = 1.42Λ = mN/3, Λ = 220MeV. (5.47)

The ghost-gluon interaction in Landau gauge has been determined either from DSEs
[Zwanziger, 2002],[Lerche,von Smekal, 2002], or the Exact Renormalization Group Equations (ERGEs)
[Pawlowski et al, 2004],[Fischer,Gies, 2004] and yield an IR fixed point

α(0) =
2π
3Nc

Γ(3−2k)Γ(3+ k)Γ(1+ k)
Γ(2− k)2Γ(2k)

=
8.9115

Nc
= 2.970,

Nc = 3, k = (93−
√

1201)/98 = 0.5954 (5.48)

Note that, from this formula for k = 0.6036 we have α(0) = 3 and for k = 0.36 we have α(0) = 2.

5.6 Scale and Conformal Symmetries and Zeros of the Renormdynamic β - functions

In a renormalizable or superrenormalizable field theory one can use different mass-independent
renormalization schemes. Each scheme will give a different definition of the renormalized cou-
pling constant g and the corresponding Gell- Mann-Low (GML) β - functions that appears in the
renormalization-group equations.

The main motion equation of the renormdynamics

ȧ = βa (5.49)

has fixed points ac in the zeros of the βa = β (ac) = 0. At these points corresponding field theory is
scale and conformal symmetric. By reparametrization a = f (A),

f ′(A)Ȧ = βa( f (A))⇒ Ȧ = βA(A) = βa( f (A))/ f ′(A), (5.50)

we can change the form of the motion equation and particulary we can take the minimal form of
the β - functions depending only on the reparametrization invariant coefficients, e.g. for QCD in
critical d = 4 dimensions

ȧ = β2a2 +β3a2, (5.51)

This case, we have the trivial zero ac = 0, corresponding to the scale and conformal symmetry
of QCD at small scales (Higher energies). There are an opinion that at low energy we have another,
the nontrivial fixed point. Personally my believe is that the fixed point is αs(M) = 2 at the valence
quark scale M ∼ 300MeV. But it is obvious that the minimal form of the QCD renormdynamics
(5.51) has not the finite nontrivial fixed point! How I can talk about the fixed point?

Thing is that, the original (complete, physical, if you like) β - function and the minimal one
are connected as

βa = f ′(A)βA, (5.52)
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so, when the minimal β - function has not the nontrivial fixed point-zero, that fixed point is given
by critical point of the reparametrization function, f (A), f ′(Ac) = 0. Then, when the minimal β -
function has not the nontrivial zero, but we know somehow the fixed point, we can consider by
corresponding reparametrization a next to the minimal forms of the β - function which will have
the nontrivial fixed point.

If we do not know the value of the nontrivial fixed point, we can find its approximation value
from the zeros of the reparametrization function f (A), which reduce known approximation value
of the β - function to the minimal one.

For monotonic function a = f (A), f ′(A) ̸= 0 and we can define another time-parameter

dτ = dt/| f ′(A(t))| (5.53)

The renormdynamic properties of Quantum Chromodynamics were the reason of acceptance of this
theory as the theory of strong interactions. The central role played by the QCD β -function, calcu-
lated at the one- [’t Hooft, 1972],[Gross, Wilczek, 1973],[Politzer, 1973], two-[Caswell, 1974],[Jones,1974],
[Egorian,Tarasov, 1979], three-[Tarasov,Vladimirov,Zharkov,1980], [Larin,Vermaseren,1993] and
finally at the four-loop- [van Ritbergen,Vermaseren,Larin,1997] level, cannot be overestimated in
this respect.

The minimal form of the QCD renormdynamics (RD) is

ẋ =−b2x2−b3x3,

b2 = 11− 2
3

n, b3 = 2(51− 19
3

n), x =
αs

4π
= (

g
4π

)2, (5.54)

where n is the number of the light quarks, e.g. n = 3 for energy scales less then the mass of
the c−quark, mc ≃ 1GeV but higher than the mass of s− quark, ms ≃ 100MeV.

5.7 Two TeV Scale Unification of the Standard Model Coupling Constants

According to the LEP and Tevatron data, the standard model coupling constants at the Z-boson
mass scale take the values (see, e.g. [Kazakov, 2004])

α1(mZ) = 0.017, α1(mZ)
−1 = 58.8

α2(mZ) = 0.034, α2(mZ)
−1 = 29.4

α3(mZ) = 0.118, α3(mZ)
−1 = 8.47

mZ = 91.1875GeV (5.55)

Note that α2(mZ) = 2α1(mZ).

Our aim is to consider RD equation in critical dimension for weak interaction part of the
SM (ε2 = 0); RD equations for the electromagnetic and strong interaction parts beyond critical
dimension (ε1,ε3 ̸= 0); reach unification (equality) of the three couplings at the TeV scale in the
point α−1

u = 31.0
The solution of the one loop RD equation beyond critical dimension

ȧ =−εa+ ka2,

a =
α
4π

= (
g

4π
)2, t = ln

Q2

m2
Z
, (5.56)
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is

an(t)−1 =
kn

ε
+ cneεnt , n = 1,3

cn = an(mZ)
−1− kn

εn
,

kn = (
41
10

,−7). (5.57)

The solution of the RD equation in critical dimension

ȧ2 = k2a2
2, k2 =−

19
6

(5.58)

is

a−1
2 (t) = a−1

2 (mZ)+ k2t (5.59)

From the last expression, having unification value, α−1
2 (tu) = α−1

u = 31.0 we define the unification
scale

tu = (a−1
2 (tu)−a−1

2 (mZ))/k2

= 4π×1.6× 6
19

= 6.35,
Qu = 23.9mZ = 2182GeV,
mZ = 91.2GeV (5.60)

Solution of the RD equation beyond the critical dimension for electrodynamic constant,

ȧ =−εa+ba2, b =
41
10

, (5.61)

is

a−1(t) =
b
ε
+(a−1(mZ)−

b
ε
)eεt (5.62)

The condition of the unification

(bε−1−a−1(tu)) = (bε−1−a−1(mZ))eεtu (5.63)

defines the value ε1 =−0.093 Unification takes place in dimension d = 4−2ε1 = 4.186
For the strong coupling constant beyond the critical dimension,

ȧ =−εa−ba2, b = 7, (5.64)

the solution is

a−1(t) =−b
ε
+(

b
ε
+a−1(mZ))etε , (5.65)

the unification condition

(bε−1 +a−1(tu)) = (bε−1 +a−1(mZ))eεtu (5.66)
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defines ε = 0.168 Unification takes place in the dimension d = 4−2ε = 3.66
Let us consider unification at the point α−1(tu) = 29.0, the low energy unification,

tul = (α−1
2 (tul)−a−1

2 (mZ))/k2

=−4π×0.4× 6
19

=−1.59,
Qul = 0.45mZ = 41.2GeV (5.67)

This maybe good indication on the composite nature of the weak interaction bosons with corre-
sponding constituent valence mass m∼ 40GeV . Note that, mW ,mZ ∼ 2m,mH = 125GeV ∼ 3m.

For electrodynamic case unification condition

41
10
−4π29ε = (

41
10
−4π58.8ε)e−1.59ε , (5.68)

gives the values ε1 = 0.453, del = 3.09 = 2.09+1 dimensional space-time.
For strong coupling constant unification condition

7+4πε×29 = (7+4πε×8.47)e−1.59ε (5.69)

gives ε3 =−0.8121, dsl = 5.624

5.8 At what scale α−1 = 137?

The low energy value of the QED α−1 = 137.036
Let us find the scale at which α−1 = 137 if

α−1(mZ) =
5

3cos2 θW
α−1

1 (mZ) = 128.978±0.027≃ 129,

sin2 θW = 0.23146±0.00017≃ 0.2315,
α−1

1 (mZ) = 58.8, (5.70)

1 Now take one loop RD evolution to the 137,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×8.× 10
41

=−24.5,

Ql ≃ 5×10−6mZ ≃ 5×10−4mp ≃ me (5.71)

There are the following prime numbers less than 137: 131, 127, 113,..., 37, 31, 29, 23, 19, 17, 13,
11, 7, 5, 3, 2. It is interesting to fined corresponding scales - particles.

For the nearest prime number 131, we have

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×2.× 10
41

=−6.13,

Ql ≃ 4.67×10−2mZ ≃ 4.25GeV (5.72)

This is b quarks mass mb = 4.2GeV.

1By the way, 129=3×43,(3+4)3 = 343 is the number of my office :)
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The bottom quark or b quark, also known as the beauty quark, is a third-generation quark
with a charge of −1/3e. Although all quarks are described in a similar way by the quantum
chromodynamics, the bottom quark’s large bare mass (around 4.2 GeV, [Beringer et al, 2012] a bit
more than four times the mass of a proton), combined with low values of the CKM matrix elements
Vub and Vcb, gives it a distinctive signature that makes it relatively easy to identify experimentally
(using a technique called B-tagging). Because three generations of quark are required for CP
violation, mesons containing the bottom quark are the easiest particles to use to investigate the
phenomenon; such experiments are being performed at the BaBar, Belle and LHCb experiments.
The bottom quark is also notable because it is a product in almost all top quark decays, and is a
frequent decay product for the Higgs boson.

The bottom quark was theorized in 1973 by physicists Makoto Kobayashi and Toshihide
Maskawa to explain CP violation. The name "bottom" was introduced in 1975 by Haim Harari.
The bottom quark was discovered in 1977 by the Fermilab E288 experiment team led by Leon M.
Lederman, when collisions produced bottomonium. Kobayashi and Maskawa won the 2008 Nobel
Prize in Physics for their explanation of CP-violation.

The bottom quark can decay into either an up or charm quark via the weak interaction. Both
these decays are suppressed by the CKM matrix, making lifetimes of most bottom particles (∼
10−12s) somewhat higher than those of charmed particles (∼ 10−13s), but lower than those of
strange particles (from ∼ 10−10s to ∼ 10−8s).

To the next to the nearest prime 127, we obtain

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

= 4π×2.× 10
41

= 6.13,
Ql ≃ 1161mZ ≃ 106TeV (5.73)

For 128 = 27 we have

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

= 4π× 10
41

= 3.06,

Ql ≃ 101.5mZ ≃ 3101GeV ∼ 3TeV (5.74)

For 130 we have

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π× 10
41

=−3.06,

Ql ≃ 10−1.5mZ ≃ 2.67GeV ∼ 2mc, mc = 1.275±0.025GeV (5.75)

For 136 = 23×17,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×7
10
41

=−21.4548,

Ql ≃ 2.2−5mZ ≃ 2MeV ∼ mu, mu = 2.3
−0.5
+0.7

(5.76)
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For 135 = 33×5,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×6
10
41

=−18.3898,

Ql ≃ 1.02×10−4mZ ≃ 9.24MeV ∼ 2md , md = 4.8
−0.3
+0.7

(5.77)

For 134 = 23×67,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×5
10
41

=−15.3248,

Ql ≃ 4.7×10−4mZ ≃ 42.8MeV ∼ ms/2, ms = 95±5MeV (5.78)

For 133 = 24×7,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×4
10
41

=−12.2599,

Ql ≃ 2.18×10−3mZ ≃ 198.1MeV ∼ 2ms, ms = 95±5MeV (5.79)

For 132 = 22×3×11,

tl = (a−1
1 (tl)−a−1

1 (mZ))/k1

=−4π×3
10
41

=−9.19491,

Ql ≃×10−2mZ ≃ 0.91705GeV ∼ mN , mp = 938.272046(21)MeV (5.80)

6. Fractal Geometry and Calculus (H) and Some Applications

Every (good) school boy/girl knows what is

dn

dxn = ∂ n = (∂ )n, (6.1)

but what is its following extension

dα

dxα = ∂ α , α ∈ℜ ? (6.2)

6.1 Euler, ... Liouville, ... Holmgren, ...

Let us consider the integer derivatives of the monomials

dn

dxn xm = m(m−1)...(m− (n−1))xm−n, n≤ m,

=
Γ(m+1)

Γ(m+1−n)
xm−n. (6.3)

L.Euler (1707 - 1783) invented the following definition of the fractal derivatives,

dα

dxα xβ =
Γ(β +1)

Γ(β +1−α)
xβ−α . (6.4)
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J.Liouville (1809-1882) takes exponents as a base functions,

dα

dxα eax = aαeax. (6.5)

The following Cauchy formula

In
0,x f =

∫ x

0
dxn

∫ xn−1

0
dxn−2...

∫ x2

0
dx1 f (x1) =

1
Γ(n)

∫ x

0
dy(x− y)n−1 f (y) (6.6)

permits analytic extension from integer n to complex α,

Iα
0,x f =

1
Γ(α)

∫ x

0
dy(x− y)α−1 f (y) (6.7)

J.H. Holmgren invented (in 1863) the following integral transformation,

D−α
c,x f =

1
Γ(α)

x∫
c

|x− t|α−1 f (t)dt. (6.8)

It is easy to show that

D−α
c,x xm =

Γ(m+1)
Γ(m+1+α)

(xm+α − cm+α),

D−α
c,x eax = a−α(eax− eac), (6.9)

so, c = 0, when m+α ≥ 0, in Holmgren’s definition of the fractal calculus, corresponds to the
Euler’s definition, and c =−∞, when a > 0, corresponds to the Liouville’s definition.

Holmgren’s definition of the fractal calculus reduce to the Euler’s definition for finite c, and to
the Liouvill’s definition for c = ∞,

D−α
c,x f = D−α

0,x f −D−α
0,c f ,

D−α
∞,x f = D−α

−∞,x f −D−α
−∞,∞ f . (6.10)

We considered the following modification of the c = 0 case [Makhaldiani, 2003],

D−α
0,x f =

|x|α

Γ(α)

1∫
0

|1− t|α−1 f (xt)dt, =
|x|α

Γ(α)
B(α, ∂x) f (x)

= |x|α Γ(∂x)
Γ(α +∂x)

f (x), f (xt) = tx d
dx f (x). (6.11)

As an example, consider Euler B-function,

B(α,β ) =
∫ 1

0
dx|1− x|α−1|x|β−1 = Γ(α)Γ(β )D−α

01 D1−β
0x 1 =

Γ(α)Γ(β )
Γ(α +β )

(6.12)

We can define also FC as

Dα f = (D−α)−1 f =
Γ(∂x+α)

Γ(∂x)
(|x|−α f ), ∂x = δ +1, δ = x∂ (6.13)
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For the Liouville’s case,

Dα
−∞,x f = (D−∞,x)

α f = (∂x)
α f , (6.14)

∂−α
x f =

1
Γ(α)

∫ ∞

0
dttα−1e−t∂x f (x) =

1
Γ(α)

∫ ∞

0
dttα−1 f (x− t)

=
1

Γ(α)

∫ x

−∞
dt(x− t)α−1 f (t) = D−α

−∞,x f . (6.15)

The integrals can be calculated as

D−n f = (D−1)n f , (6.16)

where

D−1 f = x
Γ(∂x)

Γ(1+∂x)
f = x

1
∂x

f = x(∂x)−1 f = (∂ )−1 f =
∫ x

0
dt f (t). (6.17)

Let us consider Weierstrass C.T.W. (1815 - 1897) fractal function

f (t) = ∑
n≥0

anei(bnt+φn), a < 1, ab > 1. (6.18)

For fractals we have no integer derivatives,

f (1)(t) = i∑(ab)nei(bnt+φn) = ∞, (6.19)

but the fractal derivative,

f (α)(t) = ∑(abα)nei(bnt+πα/2+φn), (6.20)

when abα = a′ < 1, is another fractal (6.18).
Question: what if ab = p is prime number? Can we define integer derivatives in this case?

6.2 p-adic numbers

In mathematics the p-adic number system for any prime number p extends the ordinary arith-
metic of the rational numbers in a way different from the extension of the rational number system
to the real and complex number systems. The extension is achieved by an alternative interpretation
of the concept of "closeness" or absolute value.

6.3 p - adic fractal calculus

Definition of the p-adic norm, | |p for raitional numbers r ∈ Q is

|r|p = p−k, r ̸= 0;
|0|p = 0, (6.21)

where k = ordp(r) is defined from the following representation of the r

r =±pk m
n
, (6.22)
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integers m and n do not contain as factor p.
p-adic analog of the fractal calculus (6.8),

D−α
x f =

1
Γp(α)

∫
Qp

|x− t|α−1
p f (t)dt, (6.23)

where f (x) is a complex function of the p-adic variable x, with p-adic Γ–function

Γp(α) =
∫

Qp

dt|t|α−1
p χ(t) =

1− pα−1

1− p−α , (6.24)

was considered by V.S. Vladimirov [Vladimirov, 1988].
The following modification of p-adic FC is given in [Makhaldiani, 2003]

D−α
x f =

|x|αp
Γp(α)

∫
Qp

|1− t|α−1
p f (xt)dt

= |x|αp
Γp(∂ |x|)

Γp(α +∂ |x|)
f (x). (6.25)

Last expression is applicable for functions of the type f (x) = f (|x|). E.g. the renormalization
constants Z(λ ) of the QFT maybe this type of functions. For a functions of the form

f (x) = ∑an|x|np, (6.26)

we have

D−α
x f = ∑an

Γp(n+1)
Γp(n+1+α)

|x|n+α
p . (6.27)

6.4 Field theory applications of FC

Let us consider the following action

S =
1
2

∫
Qv

dxΦ(x)Dα
x Φ, v = 1,2,3,5, ...,29, ...,137, ... (6.28)

Q1 is real number field, Qp, p - prime, are p-adic number fields. In the momentum representation

S =
1
2

∫
Qv

duΦ̃(−u)|u|αv Φ̃(u), Φ(x) =
∫
Qv

duχv(ux)Φ̃(u),

D−α χv(ux) = |u|−α
v χv(ux). (6.29)

The statistical sum of the corresponding quantum theory is

Zv =
∫

dΦe
− 1

2
∫

ΦDα Φ
= det−1/2Dα = (∏

u
|u|v)−α/2. (6.30)
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6.5 Adeles and Cosmological constant

The ring of integral adeles AZ is the product of the real numbers R and of all the rings of p-adic
integers:

AZ = R ∏
p=2,3,5,...

Zp = ∏
p=1,2,3,5,...

Zp, Z1 ≡ R; (6.31)

The ring of (rational) adeles AQ is the tensor product

AQ = Q⊗Z AZ (6.32)

The ring of (rational) adeles can also be defined as the restricted product

AQ = R
′

∏
p

Qp (6.33)

of all the real numbers and the p-adic completions Qp, or in other words as the restricted product
of all completions of the rationals. In this case the restricted product means that for an adele
a = (a1,a2,a3,a5,) all but a finite number of the ap are p-adic integers.

The group of invertible elements of the adele ring is the idele group. As a locally compact
abelian group, the adeles have a nontrivial translation invariant measure. Similarly, the group of
ideles has a nontrivial translation invariant measure.

Adels a∈A are constructed by real a1 ∈Q1 and p-adic ap ∈Qp numbers (see e.g. [Gelfand et al, 1966])

a = (a1,a2,a3,a5, ...,ap, ...), (6.34)

with restriction that ap ∈ Zp = {x ∈ Qp, |x|p ≤ 1} for all but a finite set F of primes p.
A is a ring with respect to the componentwise addition and multiplication. A prinsipal adel is

a sequence r = (r,r, ...,r, ...), r ∈ Q-rational number.
Norm on adels is defined as

|a|= ∏
p≥1
|ap|p. (6.35)

Note that the norm on principal adels is trivial: |r|= 1, when r ̸= 0 and |0|= 0.
Let us consider the following action

S =
1
2

∫
Qv

dxΦ(x)Dα
x Φ, v = 1,2,3,5, ... (6.36)

In the momentum representation

S =
1
2

∫
Qv

duΦ̃(−u)|u|αv Φ̃(u), (6.37)

where

Φ(x) =
∫
Qv

duχv(ux)Φ̃(u),
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D−α χv(ux) = |u|−α
v χv(ux). (6.38)

The statistical sum of the corresponding quantum theory is

Zv =
∫

dΦe
− 1

2
∫

ΦDα Φ
= det−1/2Dα = (∏

u
|u|v)−α/2. (6.39)

In the adelic generalization of the model (6.36),

Φ(x) = ∏
p≥1

Φp(xp), dx = ∏
p≥1

dxp, Dα
x = ∑

p≥1
Dα

xp
, (6.40)

where by Dα
x1

we denote fractal derivative (10.9), x1 is real and | |1 is real norm. If∫
dxp|Φ(xp)|2 = 1, (6.41)

then ∫
dx|Φ(x)|2 = 1, S = ∑

p≥1
Sp, (6.42)

so

Z = ∏
p≥1

Zp = ∏
p≥1

(∏
u
|u|p)−α/2 = (∏

u
∏
p≥1
|u|p)−α/2 = 1, λ ∼ lnZ = 0, (6.43)

if u ∈ Q.

6.6 Fractal qalculus

The basic object of q-calculus is q-derivative

Dq f (x) =
f (x)− f (qx)
(1−q)x

=
1−qx∂

(1−q)x
f (x), (6.44)

where either 0 < q < 1 or 1 < q < ∞. In the limit q→ 1,Dq→ ∂x.

Now we define the fractal q-calculus,

Dα
q f (x) = (Dq)

α f (x)

= ((1−q)x)−α( f (x)+ ∑
n≥1

(−1)n α(α−1)...(α−n+1)
n!

f (qnx)). (6.45)

For the case α =−1, we obtain the integral

D−1
q f (x) = (1−q)x(1−qx∂ )−1 f (x) = (1−q)x ∑

n≥0
f (qnx). (6.46)

In the case of 1 < q < ∞, we can give a good analytic sense to these expressions for prime num-
bers q = p = 2,3,5, ...,29, ...,137, ... This is an algebra-analytic quantization of the q-calculus and
corresponding physical models. Note also, that p-adic calculus is the natural tool for the physi-
cal models defined on the fractal( space)s like Bete lattice ( or Brua-Tits trees, in mathematical
literature).

Note also a symmetric definition of the calculus

Dqs f (x) =
f (q−1x)− f (qx)

(q−1−q)x
f (x). (6.47)
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6.7 Fractal finite - difference calculus

Usual finite difference calculus is based on the following (left) derivative operator

D− f (x) =
f (x)− f (x−h)

h
= (

1− e−h∂

h
) f (x). (6.48)

We define corresponding fractal calculus as

Dα
− f (x) = (D−)α f (x). (6.49)

In the case of α =−1, we have usual finite difference sum as regularization of the Riemann integral

D−1
− f (x) = h( f (x)+ f (x−h)+ f (x−2h)+ ...). (6.50)

(I believe that) the fractal calculus (and geometry) are the proper language for the quantume (field)
theories, and discrete versions of the fractal calculus are proper regularizations of the fractal calcu-
lus and field theories.

6.8 Hypergeometric functions

A hypergeometric series, in the most general sense, is a power series in which the ratio of
successive coefficients indexed by n is a rational function of n,

f (x) = ∑
n≥0

anxn, an+1 = R(n)an, R(n) =
P(α,n)
Q(β ,n)

(6.51)

so

P(α,δ ) f (x) = Q(β ,δ )( f (x)− f (0))/x,
f (x)− f (0) = xR(δ ) f (x), f (x) = (1− xR(δ ))−1 f (0),δ = x∂x (6.52)

Hypergeometric functions have many particular special functions as special cases, including many
elementary functions, the Bessel functions, the incomplete gamma function, the error function, the
elliptic integrals and the classical orthogonal polynomials, because the hypergeometric functions
are solutions to the hypergeometric differential equation, which is a fairly general second-order
ordinary differential equation.

In a generalization given by Eduard Heine ( 1821 - 1881 ), the ratio of successive terms, instead
of being a rational function of n, are considered to be a rational function of qn

f (x) = ∑
n≥0

anxn, an+1 = R(qn)an, R(n) =
P(α,qn)

Q(β ,qn)
,

P(α,qδ ) f (x) = Q(β ,qδ )( f (x)− f (0))/x,
f (x)− f (0) = xR(qδ ) f (x), f (x) = (1− xR(qδ ))−1 f (0),δ = x∂x (6.53)

Another generalization, the elliptic hypergeometric series, are those series where the ratio of terms
is an elliptic function (a doubly periodic meromorphic function) of n.

There are a number of new definitions of hypergeometric series, by Aomoto, Gelfand and
others; and applications for example to the combinatorics of arranging a number of hyperplanes in
complex N-space.
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6.9 Hypergeometric field theory (HFT)

Formal solutions for the the hypergeometric functions (6.52,6.53), we put in the fieldtheoretic
form,

f (x) = G(x) f (0),

G(x) =< ψ(x)ϕ(0)>=
δ 2 lnZ

δJ(x)δ I(0)
= (1− xR)−1,

Z =
∫

dψdϕe−S+Iϕ+Jψ = eI(1−xR)−1J,

S =
∫

ψ(1− xR)ϕ =
∫

ψ(Q− xP)φ, ϕ = Qφ. (6.54)

When we invent interaction terms, we obtain nontrivial HFT. In terms of the fundamental fields,
ψ,φ, we have local field model.

6.10 Lauricella Hypergeometric functions (LFs)

For LFs (see, e.g. [Miller, 1977]), we find the following formulas [Makhaldiani, 2011]

FA(a;b1, ...,bn;c1, ...,cn;z1, ...,zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c1)δ1 ...(cn)δn

ez1+...+zn

=
(a)δ1+...+δn

(a1)δ1 ...(an)δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn)

= T−1(a)Fn = Σm≥0
(a)m1+...+mn(b1)m1 ...(bn)mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|+ ...+ |zn|< 1;

FB(a1, ...,an;b1, ...,bn;c;z1, ...,zn) =
(a1)δ1 ...(an)δn(b1)δ1 ...(bn)δn

(c)δ1+...+δn

ez1+...+zn

=
(c1)δ1 ...(cn)δn

(c)δ1+...+δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn) = T (c)Fn

= Σm≥0
(a1)m1 ...(an)mn(b1)m1 ...(bn)mn

(c)m1+...+mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|< 1, ..., |zn|< 1; (6.55)

FC(a;b;c1, ...,cn;z1, ...,zn) =
(a)δ1+...+δn(b)δ1+...+δn

(c1)δ1 ...(cn)δn

ez1+...+zn

=
(a)δ1+...+δn(b)δ1+...+δn

(a1)δ1 ...(an)δn(b1)δ1 ...(bn)δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn)

= T−1(a)T−1(b)Fn = T−1(b)FA

= Σm≥0
(a)m1+...+mn(b)m1+...+mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|1/2 + ...+ |zn|1/2 < 1;

FD(a;b1, ...,bn;c;z1, ...,zn) =
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c)δ1+...δn

ez1+...+zn

=
(a)δ1+...+δn(c1)δ1 ...(cn)δn

(a1)δ1 ...(an)δn(c)δ1+...δn

F(a1,b1;c1;z1)...F(an,bn;cn;zn)

= T−1(a)T (c)Fn = T (c)FA = T−1(a)FB

= Σm≥0
(a)m1+...+mn(b1)m1 ...(bn)mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...

zmn
n

mn!
, |z1|< 1, ..., |zn|< 1. (6.56)
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6.11 Lomidze Bn function (LBn)

In the paper ([Lomidze, 1994]) the following formula were proposed

Bn(r0,r1, ...,rn) = det[xi−1
j

∫ 1

x j−1/x j

ui−1(1−u)r j−1
n

∏
k=0,k ̸= j

(
x ju− xk

x j− xk
)rk−1du]/det[xi−1

j ]

=
Γ(r0)Γ(r1)...Γ(rn)

Γ(ro + r1 + ...+ rn)
, 0 = x0 < x1 < x2 < ... < xn, n≥ 1. (6.57)

Let us put the formula in the following factorized form

LBn(x,r)≡ det[xi−1
j

∫ 1

x j−1/x j

duui+r0−2(1−u)r j−1
n

∏
k=1,k ̸= j

(
x ju− xk

x j− xk
)rk−1]

= detVn(x)Bn(r), Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)...Γ(rn)

Γ(r0 + r1 + ...+ rn)
(6.58)

Now, it is enough to proof this formula for general values of xi and particular values of ri, e.g.,
ri = 1, and for general values of ri and particular values of xi, e.g. xi = pi, 1≤ i≤ n. In the case of
ri = 1, right hand side of the formula is equal to the Vandermonde determinant divided by n! The
left hand side is the determinant of the matrix with elements Ai j = xi−1

j (1− (x j−1/x j)
i)/i

When we calculate determinant of this matrix, from the row i, we factorize 1/i,2≤ i≤ n which
gives the 1/n! the rest matrix we calculate transforming the matrix to the form of the Vandermonde
matrix.

This is the half way of the proof. Let us take the concrete values of xi = pi, 1≤ i≤ n, where
p is positive integer and general complex values for ri,0 ≤ i ≤ n, and calculate both sides of the
equality. For Vandermonde determinant we find for high values of p the following asymptotic

detV = pN , N =
n

∑
k=2

k(k−1) =
n(n2−1)

3
(6.59)

The matrix elements are

Bi j = xi−1
j

∫ 1

x j−1/x j

ui+r0−2(1−u)r j−1
n

∏
k=1,k ̸= j

(
x ju− xk

x j− xk
)rk−1du

= xi−1
j ∏

1≤k< j
(

x j

x j− xk
)rk−1 ∏

j<k≤n
(

xk

xk− x j
)rk−1

∫ 1

x j−1/x j

ui+r0−2(1−u)r j−1

· ∏
1≤k< j

(u− xk/x j)
rk−1 ∏

j<k≤n
(1− x j/xku)rk−1du

= p(i−1) j
∫ 1

0
ui+r0−2+∑ j−1

k=1(rk−1)(1−u)r j−1du

= p(i−1) jB(i+
j−1

∑
k=0

(rk−1),r j) (6.60)

For n = 2 we have

B11 =
∫ 1

0
ur0−1(1−u)r1−1du =

Γ(r0)Γ(r1)

Γ(r0 + r1)
,

B22 = p2
∫ 1

0
ur0+r1−1(1−u)r2−1du =

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,
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LB2/V2 = B11B22/p2 =
Γ(r0)Γ(r1)Γ(r2)

Γ(r0 + r1 + r2)
(6.61)

For n = 3,

B11 =
∫ 1

0
ur0−1(1−u)r1−1 =

Γ(r0)Γ(r1)

Γ(r0 + r1)
= B(r0,r1),

B22 = p2
∫ 1

0
ur0+r1−1(1−u)r2−1 = p2 Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2)
,

B33 = p6
∫ 1

0
ur0+r1+r2−1(1−u)r3−1 = p6 Γ(r0 + r1 + r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)

LB3/V3 = B11B22B33/p8 =
Γ(r0)Γ(r1)Γ(r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)
(6.62)

Now it is obvious the last step of the proof [Makhaldiani, 2011]

LBn(x,r) = detVn(x)B(r0,r1)...B(r0 + r1 + ...+ rn−1,rn)

= detVn(x)Bn(r)

Vn(x) = [xi−1
j ], Bn(r) =

Γ(r0)Γ(r1)..Γ(rn)

Γ(r0 + r1 + ...+ rn)
(6.63)

Note that this proof is based on the factorization assumption (6.58). The proof without this
assumption given by I.R.Lomidze is given in [Lomidze, Makhaldiani, 2012].

6.12 Bn-functions

We define Bn(a)−functions as

Bn(a) =
∫

dnxxa1−1
1 ...xan−1

n δ (1− x1− ...xn)

=
Γ(a1)...Γ(an)

Γ(a1 + ...an)
(6.64)

and bn(a) = a1...anBn(a)

bn(a) =
∫

dnx(xa1
1 )′...(xan

n )′δ (1− x1− ...xn)

=
Γ(1+a1)...Γ(1+an)

Γ(a1 + ...an)
(6.65)

6.13 String theory applications

For (symmetrized, 4-tachyon) Veneziano amplitude we have (see, e.g. [Kaku, 2000])

Bs(α,β ) = B(α,β )+B(β ,γ)+B(γ,α) =
∫ ∞

−∞
dx|1− x|α−1|x|β−1,

α +β + γ = 1 (6.66)

For the p-adic Veneziano amplitude we take

Bp(α,β ) =
∫

Qp

dx|1− x|α−1
p |x|β−1

p =
Γp(α)Γp(β )
Γp(α +β )

(6.67)
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Now we obtain the N-tachyon amplitude using fractal calculus. We consider the dynamics of
particle given by multicomponent generalization of the action (6.36), Φ→ xµ .

For the closed trajectory of the particle passing through N points, we have

A(x1,x2, ...,xN) =
∫

dt
∫

dt1...
∫

dtNδ (t−Σtn)

v(x1, t1;x2, t2)v(x2, t2;x3, t3)...v(xN , tN ;x1, t1)

=
∫

dx(t)Π(
∫

dtnδ (xµ(tn)− xµ
n ))exp(−S[x(t)])

=
∫

Π(dkµ
n χ(knxn))Ã(k), (6.68)

where

Ã(k) =
∫

dxV (k1)V (k2)...V (kN)exp(−S),

V (kn) =
∫

dtχ(−knx(t)) (6.69)

is vertex function.
Motion equation

Dαxµ − iΣkµ
n δ (t− tn) = 0, (6.70)

in the momentum representation

|u|α x̃µ(u)− iΣnkµ
n χ(−utn) = 0 (6.71)

have the solution

x̃µ(u) = iΣkµ
n

χ(−utn)
|u|α

, u ̸= 0, (6.72)

the constraint

Σnkn = 0, (6.73)

and the zero mod x̃µ
n (0), which is arbitrary. Integration in (6.68) with respect to this zero mod gives

the constraint (6.73). On the solution of the equation (6.70)

xµ(t) = iD−α
t Σnkµ

n δ (t− tn) =
i

Γ(α)
Σnkµ

n |t− tn|α−1, (6.74)

the action (6.36) takes value

S =− 1
Γ(α)

Σn<mknkm|tn− tm|α−1,

Ã(k) =
∫

ΠN
n=1dtnexp(−S) (6.75)

In the limit, α → 1, for p-adic case we obtain

xµ(t) =−i
p−1
p lnp

Σnkµ
n ln|t− tn|,
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S[x(t)] =
p−1
p lnp

Σn<mknkm ln|tn− tm|,

Ã(k) =
∫

ΠN
n=1dtnΠn<m|tn− tm|

p−1
p lnp knkm . (6.76)

Now in the limit p = q−1→ 1 we obtain the proper expressions of the real case

xµ(t) =−iΣnkµ
n ln|t− tn|,

S[x(t)] = Σn<mknkm ln|tn− tm|,
Ã(k) =

∫
ΠN

n=1dtnΠn<m|tn− tm|knkm . (6.77)

By fractal calculus and vector generalization of the model (6.36), fundamental string ampli-
tudes were obtained in [Makhaldiani, 1988].

7. Supersymmetric and Adelic mechanisms of Taming of the Cosmological constant
problem

The cosmological constant problem is one of the most serious paradoxes in modern parti-
cle physics and cosmology [Weinberg, 1989]. Some astronomical observations indicate that the
cosmological constant is many orders of magnitude smaller than estimated in modern theoretical
elementary particles physics.

In his attempt, [Einstein, 1917] to apply the general relativity to the whole universe, A. Einstein
invented a new term involving a free parameter λ , the cosmological constant (CC),

Rµν −
1
2

Rgµν = λgµν −8πGTµν . (7.1)

With this modification he finds a static solution for the universe filled with dust of zero pressure
and mass density

ρ =
λ

8πG
. (7.2)

The geometry of the universe was that of a sphere S3 with proper circumference 2πr, where

r = λ−1/2, (7.3)

so the mass of the universe was

M = 2π2r3ρ = π
4 G−1λ−1/2

∼ r(?!). (7.4)

It is interesting to describe hadrons with a similar geometric picture corresponding to the low
energy QCD.

Any contributions to the energy density of the vacuum acts just like CC. By Lorentz invariance,
in the vacuum,

< Tµν >=−< ρ > gµν , (7.5)
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so

λe f f = λ +8πG < ρ >, (7.6)

or the total vacuum energy density

ρV =< ρ >+
λ

8πG
=

λe f f

8πG
. (7.7)

The experimental upper bound on λe f f or ρV is provided by measurements of cosmological red-
shifts as a function of distance. From the present expansion rate of the universes

dlnR
dt
≡ H0 = 100h

km
secMpc

, h = 0.7±0.07 (7.8)

we have

H−1
0 = (1÷2)×1010ye, |λe f f | ≤ H2

0 , |ρV | ≤ 10−29g/cm2 ≃ 10−47GeV 4. (7.9)

The quantum oscillator with hamiltonian

H =
1
2

P2 +
1
2

ω2x2, (7.10)

has the energy spectrum

En = h̄ω(n+1/2), n = 0,1,2, ... (7.11)

with the lowest, vacuum, value E0 = h̄ω/2. Normal modes of a quantum field of mass m are os-
cillators with frequencies ω(k) =

√
k2 +m2. Summing the zero-point energies of all normal modes

of the field up to a wave number cut-off Λ >> m yields a vacuum energy density

< ρ >=

Λ∫
0

4πk2dk
(2π)3

1
2

√
k2 +m2 ≃ Λ4

16π2 . (7.12)

If we take Λ = (8πG)−1/2, then

< ρ >≃ 2−10π−4G−2 = 2×1071GeV 4. (7.13)

We saw that

|< ρ >+
λ

8πG
| ≤ 10−47GeV 4 ≃ (10−3eV )4, (7.14)

so the two terms must cancel to better than 100 decimal places! If we take ΛQCD, < ρ >≃
10−6GeV 4 ≃ (300MeV )4, the two terms must cancel better to than 40 decimal places. Since the
cosmological upper bound on < ρe f f > is vastly less than any value expected from particle theory,
theorists assumed that (for some unknown reason) this quantity is zero.

35



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

7.1 Supersymmetric mechanism of solution to the CC problem

A minimal realization of the algebra of supersymmetry

{Q,Q+}= H,

{Q,Q}= {Q+,Q+}= 0, (7.15)

is given by a point particle in one dimension, [Witten, 1998]

Q = a(−iP+W ),

Q+ = a+(iP+W ), (7.16)

where P = −i∂/∂x, the superpotential W (x) is any function of x, and spinor operators a and a+

obey the anticommuting relations

{a,a+}= 1,
a2 = (a+)2 = 0. (7.17)

There is a following representation of operators a, a+ and σ by the Pauli spin matrices

a =
σ1− iσ2

2
=

(
0 0
1 0

)
,

a+ =
σ1 + iσ2

2
=

(
0 1
0 0

)
,

σ = σ3 =

(
1 0
0 −1

)
. (7.18)

From formulae (7.15) and (7.16) then we have

H = P2 +W 2 +σWx. (7.19)

The simplest nontrivial case of the superpotential W = ωx corresponds to the supersimmetric
oscillator with Hamiltonian

H = HB +HF , HB = P2 +ω2x2, HF = ωσ , (7.20)

wave function

ψ = ψBψF , (7.21)

and spectrum

HBψBn = ω(2n+1)ψBn,

HF ψ+ = ωψ+, HFψ− =−ωψ−. (7.22)

The ground state energies of the bosonic and fermionic parts are

EB0 = ω, EF0 =−ω, (7.23)
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so the vacuum energy of the supersymmetric oscillator is

< 0|H|0 >= E0 = EB0 +EF0 = 0, |0 >= ψB0ψF0. (7.24)

Note that the spectrum of this supersymmetric oscillator coincides with the natural numbers,
n=0,1,2,... If you like, we can say that this is number-theoretic motivation of the sypersymmetric
models.

Let us see on this toy - solution of the CC problem from the quantum statistical viewpoint.
The statistical sum of the supersymmetric oscillator is

Z(β ) = ZBZF , (7.25)

where

ZB = ∑
n

e−βEBn = e−βω + e−βω(2+1)+ ...

ZF = ∑
n

e−βEFn = eβω + e−βω .

(7.26)

In the low temperature limit,

Z(β ) = 1+O(e−β2ω)→ 1, β = T−1, (7.27)

so CC

λ ∼ lnZ→ 0. (7.28)

In the case of the adelic solution to the CC problem we will have,

Z(β ) = ∏
p≥1

Zp = Z1Z2Z3Z5...,

Z1 ≡ ZB, ZF ÷Z2Z3Z5...(?!) (7.29)

7.2 Dyons and Two TeV Unification

In nonrelativistic approximation the force between two dyons with electric and magnetic
charges gn = (en,gn), n = 1,2 is

F =
g1g2r+g1×g2v× r

4πr3 (7.30)

where g1g2 = e1e2 +g1g2, g1×g2 = e1g2− e2g1, r = r2− r1, v = v2−v1, c = 1. Note that, this
force depends on the invariant dual combinations of charges: the combination

(e1− ig1)(e2 + ig2) = e1e2 +g1g2 + i(e1g2− e2g1) (7.31)
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is invariant with respect to the continual global dual transformations

eiα(e+ ig) = e′+ ig′ (7.32)

From Dirac’s quantization of charge

eg = 2π h̄cn,n =±1,±2, ..., (7.33)

we have

g =
e

2α
h̄cn (7.34)

In the natural system of units, c = h̄ = 1, and n = 1, elementary magnetic charge has the value

g = 68.5e,

αg =
g2

4π
= (

1
2α

)2α =
1

4α
=

137
4

= 34.25 (7.35)

The mass of the monopole we can estimate if we suppose that the classical radius of the monopole
is not more than electron’s one

me =
α
ere

, mg =
αg

erg
,

rg ≤ re⇒ mg ≥
αg

αe
me =

me

4α2 = 4692.25me ≃ 2398MeV ≃ 2.4TeV (7.36)

So, the Two-TeV unification takes place at the monopole scale.

7.3 Unification of the Two Abelian Couplings

At the critical point we may have unification of the two abelian couplings, weak-electromagnetic
and strong-monopole couplings. According to the Dirac quantization rule, for the electron-e and
monopole-g charges we have

eg = 2πn, n =±1,±2, ... (7.37)

so, at the selfdual, critical, point, we have prediction:

αe = αg =
n
2
, n = 1,2, ... (7.38)

The minimal-fundamental value of the unified coupling constant is α = 1/2.
Schwinger constructed a quantum field theory of magnetic and electric charges which is rela-

tivistically invariant in consequence of the charge quantization condition eg/h̄c = 4πn, n integer,
[Schwinger, 1966]. This is more restrictive than Dirac’s condition, which would also allow half-
integral values.

Now the minimal value at the unification point is 1. The next value is 2. These two values of
coupling constant are connected as UV and IR fixed points of one monotone RD interval.
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7.4 Nonperturbative analytic methods

Generating functional of the correlators

Z(g,J) =
∫

dφe−S[φ,g]+J·φ = ∑
n≥0

gnZn(J),

Zn(J) =
∮ dgZ(g,J)

2πign+1 =
∮ dϕ

2π
e−S[φ,g]−(iϕ+ρ)n+J·φ , g = eρ+iϕ (7.39)

Higher n behavior of the expansion can be defined by stationary-point solutions of the following
equations

δS
δφ(x)

= J(x),

g
∂S
∂g

=−n (7.40)

In our model field theory

S =
∫

dDx(
1
2

φ△φ +
g
N

φN), △=−∂ 2,

△φ +gφN−1 = J,∫
dDxφN =−nN

g
(7.41)

8. Sum rules

Much of the hadronic dynamics at low energies is determined by nucleon and meson ex-
changes while the intermediate energy region is dominated by various resonances. Chiral symme-
try is an important physical constraint that governs the meson-nucleon interactions at low energies
and unitarity is an essential property at intermediate energies. A natural link between the low and
intermediate energy regions is provided by various sum rules.

8.1 Gerasimov, Drell-Hearn sum rules

The Gerasimov, Drell-Hearn (GDH) sum rule [Gerasimov, 1965], [Drell, Hearn, 1966]

π2α
m2s

k2 =
∫ ∞

−∞
dt[σ(t,1+ s)−σ(t,1− s)], (8.1)

relates the anomalous magnetic moment k of a particle with spin s and mass m to the integral of
the difference of polarized total photo-absorption cross-sections σ(t,1± s) for total helicity (1± s)
and energy ω = ω0et . The anomalous magnetic moment is k = (g− 2)s, i.e., the deviation of the
gyromagnetic ratio g from its natural value of 2 for any spin [Ferrara, Porrati, Telegdi, 1992]. In
the case of the proton, e.g., s = 1/2,k = 1.79

It is interesting also to consider high values of s for high spin nuclei, magnetics, string and
extended particle models. Note that, for s = 0, both sides of the relation is zero.

Let us present the integral from right-hand side as∫ ∞

−∞
dt

s

∑
n=−s+1

A(t,n) =
s

∑
n=−s+1

∫ ∞

−∞
dtA(t,n) =

s

∑
n=−s+1

a(n),

39



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

A(t,n) = σ(t,1+n)−σ(t,n), a(n) =
∫ ∞

−∞
dtA(t,n) (8.2)

One of the solutions of the GDH relation considered as an integral equation is

a(n) = a =
π2α
2m2 (g−2)2,

b(n+1) = b(n)+a, b(n) =
∫ ∞

−∞
dtσ(t,n) (8.3)

8.2 Adler-Weisberger sum rule

The Adler-Weisberger sum rule (AWS) [Adler, 1965],[Weisberger, 1966], [Adler, Dashen, 1965],
[Treiman, Witten, Jackiw, Zumino, 1985],[Weinberg, 1996] relates integrals over the total cross
section to the scattering amplitude calculated at a subthreshold kinematic point

1−g−2
A =

2m2
N

πg2
πN

∫ ∞

0
dt[σπ+N(t)−σπ−N(t)]

= sin2 θ = (3/5)2 (8.4)

where σπ±N(t)) are the pion-nucleon cross sections at the energy ω = mπet . For the value of the
axial coupling constant gA = 5/4 = 1/cosθ , on the right-hand side of the AWS, we will have
sin2 θ , sinθ = 3/5, θ = 0.6435011087932845∗180/Pi = 36.86989764584403≃ 37o

Note that, we can define the pion decay constant from the Goldberger-Treiman relation

fπ =
gAmN

gπN
(8.5)

and put the AWS in the form

g2
A = 1+

2 f 2
π

π

∫ ∞

0
dt[σπ+N(t)−σπ−N(t)] (8.6)

8.3 Bjorken Sum Rule

The Bjorken sum rule [Bjorken,1966] has been of central importance for studying the spin
structure of the nucleon. Accounting for finite Q2 corrections to the sum rule, it reads:∫ 1

0
(gp1−gn1)dx =

gA

6
(1− αs

π
−3.58(

αs

π
)2−20.21(

αs

π
)3 + ...)

+ ∑
k≥1

µk

Q2k (8.7)

where the µk are higher twist terms. We take the following valence quark parametrization∫ 1

0
(gp1−gn1)dx =

gA

6
(1− αV

2
), αV =

2αs

π
+ ... (8.8)

The Bjorken sum rule is related to a more general sum rule, the generalized Gerasimov-Drell-
Hearn (GDH) sum rule [Gerasimov, 1965],[Drell, Hearn, 1966],
[Anselmino,Ioffe,Leader,1989],[Ji,Osborne,2001]:∫ 1

0
(gp1−gn1)dx =

Q2

(4π)2α
(GDHp(Q2)−GDHn(Q2)) (8.9)
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Since the generalized GDH sum is, in principle, calculable at any Q2, it can be used to study the
transition from the partonic to hadronic degrees of freedom of the strong force. The Bjorken sum is
the flavor non-singlet part of the GDH sum. This leads to simplifications that may help in linking
the (χPT) validity domain to the pQCD validity domain [Burkert,2001]. Hence the Bjorken sum
appears as a key quantity to study the hadron-parton transition.

8.4 Renormdynamics of space dimension

Let us consider the Coulomb problem

∆φ = eδ D(x), φ(r) =
er(2−D)

(2−D)ΩD
, ΩD =

2π D
2

Γ(D
2 )

(8.10)

For corresponding action S,

S =
∫

dDx(
1
2
(∇φ)2 +ρφ) =

∫
dDx

1
2
(∇φ)2 + eφ(0), ρ(x) = eδ D(x) (8.11)

For radially symmetric case

S =
∫

drrD−1ΩD
1
2
(φ ′)2 + eφ(0) (8.12)

the problem reduce to the one dimensional problem and the dimension D enter as external (control)
parameter. Motion equation for φ is

φ ′′+
D−1

r
φ ′ = ρ, ρ = eδ D(x), (8.13)

with usual solution

φ(r,D) =− e
(D−2)ΩDrD−2 . (8.14)

Note that, for this solution φ(0) is divergent. The following regularized version of the point charge
problem, ∫

dDxρ(x) = eΩD

∫
drrD−1ρ(r) = e

∫
drδ (r− r0) = e, ρ(r) = e

δ (r− r0)

ΩDrD−1 (8.15)

is consistent.
Let us calculate the value of action on the solution and the regularized source

S =
∫ r0

0
ΩDrD−1 1

2
(φ ′)2 +

∫ ∞

r0

ΩDrD−1 1
2
(φ ′)2 + eφ(r0)

=
1
2

e2

(2−D)ΩD
r2−D |r0

0 +
1
2

e2

(2−D)ΩD
r2−D |∞r0

+eφ(r0) (8.16)

This expression has finite, or physical, value

Se =
1
2

e2

(2−D)ΩD
r2−D

0 (8.17)
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when D < 2, r < r0 and D > 2, r > r0. So, we have a good motivation of the evolution of the
dimension with r. Then we can take the fundamental value for action Se = h̄ = 1, that restricts the
values of r0 and D, for r < r0. Note that, we have extra bonus, the potentials corresponding to D< 2
are confining.

If we ask optimal property of the action not only with respect of the field φ, but also with
respect to the dimension D, we obtain the following system of equations

∂
∂D

(rD−1ΩD) = 0⇒ rD−1ΩD(r) = f (r),

∂
∂ r

(rD−1ΩD
∂
∂ r

φ) = rD−1ΩDρ(r)⇒ ∂ 2

∂ r2 φ +(
D−1

r
+(lnΩD)r)

∂
∂ r

φ = ρ(r) (8.18)

where we suppose that the function D(r) pass through the point D(a) = 3. If we insert this
constraint into the action, we find

S = 4π
∫

draD(r)−1 1
2
(φ ′)2 + eφ(0), (8.19)

with corresponding motion equation for φ

(aD(r)φ ′)′ = 0⇒ φ(r) =
∫

a−D(r)dr+ const,

S = 2π/aφ(r)+ eφ(0) (8.20)

The following regularized version of the point charge problem,∫
dDxρ(x) = eΩD

∫
drrD−1ρ(r) = e

∫
drδ (r− r0) = e (8.21)

is consistent with the requirement

rD−1ΩD = 1 (8.22)

The standard motion equation and its solution are

d
dr

(rD−1 dφ
dr

) = rD−1ρ(r),

φ(r) =
er(2−D)

(D−2)ΩD
, ρ(x) = eδ D(x), ΩD

∫
drrD−1ρ(r) = e

∫
drδ (r− r0) = e (8.23)

If we ask optimal property of the action with respect to the dimension D, we find that

xD−1ΩD = 4π, D(1) = 4π (8.24)

where we assume that the function D(x) pass through the point D(1) = 3. So, it is ease to find
radius x as a function of the dimension

x(D) = (
ΩD

4π
)

1
1−D = (

4π
ΩD

)
1

D−1 = (
2Γ(D

2 )

π D−2
2

)
1

D−1 , ΩD =
2π D

2

Γ(D
2 )

, x(3) = 1. (8.25)

By plot of this function we will see also its inverse function, D(r).

42



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

8.5 Feynman integrals

The problem of evaluating Lorentz-covariant Feynman integrals over loop momenta originated
in the early days of perturbative quantum field theory. When quantum-field amplitudes are con-
structed within perturbation theory, multiloop Feynman integrals appear. They are integrals over
so-called loop momenta. Feynman has invented their graph-theoretical interpretation. Feynman
integrals are usually complicated objects even in a one-loop approximation, so that the number of
loops equal to two is already considered big.

In Feynman representation, for a product of two propagators raised to general powers, one
writes down the following relation:

(m2
1− p2

1)
−a1(m2

2− p2
2)
−a2 =

Γ(a1 +a2)

Γ(a1)Γ(a2)

∫ 1

0

dx1dx2xa1−1
1 xa2−1

2 δ (x1 + x2−1)
(x1(m2

1− p2
1)+ x2(m2

2− p2
2))

a1+a2

=
Γ(a1 +a2)

Γ(a1)Γ(a2)

∫ 1

0
dx1dx2xa1+δ1−1

1 xa2+δ2−1
2 (b1 +b2)

−a1−a2

=
(δ1)a1(δ2)a2

(δ1 +δ2)a1+a2

(b1 +b2)
−a1−a2 , bn = m2

n− p2
n, δn = bn∂bn , n = 1,2

(a)b =
Γ(a+b)

Γ(b)
, (8.26)

We evaluate L-loop Feynman integrals in D = 4− 2e dimensions with N internal lines with
momenta qn and masses mn, and E external legs with momenta pe:

IL =
∫ dDk1...dDkL

(q2
1−m2

1)
a1 ...(q2

L−m2
L)

aN
= K

∫
dx1xa1−1

1 ...dxNxaN−1
N δ (1− x1− ...− xN)M−a,

q2
n = (αnlkl−βne)

2, M = xn(q2
n−m2

n) = kAk−2Bk = knAnmkm−2knBn

l = 1, ...,L, e = 1, ...,E, a = a1 + ...+aN (8.27)

8.6 Dynamics and Renormdynamics

We have seen that the quantitative values and qualitative content of the given field theory
depends on the scale (parameter, e.g. µ−renormalization point,g = g(µ), A = A(µ)). In QCD e.g.
the effective action have the following form

S(µ) =
1

g2(µ)

∫
dDxL (A(µ)), (8.28)

so variation with respect the change of scale gives

δS =−2
β (g)

g3 S+
1
g2

∫
dDx

δL

δA
δA (8.29)

and the following two statements are equivalent,

δS = 0, β (g) = 0⇔ δS = 0,
δL

δA
= 0 (8.30)

So, from renorminvariance of the effective action, δS = 0, follows that at the conformal symmetric
points, fixed points of RD, (β (g) = 0), the motion equations for fields are satisfied. The solutions
of the motion equations are selfsimilar, their are generally fractals. In string theory, the connection
between conformal invariance of the effective theory on the parametric world sheet and the motion
equations of the fields on the embedding space is well known [Green,Schwarz,Witten,1987].
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9. Multiparticle Production and QCD Renormdynamics

It is sixty years since Yang and Mills (1954) performed their pioneering work on gauge the-
ories, and we have in our hands a good candidate for a theory of the strong interactions based,
precisely, on a non-Abelian gauge theory, QCD.

We considered the main properties of the renormdynamics, corresponding motion equations
and their solutions on the examples of QCD and other field theory models.

According to the high energy limit of QCD, inelastic interactions are dominated by the multi-
Regge final states. The appropriate gauge-invariant objects, which simultaneously incorporate the
transverse momentum degrees of freedom, are Reggeized gluons, quarks and antiquarks.

9.1 Renormdynamics of Observable Quantities in High Energy Physics

With the advent of any new hadron accelerator the quantities first studied are charged particle
multiplicities. The multiparticle production can be described by the probability distribution Pn

which is a superposition of some unknown distribution of sources F , and the Poisson distribution
describing particle emission from one source. This is a typical situation in many microscopic
models of multiparticle production.

Independently radiating valence quarks and corresponding negative binomial distribution presents
phenomenologically preferable mechanism of hadronization in multiparticle production processes.

9.2 Multiparticle production

Let us consider l−particle semi-inclusive distribution

Fl(n,q) =
dlσn

d̄q1...d̄ql
=

1
n!

∫ n

∏
i=1

d̄q′iδ (p1 + p2−Σl
i=1qi−Σn

i=1q′i)

·|Mn+l+2(p1, p2,q1, ...,ql,q′1, ...,q
′
n;g(µ),m(µ)),µ)|2,

d̄ p≡ d3 p
E(p)

, E(p) =
√

p2 +m2. (9.1)

From the renormdynamic equation

DMn+l+2 =
γ
2
(n+ l +2)Mn+l+2, (9.2)

we obtain

DFl(n,q) = γ(n+ l +2)Fl(n,q),
DFl(q) = γ(< n >+l +2)Fl(q),
D < nk(q)>= γ(< nk+1(q)>−< nk(q)>< n(q)>),

DCk = γ < n(q)> (Ck+1−Ck(1+ k(C2−1)))

Fl(q)≡
dlσ

d̄q1...d̄ql
= ∑

n

dlσn

d̄q1...d̄ql
, < nk(q)>=

∑n nkdlσn/d̄ql

∑n dlσn/d̄ql

Ck =
< nk(q)>

< n(q)>k (9.3)
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9.3 Scaling relations for multi particle cross sections

From dimensional considerations, the following combination of cross sections [Koba et al, 1972]
must be universal function

< n >
σn

σ
= Ψ(

n
< n >

). (9.4)

Corresponding relation for the inclusive cross sections is [Matveev et al, 1976].

< n(p)>
dσn

d̄ p
/

dσ
d̄ p

= Ψ(
n

< n(p)>
). (9.5)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] =−1,σ = Σnσn, [σ ] = 0, [< n >] = 1. (9.6)

The following expression does not depend on any dimensional quantities and must have a corre-
sponding universal form

Pn =< n >
σn

σ
= Ψ(

n
< n >

). (9.7)

For any discrete variable n, if the change of summation on the integration is good approximation,
we can invent corresponding dimension and use dimensional counting.

Let us find an explicit form of the universal functions using renormdynamic equations. From
the definition of the moments we have

Ck =
∫ ∞

0
dxxkΨ(x), (9.8)

so they are universal parameters,

DCk = 0⇒Ck+1 = (1+ k(C2−1))Ck⇒
Ck = (1+(k−1)(C2−1))...(1+2(C2−1))C2. (9.9)

Now we can invert momentum transform and find (see [Makhaldiani, 1980]) universal functions
[Ernst, Schmit, 1976], [Darbaidze et al, 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1+
1
c

(9.10)

The value of the parameter c can be measured from the dispersion low,

D =
√

< n2 >−< n >2 =
√

C2−1 < n >= A < n >,

A =
1√
c
≃ 0.6, c = 2.8;

(c = 3, A = 0.58) (9.11)

which is in accordance with n−dimension counting.
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Figure 1: KNO distribution, Ψ(z), with c = 2.8

9.4 1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling function

< n >
σn

σ
= Ψ = Ψ0(

n
< n >

)+
1

< n >
Ψ1(

n
< n >

),

Ck =C0
k +

1
< n >

C1
k ,

C0
k =

∫ ∞

0
dxxkΨ0(x), C1

k =
∫ ∞

0
dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C1

n =
C1

2c2

2
(z−2+

c−1
cz

)Ψ0 (9.12)

9.5 Characteristic function for KNO

The characteristic function we define as

Φ(t) =
∫ ∞

0
dxetxΨ(x) = (1− t/c)−c, Re(t)< c (9.13)

For the moments of the distribution, we have

Φ(k)(0) =Ck = (−c)(−c−1)...(−c− k+1)(−1/c)k =
Γ(c+ k)
Γ(c)ck (9.14)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))n, Φn(t) = (1− t/c)−c/n (9.15)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(9.16)

For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n−1)< x >2
n,
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D2 =< x2 >−< x >2= n(< x2 >n −< x >2
n) = nD2

n

D2
n =

D2

n
=

D2

< x >
< x >n (9.17)

In a sense, any Hamiltonian quantum (and classical) system can be described by infinitely
divisible distributions, because in the functional integral formulation, we use the following step

U(t) = e−itH = (e−i t
N H)N (9.18)

In the case of scalar field theory

L(φ) =
1
2

∂µφ∂ µφ− m2

2
φ2− g

n
φn

= g
2

2−n (
1
2

∂µϕ∂ µϕ − m2

2
ϕ 2− 1

n
ϕ n) (9.19)

so, to the constituent field ϕN corresponds higher value of the coupling constant,

gN = gN
n−2

2 (9.20)

For weak nonlinearity, n = 2+2ε ,d = 2/ε +2,gN = g(1+ ε lnN +O(ε2))

10. Negative binomial distribution

Negative binomial distribution (NBD) is defined as

P(n) =
Γ(n+ r)
n!Γ(r)

pn(1− p)r, ∑
n≥0

P(n) = 1, (10.1)

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.10

Figure 2: P(n),r = 2.8, p = 0.3,< n >= 6

NBD provides a very good parametrization for multiplicity distributions in e+e− annihilation;
in deep inelastic lepton scattering; in proton-proton collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity distributions whose
shapes are well fitted by a single NBD in fixed intervals of central (pseudo)rapidity η [ALICE, 2010].

It is interesting to understand how NBD fits such a different reactions?
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10.1 NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σn

σ
= P(n) =

Γ(n+ k)
Γ(n+1)Γ(k)

(
k

< n >
)k(1+

k
< n >

)−(n+k)

=
Γ(n+ k)

Γ(n+1)Γ(k)
(1+

k
< n >

)−n(1+
< n >

k
)−k

=
Γ(n+ k)

Γ(n+1)Γ(k)
(

< n >

< n >+k
)n(

k
k+< n >

)k,

=
Γ(k+n)
Γ(k)n!

( k
<n>)

k

(1+ k
<n>)

k+n
,

r = k > 0, p =
< n >

< n >+k
. (10.2)

The generating function for NBD is

F(h) = (1+
< n >

k
(1−h))−k = (1+

< n >

k
)−k(1−ah))−k,

a = p =
< n >

< n >+k
. (10.3)

Indeed,

(1−ah))−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞

0
dttk−1e−t

∞

∑
0

(tah)n

n!

=
∞

∑
0

Γ(n+ k)an

Γ(k)n!
hn,

P(n) = (1+
< n >

k
)−k Γ(n+ k)

Γ(k)n!
(

< n >

< n >+k
)n

=
kkΓ(n+ k)

Γ(k)Γ(n+1)
(< n >+k)−(n+k) < n >n

=
Γ(n+ k)

Γ(n+1)Γ(k)
(

k
< n >

)k(1+
k

< n >
)−(n+k) (10.4)

The Bose-Einstein distribution is a special case of NBD with k = 1.
If k is negative, the NBD becomes a positive binomial distribution, narrower than Poisson

(corresponding to negative correlations).
For negative (integer) values of k =−N, we have Binomial GF

Fbd = (1+
< n >

N
(h−1))N = (a+bh)N , a = 1− < n >

N
,b =

< n >

N
,

Pbd(n) =Cn
N(

< n >

N
)n(1− < n >

N
)N−n (10.5)

(In a sense) we have a (quantum) spectrum for the parameter k, which contains any (positive) real
values and (with finite number of states) the negative integer values, (0≤ n≤ N)

From the generating function we have

< n2 >= (
hd
dh

)2F(h)|h=1 =
k+1

k
< n >2 +< n >, (10.6)
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for dispersion we obtain

D =
√

< n2 >−< n >2 =
1√
k
< n > (1+

k
< n >

)1/2

=
1√
k
< n >+

√
k

2
+O(1/ < n >), (10.7)

So, the dispersion low for KNO and NBD distributions are the same, with c = k, for high
values of the mean multiplicity.

The factorial moments of NBD,

Fm = (
d
dh

)mF(h)|h=1 =
< n(n−1)...(n−m+1)>

< n >m =
Γ(m+ k)
Γ(m)km , (10.8)

and usual normalized moments of KNO (9.14) coincides.

10.2 Fractal factorial and cumulant moments

Using fractal calculus (see e.g. [Makhaldiani, 2003]),

D−α
0,x f =

|x|α

Γ(α)

1∫
0

|1− t|α−1 f (xt)dt, =
|x|α

Γ(α)
B(α, ∂x) f (x)

= |x|α Γ(∂x)
Γ(α +∂x)

f (x), f (xt) = tx d
dx f (x). (10.9)

we can define factorial and cumulant moments for any complex indexes,

F−q =< n >q D−q
0,xGNBD(x)|x=0 =

kqΓ(k−q)
Γ(k)

,

K−q =< n >q D−q
0,x lnGNBD(x)|x=0 = kq+1Γ(−q),

H−q =
Γ(k+1)Γ(−q)

Γ(k−q)
(10.10)

10.3 The KNO as asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNO scaling,

lim
<n>→∞

< n > Pn| n
<n>=z = Ψ(z) (10.11)

Indeed, using the following asymptotic formula

Γ(x+1) = xxe−x
√

2πx(1+
1

12x
+O(x−2)), (10.12)

we find

< n > Pn =< n >
(n+ k−1)n+k−1e−(n+k−1)

Γ(k)nne−n
kk

nk < n > zke−k n+k
<n>

=
kk

Γ(k)
zk−1e−kz +O(1/ < n >) (10.13)
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We can calculate also 1/ < n > correction term to the KNO from the NBD. The answer is

Ψ =
kk

Γ(k)
zk−1e−kz(1+

k2

2
(z−2+

k−1
kz

)
1

< n >
) (10.14)

This form coincides with the corrected KNO (9.12) for c = k and C1
2 = 1.

We have seen that KNO characteristic function (9.13) and NBD GF (10.3) have almost same
form. This relation become in coincidence if

c = k, t = (h−1)
< n >

k
(10.15)

Now the definition of the characteristic function (9.13) can be read as∫ ∞

0
e−<n>z(1−h)Ψ(z)dz = (1+

< n >

k
(1−h))−k (10.16)

which means that Poisson GF weighted by KNO distribution gives NBD GF. Because of this,
the NBD is the gamma-Poisson (mixture) distribution. This is the exact and universal picture of
hadronization in multiparticle production processes.

10.4 NBD, Poisson and Gauss distributions

Fore high values of x2 = k the NBD distribution reduces to the Poisson distribution

F(x1,x2,h) = (1+
x1

x2
(1−h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

= ∑P(n)hn,

P(n) = e−<n>< n >n

n!
(10.17)

For the Poisson distribution

d2F(h)
dh2 |h=1 =< n(n−1)>=< n >2,

D2 =< n2 >−< n >2=< n > . (10.18)

In the case of NBD, we had the following dispersion low

D2 =
1
k
< n >2 +< n >, (10.19)

which coincides with the previous expression for high values of k. Poisson GF belongs to the class
of the infinitely divisible distributions,

F(h,< n >) = (F(h,< n > /k))k (10.20)

For high values of < n >, the Poisson distribution reduces to the Gauss distribution

P(n) = e−<n>< n >n

n!
⇒ 1√

2π < n >
exp(−(n−< n >)2

2 < n >
) (10.21)

For high values of k in the integral relation (10.16), in the KNO function dominates the value zc = 1
and both sides of the relation reduce to the Poisson GF.
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10.5 Multiplicative properties of KNO and NBD and corresponding motion equations

A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.
An useful property of the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent random variables drawn from a Bose-
Einstein distribution with mean < n > /k,

Pn =
1

< n >+1
(

< n >

< n >+1
)n

= (eβ h̄ω/2− e−β h̄ω/2)e−β h̄ω(n+1/2), T =
h̄ω

ln <n>+1
<n>

∑
n≥0

Pn = 1, ∑nPn =< n >=
1

eβ h̄ω−1 , T ≃ h̄ω < n >, < n >≫ 1,

P(x) = ∑
n

xnPn = (1+< n > (1− x))−1. (10.22)

This is easily seen from the generating function in (10.3), remembering that the generating
function of a sum of independent random variables is the product of their generating functions.

Indeed, for

n = n1 +n2 + ...+nk, (10.23)

with ni independent of each other, the probability distribution of n is

Pn = ∑
n1,...,nk

δ (n−∑ni)pn1 ...pnk ,

P(x) = ∑
n

xnPn = p(x)k (10.24)

This has a consequence that an incoherent superposition of N emitters that have a negative binomial
distribution with parameters k,< n > produces a negative binomial distribution with parameters
Nk,N < n >.

So, for the GF of NBD we have (N=2)

F(k,< n >)F(k,< n >) = F(2k,2 < n >) (10.25)

And more general formula (N=m) is

F(k,< n >)m = F(mk,m < n >) (10.26)

We can put this equation in the closed nonlocal form

QqF = Fq, (10.27)

where

Qq = qD, D =
kd
dk

+
< n > d
d < n >

=
x1d
dx1

+
x2d
dx2

(10.28)
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Note that temperature defined in (10.22) gives an estimation of the Glukvar temperature when it
radiates hadrons. If we take h̄ω = 100MeV, to T ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5 If we
take h̄ω = 10MeV, to T ≃ Tc≃ 200MeV corresponds < n>≃ 20. A singular behavior of < n> may
indicate corresponding phase transition and temperature. At that point we estimate characteristic
quantum h̄ω.

We see that universality of NBD in hadron-production is similar to the universality of black
body radiation.

11. Multiparticle production stochastic dynamics

Let us imagine space-time development of the the multiparticle process and try to describe it
by some (phenomenological) dynamical equation. We start to find the equation for the Poisson
distribution and than naturally extend them for the NBD case.

Let us define an integer valued variable n(t) as a number of events (produced particles) at
the time t, n(0) = 0. The probability of event n(t), P(t,n), is defined from the following motion
equation

Pt ≡
∂P(t,n)

∂ t
= r(P(t,n−1)−P(t,n)), n≥ 1

Pt(t,0)) =−rP(t,0),
P(t,n) = 0, n < 0, (11.1)

so

P(t,0)≡ P0(t) = e−rt ,

P(t,n) = Q(t,n)P0(t),
Qt(t,n) = rQ(t,n−1), Q(t,0) = 1. (11.2)

To solve the equation for Q, we invent its generating function

F(t,h) = ∑
n≥0

hnQ(t,n), (11.3)

and solve corresponding equation

Ft = rhF, F(t,h) = erth = ∑hn (rt)n

n!
, Q(t,n) =

(rt)n

n!
, (11.4)

so

P(t,n) = e−rt (rt)n

n!
(11.5)

is the Poisson distribution.
If we compare this distribution with (10.21), we identify < n >= rt, as if we have a free

particle motion with velocity r and the distance is the mean multiplicity. This way we have a
connection between n-dimension of the multiplicity and the usual dimension of trajectory.
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As the equation gives right solution, its generalization may give more general distribution, so
we will generalize the equation (11.1). For this, we put the equation in the closed form

Pt(t,n) = r(e−∂n−1)P(t,n)
= ∑

k≥1
Dk∂ kP(t,n), Dk = (−1)k r

k!
, (11.6)

where the Dk, k ≥ 1, are generalized diffusion coefficients.

11.1 Fractal dimension of the multiparticle production trajectories

For other values of the coefficients, we will have other distributions. For mean square deviation
of the trajectory we have

< (x− x̄)2 >=< x2 >−< x >2≡ D(x)2 ∼ t2/d f , (11.7)

where d f is fractal dimension. For smooth classical trajectory of particles we have d f = 1; for free
stochastic, Brownian, trajectory, all diffusion coefficients are zero but D2, we have d f = 2. In the
case of Poisson process we have,

D(n)2 =< n2 >−< n >2∼ t, d f = 2. (11.8)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, d f = 1. (11.9)

As we have seen, rasing k, KNO reduce to the Poisson, so we have a dimensional (phase) transition
from the phase with dimension 1 to the phase with dimension 2. It is interesting, if somehow this
phase transition is connected to the other phase transitions in strong interaction processes. For the
Poisson distribution GF is solution of the following equation,

Ḟ =−r(1−h)F, (11.10)

For the NBD corresponding equation is

Ḟ =
−r(1−h)

1+ rt
k (1−h)

F =−R(t)F, R(t) =
r(1−h)

1+ rt
k (1−h)

. (11.11)

If we change the time variable as t = T d f , we reduce the dispersion low from general fractal to the
NBD like case. Corresponding transformation for the evolution equation is

FT =−d f T d f−1R(T dF )F, (11.12)

we ask that this equation coincides with NBD motion equation, and define rate function R(T )

d f T d f−1R(T dF ) =
r(1−h)

1+ rT
k (1−h)

(11.13)

The following equation defines a production processes with fractal dimension dF

Ft =−R(t)F, R(t) =
r(1−h)

dFt
dF−1

dF (1+ rt1/dF
k (1−h))

(11.14)
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12. Dynamical Formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connect different observable
quantities and reduce the number of independently measurable quantities. More fundamental equa-
tion contains less number of independent quantities. When (before) we solve the equations, we
invent dimensionless invariant variables, than one solution can describe all of the class of phenom-
ena.

In the z - Scaling (zS) approach to the inclusive multiparticle distributions (MPD) (see, e.g.
[Tokarev, Zborovsky, 2007]), different inclusive distributions depending on the variables x1, ...xn,

are described by universal function Ψ(z) of fractal variable z,

z = x−α1
1 ...x−αn

n . (12.1)

It is interesting to find a dynamical system which generates this distributions and describes
corresponding MPD.

We can find a good function if we know its derivative. Let us consider the following RD like
equation

z
d
dz

Ψ =V (Ψ),∫ Ψ(z)

Ψ(z0)

dx
V (x)

= ln
z
z0

(12.2)

12.1 Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the running coupling constant
g(τ), τ = lnz/z0

z
d
dz

Ψ = Ψ̇ =
dΨ
dg

β (g) =U(g) =U( f−1(Ψ)) =V (Ψ),

Ψ(τ) = f (g(τ)), g = f−1(Ψ(τ)) (12.3)

12.2 Realistic solution for Ψ

According to the paper [Tokarev, Zborovsky, 2007], for high values of z, Ψ(z)∼ z−β ; for small
z, Ψ(z)∼ const.

So, for high z,

z
d
dz

Ψ =V (Ψ(z)) =−βΨ(z); (12.4)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) =−βΨ+ γΨ2. (12.5)

With this function, we can solve the equation for Ψ and find

Ψ(z) =
1

γ
β + czβ . (12.6)
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12.3 More general solution for Ψ

Let us consider more general potential V

z
d
dz

Ψ =V (Ψ) =−βΨ(z)+ γΨ(z)1+n (12.7)

Corresponding solution for Ψ is

Ψ(z) =
1

( γ
β + cznβ )

1
n

(12.8)

More general solution contains three parameters and may better describe the data of inclusive
distributions.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 3: z-scaling distribution Ψ(z,9,9,1,1)

In the case of n = 1 we reproduce the previous solution.
Another "natural" case is n = 1/β ,

Ψ(z) =
1

( γ
β + cz)β (12.9)

In this case, we can absorb (interpret) the combined parameter by shift and scaling

z→ 1
c
(z− γ

β
) (12.10)

Another interesting point of view is to predict the value of β

β =
1
n
= 0.5;0.33;0.25;0.2; ..., n = 2,3,4,5, ... (12.11)

For experimentally suggested value β ≃ 9,n = 0.11
The three parameter function is restricted by the normalization condition∫ ∞

0
Ψ(z)dz = 1,
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B(
β −1

βn
,

1
βn

) = (
β
γ
)

β−1
βn

βn
cβn , (12.12)

so remains only two free parameter. When βn = 1, we have

c = (β −1)(
β
γ
)β−1 (12.13)

If βn = 1 and β = γ, than c = β −1.
In general

cβn = (
β
γ
)

β−1
βn

βn

B(β−1
βn , 1

βn)
(12.14)

12.4 Space-time dimension inside hadrons and nuclei

The dimension of the space(-time) is the model dependent concept. E.g. for the fundamental
bosonic string model (in flat space-time) the dimension is 26; for superstring model the dimension
is 10 [Kaku, 2000].

Let us imagine that we have some action-functional formulation with the fundamental motion
equation

z
d
dz

Ψ =V (Ψ(z)) =V (Ψ) =−βΨ+ γΨ1+n. (12.15)

Than, the corresponding Lagrangian contains the following mass and interaction parts

−β
2

Ψ2 +
γ

2+n
Ψ2+n (12.16)

The action gives renormalizable (effective quantum field theory) model when

d +2 =
2N

N−2
=

2(2+n)
n

= 2+
4
n
= 2+4β , (12.17)

so, measuring the parameter β inside hadronic and nuclear matters, we find corresponding (fractal)
dimension.

12.5 Another action formulation of the Fundamental equation

From fundamental equation we obtain

(z
d
dz

)2Ψ≡ Ψ̈ =V ′(Ψ)V (Ψ) =
1
2
(V 2)′

= β 2Ψ−βγ(n+2)Ψn+1 + γ2(n+1)Ψ2n+1 (12.18)

Corresponding action Lagrangian is

L =
1
2

Ψ̇2 +U(Ψ), U =
1
2

V 2 =
1
2

Ψ2(β − γΨn)2

=
β 2

2
Ψ2−βγΨ2+n +

γ2

2
Ψ2+2n (12.19)
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This potential, −U, has two maximums, when V = 0, and minimum, when V ′ = 0, at Ψ = 0 and
Ψ = (β/γ)1/n, and Ψ = (β/(n+1)γ)1/n, correspondingly.

We define time-space-scale field Ψ(t,x,η), where η = lnz− is scale coordinate variable, with
corresponding action functional

A =
∫

dtddxdη(
1
2

gab∂aΨ∂bΨ+U(Ψ)) (12.20)

The renormalization constraint for this action is

N = 2+2n =
2(2+d)
2+d−2

= 2+
4
d
, dn = 2, d = 2/n = 2β . (12.21)

So we have two models for spase-time dimension, (12.17) and (12.21),

d1 = 4β ; d2 = 2β (12.22)

The coordinate η characterise (multiparticle production) physical process at the (external) space-
time point (x,t). The dimension of the space-time inside hadrons and nuclei, where multiparticle
production takes place is

d +1 = 1+2β (12.23)

Note that this formula reminds the dimension of the spin s state, ds = 2s+1. If we take β (= s) =
0;1/2;1;3/2;2; ... We will have d +1 = 1;2;3;4;5; ...

13. Zeros of the Riemann zeta function

The Riemann zeta function ζ (s) is defined for complex s = σ + it and σ > 1 by the expansion

ζ (s) = ∑
n≥1

n−s, Re s > 1,

= δ−s
x

x
1− x

|x⇁1 =
1

Γ(s)

∫ ∞

0
ts−1e−δxt x

1− x
|x⇁1 =

1
Γ(s)

∫ ∞

0
ts−1et∂τ

1
eτ −1

|τ⇁0

=
1

Γ(s)

∫ ∞

0

ts−1dt
et −1

, x = e−τ . (13.1)

All complex zeros, s = α + iβ , of ζ (σ + it) function lie in the critical stripe 0 < σ < 1,
symmetrically with respect to the real axe and critical line σ = 1/2. So it is enough to investigate
zeros with α ≤ 1/2 and β > 0. These zeros are of three type, with small, intermediate and big
ordinates.

13.1 Riemann hypothesis

The Riemann hypothesis [Titchmarsh, 1986] states that the (non-trivial) complex zeros of ζ (s)
lie on the critical line σ = 1/2.

At the beginning of the XX century Polya and Hilbert made a conjecture that the imaginary part
of the Riemann zeros could be the oscillation frequencies of a physical system (ζ - (mem)brane).

After the advent of Quantum Mechanics, the Polya-Hilbert conjecture was formulated as the
existence of a self-adjoint operator whose spectrum contains the imaginary part of the Riemann
zeros.

The Riemann hypothesis (RH) is a central problem in Pure Mathematics due to its connection
with Number theory and other branches of Mathematics and Physics.
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13.2 The functional equation for zeta function

The functional equation is (see e.g. [Titchmarsh, 1986])

ζ (1− s) =
2Γ(s)
(2π)s cos(

πs
2
)ζ (s) (13.2)

From this equation we see the real (trivial) zeros of zeta function:

ζ (−2n) = 0, n = 1,2, ... (13.3)

Also, at s=1, zeta has pole with reside 1.
From Field theory and statistical physics point of view, the functional equation (13.2) is duality

relation, with self dual (or critical) line in the complex plane, at s = 1/2+ iβ ,

ζ (
1
2
− iβ ) =

2Γ(s)
(2π)s cos(

πs
2
)ζ (

1
2
+ iβ ), (13.4)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite value of the free

energy,

F =−T lnζ . (13.5)

At the point with β = 14.134725... is located the first zero. In the interval 10 < β < 100, zeta
has 29 zeros. The first few million zeros have been computed and all lie on the critical line. It has
been proved that uncountably many zeros lie on critical line.

The first relation of zeta function with prime numbers is given by the following formula,

ζ (s) = ∏
p
(1− p−s)−1, Re s > 1. (13.6)

Another formula, which can be used on critical line, is

ζ (s) = (1−21−s)−1 ∑
n≥1

(−1)n+1n−s, Re s > 0

=
eiπ(δx+1)

(1−21−s)δ s
x

x
1− x

|x⇁1 =
1

1−21−s
1

Γ(s)

∫ ∞

0
dtts−1eiπe(iπ−t)δx

1
x−1−1

|x⇁1

=
1

1−21−s
1

Γ(s)

∫ ∞

0
dtts−1e(t−iπ)∂τ

eiπ

eτ −1
|τ⇁0 =

1
1−21−s

1
Γ(s)

∫ ∞

0

ts−1dt
et +1

,∫ ∞

0

ts−1dt
et +1

=
∫ ∞

0
dtts−1e−t ∑

n≥0
(−1)ne−nt = Γ(s) ∑

n≥1
(−1)n+1n−s (13.7)

13.3 From Qlike to zeta equations

Let us consider the values q = n,n = 1,2,3, ... and take sum of the corresponding equations
(25.139), we find

ζ (−D)F =
F

1−F
(13.8)
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In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the set of nontrivial zeros of

the zeta function, in correspondence with Riemann hypothesis,

−Dn =
n
2
+ iHn, Hn = i(

n
2
+Dn),

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H+
n = Hn =

n

∑
m=1

H1(xm),

H1 = i(
1
2
+ x∂x) =−

1
2
(xp̂+ p̂x), p̂ =−i∂x (13.9)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The case n = 1 corresponds to the
Riemann hypothesis.

The case n = 2, corresponds to NBD,

ζ (1+ iH2)F =
F

1−F
, ζ (1+ iH2)|F =

1
1−F

,

F(x1,x2;h) = (1+
x1

x2
(1−h))−x2 (13.10)

Let us scale x2→ λx2 and take λ → ∞ in (13.10), we obtain

ζ (
1
2
+ iH1(x))e−(1−h)x =

1
e(1−h)x−1

,

1
ζ (1

2 + iH(x))
1

eεx−1
= e−εx,

H(x) = i(
1
2
+ x∂x) =−

1
2
(xp̂+ p̂x), H+ = H,ε = 1−h. (13.11)

Now we scale x→ xy, multiply the equation by ys−1 and integrate

1
ζ (1

2 + iH(x))

∫ ∞

0
dy

ys−1

eεxy−1
=
∫ ∞

0
dye−εxyys−1 =

1
(εx)s Γ(s),

1
ζ (1

2 + iH(x))

∫ ∞

0
dy

ys−1

eεxy−1
=

1
ζ (1

2 + iH(x))
x−sε−sΓ(s)ζ (s), (13.12)

so

ζ (
1
2
+ iH(x))x−s = ζ (s)x−s⇒ H(x)ψE = EψE ,

ψE = cx−s, s =
1
2
+ iE, (13.13)

we have correct way and can return to the previous step (13.11) and take the following trans-
formation

1
eεxy−1

=
1

2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2φ(E,εy),

φ(E,εy) =
∫ ∞

0
dx

xiE− 1
2

eεxy−1
=

Γ(1
2 + iE)

(εy)iE+1/2 ζ (
1
2
+ iE),

1
2π

∫ ∞+ic

−∞+ic
dEx−iE−1/2φ(E,εy)

1
ζ (1/2+ iE)

= e−εxy (13.14)
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If we take the following formula

ζ (s) =
1

Γ(s)

∫ ∞

0

ts−1dt
et −1

, (13.15)

which says that ζ function is the Mellin transformation, we can find

Γ(1+ iH2)
F

1−F
=
∫ ∞

0

dt/t
et −1

F1/t , (13.16)

or

Γ(1+ iH2)Φ =
∫ ∞

0

dt/t
et −1

(
Φ

1+Φ
)1/t ,

Φ =
F

1−F
=

1
(1+ x1

x2
(1−h))x2−1

(13.17)

We can obtain also the following equation with argument of ζN on critical axis

ζN(
1
2
+ iH1(x2))F(x1,x2,h) =

N

∑
n=1

1
(1+ x1

nx2
(1−h))nx2

=
N

∑
n=1

F(x1,nx2,h),

ζN(
1
2
+ iH1(x2))F(λx1,x2,h) =

N

∑
n=1

1

(1+ λx1
nx2

(1−h))nx2

=
N

∑
n=1

F(λx1,nx2,h)≃ Ne−λ (1−h)x1 ,N≫ 1. (13.18)

Let us calculate next therm in the 1/λ expansion in the (13.10)

F(x1,λx2,h) = (1+
εx1

λx2
)−λx2 = e−λx2 ln(1+ε x1

λx2
)

= e−εx1e
(εx1)

2

2λx2
+O(λ−2)

= e−εx1(1+
(εx1)

2

2λx2
+O(λ−2)),

(F−1−1)−1 = (eλx2 ln(1+ε x1
λx2

)−1)−1

=
1

eεx1−1
(1+

eεx1

eεx1−1
(εx1)

2

2λx2
+O(λ−2)) (13.19)

The zero order term, λ 0 we already considered. The next, λ−1 order term gives the following
relations

ζ (−δ1−δ2)
x2

1
x2

e−εx1 =
1
x2

ζ (1−δ1)x2
1e−εx1 =

x2
1eεx1

x2(eεx1−1)2 ,

ζ (1−δ )x2e−εx =
x2eεx

(eεx−1)2 = x2e−εx +O(e−2εx)

ζ (1−δ )Ψ = EΨ+O(e−2εx),Ψ = x2e−εx,E = 1. (13.20)

There have been a number of approaches to understanding the Riemann hypothesis based on
physics (for a comprehensive list see [Watkins])

60



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

According to the idea of Berry and Keating, [Berry, Keating, 1997] the real solutions En of

ζ (
1
2
+ iEn) = 0, (13.21)

are energy levels, eigenvalues of a quantum Hermitian operator (the Riemann operator) associated
with the one-dimensional classical hyperbolic Hamiltonian

Hc = xp, (13.22)

where x and p are the conjugate coordinate and momentum.
They suggest a quantization condition generating Riemann zeros. This Hamiltonian breaks

time-reversal invariance since (x, p)→ (x,−p)⇒ H→−H. The classical Hamiltonian H = xp of
linear dilation, i.e. multiplication in x and contraction in p, gives the Hamiltonian equations:

ẋ = x,
ṗ =−p, (13.23)

with the solution

x(t) = x0et ,

p(t) = p0e−t (13.24)

for any nonzero E = x0 p0 = x(t)p(t) is hyperbola in phase space.
The system is quantized by considering the dilation operator in the x space

H =
1
2
(xp+ px) =−ih̄(

1
2
+ x∂x), (13.25)

which is the simplest formally Hermitian operator corresponding to the classical Hamiltonian. The
eigenvalue equation

HψE = EψE , (13.26)

is satisfied by the eigenfunctions

ψE(x) = cx−
1
2+

i
h̄ E , (13.27)

where the complex constant c is arbitrary, since the solutions are not square-integrable. To the
normalization ∫ ∞

0
dxψE(x)∗ψE ′(x) = δ (E−E ′), (13.28)

corresponds c = 1/
√

2π.
We have seen that

ζ (
1
2
+ iH)e−εx =

1
eεx−1

,

H =−i(
1
2
+ x∂x) = x1/2 px1/2, p =−i∂x, (13.29)
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than

e−εx =

∫
dEx−1/2+iEφ(E,ε),

φ(E,ε) =
1

2π

∫ ∞

0
dxx−1/2−iEe−εx =

ε−1/2+iE

2π
Γ(1/2− iE);

ζ (
1
2
+ iE)φ(E,ε) =

1
2π

∫ ∞

0
dx

x−1/2−iE

eεx−1

=
ε−1/2+iE

2π
Γ(1/2− iE)ζ (

1
2
− iE). (13.30)

13.4 Some calculations with zeta function values

From the equation (13.11) we have

ζ (
1
2
+ iH1(x))e−εx =

1
eεx−1

, H1 = i(
1
2
+ x∂x),

ζ (−x∂x)(1− εx+
(εx)2

2
+ ...) =

1
εx

(1− (
εx
2
+

(εx)2

6
+ ...)+

+(
εx
2
+ ...)2 + ...), (13.31)

so

ζ (0) =−1
2
, ζ (−1) =− 1

12
, ... (13.32)

Note that, a little calculation shows that, the (εx)2 terms cancels on the r.h.s, in accordance with
ζ (−2) = 0.

More curious question concerns with the term 1/εx on the r.h.s. To it corresponds the term
with actual infinitesimal coefficient on the l.h.s.

1
ζ (1)

1
εx

, (13.33)

in the spirit of the nonstandard analysis (see, e.g. [Davis, 1977]), we can imagine that such a terms
always present but on the r.h.s we may not note them.

For other values of zeta function we will use the following expansion

1
ex−1

=
1

x+ x2

2 + x3

3! + ...
=

1
x
− 1

2
+ ∑

k≥1

B2kx2k−1

(2k)!
,

B2 =
1
6
, B4 =−

1
30

, B6 =
1
42

, ... (13.34)

and obtain

ζ (1−2n) =−B2n

2n
, n≥ 1. (13.35)

14. Hamiltonization of the General Dynamical Systems

Let us consider a general dynamical system described by the following system of the ordinary
differential equations [Arnold, 1978]

ẋn = vn(x), 1≤ n≤ N, (14.1)
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ẋn stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and

vn(x) = εnm
∂H0

∂xm
, 1≤ n,m≤ 2M, (14.2)

the system (14.1) is Hamiltonian one and can be put in the form

ẋn = {xn,H0}0, (14.3)

where the Poisson bracket is defined as

{A,B}0 = εnm
∂A
∂xn

∂B
∂xm

= A

←
∂

∂xn
εnm

→
∂

∂xm
B, (14.4)

and summation rule under repeated indices has been used.
Let us consider the following Lagrangian

L = (ẋn− vn(x))ψn (14.5)

and the corresponding equations of motion

ẋn = vn(x), ψ̇n =−
∂vm

∂xn
ψm. (14.6)

The system (14.6) extends the general system (14.1) by linear equation for the variables ψ . The
extended system can be put in the Hamiltonian form [Makhaldiani, Voskresenskaya, 1997]

ẋn = {xn,H1}1, ψ̇n = {ψn,H1}1, (14.7)

where first level (order) Hamiltonian is

H1 = vn(x)ψn (14.8)

and (first level) bracket is defined as

{A,B}1 = A(

←
∂

∂xn

→
∂

∂ψn
−

←
∂

∂ψn

→
∂

∂xn
)B. (14.9)

Note that when the Grassmann grading [Berezin, 1987] of the conjugated variables xn and ψn

are different, the bracket (14.9) is known as Buttin bracket[Buttin, 1996].

In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988] for the Hamiltonian treatment of
systems defined by first-order Lagrangians, i.e. by a Lagrangian of the form

L = fn(x)ẋn−H(x), (14.10)

motion equations

fmnẋn =
∂H
∂xm

, (14.11)
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for the regular structure function fmn, can be put in the explicit hamiltonian (Poisson; Dirac) form

ẋn = f−1
nm

∂H
∂xm

= {xn,xm}
∂H
∂xm

= {xn,H}, (14.12)

where the fundamental Poisson (Dirac) bracket is

{xn,xm}= f−1
nm , fmn = ∂m fn−∂n fm. (14.13)

The system (14.6) is an important example of the first order regular hamiltonian systems.
Indeed, in the new variables,

y1
n = xn,y2

n = ψn, (14.14)

lagrangian (14.5) takes the following first order form

L = (ẋn− vn(x))ψn⇒
1
2
(ẋnψn− ψ̇nxn)− vn(x)ψn

=
1
2

ya
nεabẏb

n−H(y)

= f a
n (y)ẏ

a
n−H(y), f a

n =
1
2

yb
nεba,H = vn(y1)y2

n,

f ab
nm =

∂ f b
m

∂ya
n
− ∂ f a

n

∂yb
m
= εabδnm; (14.15)

corresponding motion equations and the fundamental Poisson bracket are

ẏa
n = εabδnm

∂H
∂yb

m
= {ya

n,H},{ya
n,y

b
m}= εabδnm. (14.16)

To the canonical quantization of this system corresponds

[ŷa
n, ŷ

b
m] = ih̄εabδnm, ŷ1

n = y1
n, ŷ2

n =−ih̄
∂

∂y1
n

(14.17)

In this quantum theory, classical part, motion equations for y1
n, remain classical.

15. Hamiltonization of the fractal dynamical systems

Let us consider the following fractal generalization of the usual finite dimensional dynamical
systems

0D−α
t xn = fn(x), 1≤ n≤ N (15.1)

The Hamiltonian extension of the dynamical system we construct from the following action func-
tional

S =
∫ T

0
dtψn(t)(0D−α

t xn− fn(x)) =
∫ T

0
dtψn(t)(0D−α

t xn)−H

=
∫ T

0
dtxn(t)(tD−α

T ψn)−H = (
∫ T

0
dtxn(t))(0D−α

T ψn)−
∫ T

0
dtxn(t)(0D−α

t ψn)−H,
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tD−α
T = 0D−α

T − 0D−α
t , 0D−α

t f =
1

Γ(α)

∫ t

0
|t− τ |α−1 f (τ) (15.2)

and complementary linear equation

tD−α
T ψn =

∂ fm

∂xn ψm (15.3)

and, when

0D−α
T ψn = 0⇒ ∂ fm

∂xn ψm(0) (15.4)

we obtain

0D−α
t ψn =−

∂ fm

∂xn ψm (15.5)

Note that for classical Hamiltonization we have the following boundary conditions

ψ(0)x(0) = ψ(T )x(T ) (15.6)

15.1 Supersymmetric Classical and Quantum Dynamics

Supersymmetric classical and quantum mechanics (SQM) appear after supersymmetric field
theories, [Berezin, 1987], [Witten, 1998]. At its veryroots the conceptual foundations of quantum
theory involve notions of discreteness and uncertainty. Schroedinger and Heisenberg, respectively,
gave two distinct but equivalent formulations: the configuration space approach which deals with
wave functions and the phase space approach which focuses on the role of observables. Dirac
noticed a connection between commutators and classical Poisson brackets and it was chiefly who
gave the commutator form of the Poisson bracket in quantum mechanics on the basis of Bohr’s
correspondence principle. In field theory supersymmetry was invented bay Gol’fand and Likhtam
[Gol’fand, Likhtman, 1971], in string theory supersymmetry was invented by Ramond and Neveu
and Schwarz [Ramond, 1971], [Neveu,Schwarz,1971 ]. Subsequent to these works various models
embedding SUSY were proposed within a field-theoretic framework. The most notable one was the
work of Wess and Zumino [Wess,Zumino,1974] who defined a set of supergauge transformation
in four space-time dimensions and pointed out their relevance to the Lagrangian free-field theory.
It has been found that SUSY field theories prove to be the least divergent in comparison with the
usual quantum field theories. From a particle physics point of view, some of the major motivations
for the study of SUSY are: (i) it provides a convenient platform for unifying matter and force, (ii)
it reduces the divergence of quantum gravity, and (iii) it gives an answer to the so-called "hierarchy
problem" in grand unified theories.

15.2 Reduction of the Higher Order Dynamical System

Note that the procedure of reduction of the higher order dynamical system, e.g. second order
Euler-Lagrange motion equations, to the first order dynamical systems, in the case to the Hamil-
tonian motion equations, can be continued using fractal calculus. E.g. first order system can be
reduced to the half order one,

D1/2q = ψ,

D1/2ψ = p⇔ q̇ = p. (15.7)
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15.3 Dynamics and Superdynamics

Hamiltonian mechanics

ẋ = p
ṗ =−Vx = x f (15.8)

when f = k = constant, we have the harmonic oscillator case. The Hamiltonian dynamics is the
first order reduction of the second order Lagrangian dynamics. The superdynamics is a following
1/2 reduction of the Hamiltonian dynamics in the superspace (t,θ)

∂ 1/2
t = ∂θ +θ∂t , (∂

1/2
t )2 = ∂t , x(t,θ) = x0(t)+θx1(t)

∂ 1/2
t x = y,

∂ 1/2
t y = u = p,

∂ 1/2
t u = v,

∂ 1/2
t v = f , (15.9)

or, in the matrix form

∂ 1/2
t ψ = Aψ, ψT = (x,y,u,v), A =


0 1 0 0
0 0 1 0
0 0 0 1
f 0 0 0

 , tr(A) = 0, det(A) =− f . (15.10)

In the component form the motion equations and step by step there solutions are

8. ẋ0 = y1 = u0 = c3 +
∫

dt f ,

3. ẏ0 = u1 = c1⇒ y0 = c1t + c2

6. u̇0 = v1 = f ⇒ u0(t) = c3 +
∫

dt f ,

1. v̇0 = 0⇒ v0 = c1 = const,
4. x1 = y0 = c1t + c2,

7. y1 = u0,

2. u1 = v0 = c1,

5. v1 = f . (15.11)

15.4 Renormdynamics and Superdynamics

In the dynamical systems of the mechanics the simplest and most fundamental case corre-
sponds to the the system with one dynamical degrees of freedom and two dimensional phase space
(x, p), N = 2. In renormdynamics the symplest and most important case correspondes to the one di-
mensional phase space, N = 1. Corresponding examples are given by one charge renormdynamics
of QED and QCD,

ẋ = f (x) (15.12)

with the solution in the following implicit form∫ x(t)

x0

dx
f (x)

= t− t0 (15.13)
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15.5 Super-Fractal Dynamics

Let us consider fractal superdynamics on the superspace (t,θ)

Dx = f (x), D = ∂θ +θ∂t , D2 = ∂t , x(t,θ) = x0(t)+θx1(t),
x1 +θ ẋ0 = f0(x0)+θ( f ′0(x0)x1 + f1(x0)),

x1 = f0(x0),

ẋ0 = f ′0(x0)x1 + f1(x0) = f ′0(x0) f0(x0)+ f1(x0) = H ′0 + f1 = φ(x0), H0 =
1
2

f 2
0∫ x(t)

x0

dx
φ(x)

= t− t0 (15.14)

Note that, if we take, f1 = 0, we will have gradient flow with potential function H0

15.6 Hamiltonian extension of the SFD

We start from the following action

S =
∫

dtdθ p(t,θ)(Dx− f (x)) =
∫

dt(p0(t)(ẋ0− f ′0(x0)x1− f1(x0))+ p1(t)(x1− f0(x0))),

p = p0 +θ p1, x = x0 +θx1, f (x) = f0(x)+θ f1(x) = f0(x0)+θ f ′0(x0)x1 +θ f1(x0) (15.15)

Variations with respect to the p1 and p0 give the previous equations of motion. Variations with
respect to the x1 and x0 give the following complementary motion equations

p1 = f ′0(x0)p0,

ṗ0 =− f
′′
0 (x0)x1 p0− f ′1(x0)− p1 f ′0(x0)

=− f
′′
0 f0 p0− f ′1(x0)− f ′20 p0 =−H

′′
0 p0− f ′1(x0) (15.16)

In the case of the gradient flow: f1 = 0⇒ f ′1 = 0 and for f0 = ax+b we have the following solution

p0(t) = Ae−a2t , p1 = ap0,

x0 = Bea2t −b/a, x0 ≥ b/a,
x0 =−Bea2t −b/a, x0 ≤ b/a,
x1 = ax0 +b (15.17)

For general solution we have

p0(t) = Aexp(−
∫ t

0
dτH

′′
0 (x0(τ))) = Aexp(−

∫ x0(t)

x0(0)
dxH

′′
0/H

′
0)

= AH
′
0(x0(0))/H

′
0(x0(t)) (15.18)

15.7 Hamiltonization of the Newton’s Method

Newton’s classical method of solution of the equation f (x) = 0 is based on the iterative process

xn+1 = xn−φ(xn), φ(xn) =
f (xn)

f ′(xn)
(15.19)

when it converges, xn → xc, f (xc) = 0. The Hamiltonian extension of this dynamical system is
given by the following Lagrangian

L = ∑
n

ψn(xn+1− xn +φ(xn)) (15.20)
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and the motion equation for ψn

ψn−1 = ψn(1+φ ′(xn)),

ψn+1 = (1+φ ′(xn+1))
−1ψn (15.21)

when xn→ xc, ψn→ ψc,φ ′(xn)→ 0.

15.8 Stability of the states of dynamical systems

If we have a solution xn = x0n (a state) of the following system of motion equations (of the
corresponding dynamical system)

ẋn = fn(x), 1≤ n≤ N, (15.22)

we can consider the question of stability of the solution, the existence of the solutions of the type
xn = x0n + gn, for small values of gn. If there are solutions with rising gn, of the corresponding
motion equations

ġn = βn(g), βn(g) = fn(x0 +g)− fn(x0)

= β1nmgm +β2nmkgmgk + ..., βkn...m = f (n...m)(x0) (15.23)

we say that the solution x0n is not stable.
The linear approximation, we transform into diagonal form,

ġn = β1nmgm, hn = Anmgm,

ḣn = λnhn, λnδnm = (Aβ1A−1)nm, (15.24)

if all of the λn are purely imaginary λn = iωn, we have stable solution (in the linear approximation):
small deviations remain small. If real parts of all λn are negative, we have asymptotic stability:
deviations decrease. If some λn are zero, we have undefined case. In regular case, when the matrix
β1 has inverse, by reparametrization trick we can construct the formal solution of the nonlinear
equation for gn, and try to investigate its convergence properties.

16. Nambu Dynamics

Nabu – Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical description of the
physical theories [Faddeev, Takhtajan, 1990]. But HM is in a sense blind; e.g., it does not make
a difference between two opposites: the ergodic Hamiltonian systems (with just one integral of
motion) [Sinai, 1993] and (super)integrable Hamiltonian systems (with maximal number of the
integrals of motion).

Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is a proper generalization of the HM,
which makes the difference between dynamical systems with different numbers of integrals of mo-
tion explicit (see, e.g.[Makhaldiani, 2007] ).
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In the canonical formulation, the equations of motion of a physical system are defined via a
Poisson bracket and a Hamiltonian, [Arnold, 1978]. In Nambu’s formulation, the Poisson bracket
is replaced by the Nambu bracket with n+1,n≥ 1, slots. For n = 1, we have the canonical formal-
ism with one Hamiltonian. For n ≥ 2, we have Nambu-Poisson formalism, with n Hamiltonians,
[Nambu, 1973], [Whittaker, 1927].

16.1 Nambu Dynamics, System of Three Vortexes

The system of N vortexes can be described by the following system of differential equations,
[Aref, 1983, Meleshko,Konstantinov, 1993]

żn = i
N

∑
m̸=n

γm

z∗n− z∗m
, 1≤ n≤ N, (16.1)

where zn = xn+ iyn are complex coordinate of the centre of n-th vortex, for N = 3, and the quantities

u1 = ln|z2− z3|2,
u2 = ln|z3− z1|2,
u3 = ln|z1− z2|2 (16.2)

reduce to the following system

u̇1 = γ1(eu2− eu3),

u̇2 = γ2(eu3− eu1),

u̇3 = γ3(eu1− eu2), (16.3)

The system (16.3) has two integrals of motion

H1 =
3

∑
i=1

eui

γi
,H2 =

3

∑
i=1

ui

γi

and can be presented in the Nambu–Poisson form, [Makhaldiani, 1997,2]

u̇i = ωi jk
∂H1

∂u j

∂H2

∂uk
= {xi,H1,H2}= ωi jk

eu j

γ j

1
γk
,

where

ωi jk = εi jkρ,ρ = γ1γ2γ3

and the Nambu–Poisson bracket of the functions A,B,C on the three-dimensional phase space is

{A,B,C}= ωi jk
∂A
∂ui

∂B
∂u j

∂C
∂uk

. (16.4)

This system is superintegrable: for N = 3 degrees of freedom, we have maximal number of
the integrals of motion N−1 = 2.

69



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

16.2 Toward the Finite Unified Field Theory

The reduction of the dimensionless couplings in GUTs is achieved by searching for RD in-
tegrals of motion-renormdynamic invariant (RDI) relations among them holding beyond the uni-
fication scale. Finiteness results from the fact that there exist RDI relations among dimensional
couplings that guarantee the vanishing of all beta-functions in certain GUTs even to all orders. In
this case the number of the independent motion integrals N is equal to the number of the coupling
constants. Note that in superintegrable dynamical systems the number of the integrals is ≤ N−1,
so the RD of the finite field theories is trivial, coupling constants do not run, they have fixed values,
the renormdynamics is more than superintegrable, it is hyperintegrable. Developments in the soft
supersymmetry breaking sector of GUTs and FUTs lead to exact RDI relations, i.e. reduction of
couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework
phenomenologically consistent FUTs have been constructed. The main goal expected from a uni-
fied description of interactions by the particle physics community is to understand the present day
large number of free parameters of the SM in terms of a few fundamental ones. In other words, to
achieve reduction of couplings at a more fundamental level.

16.3 Nambu Dynamics, Extended Quantum Mechanics

As an example of the infinite dimensional Nambu-Poisson dynamics, let me conside the fol-
lowing extension of Schrödinger quantum mechanics [Makhaldiani, 2000]

iVt = ∆V − V 2

2
, (16.5)

iψt =−∆ψ +V ψ. (16.6)

An interesting solution to the equation for the potential (16.5) is

V =
4(4−d)

r2 , (16.7)

where d is the dimension of the spase. In the case of d = 1, we have the potential of conformal
quantum mechanics.

The variational formulation of the extended quantum theory, is given by the following La-
grangian

L = (iVt −∆V +
1
2

V 2)ψ. (16.8)

The momentum variables are

Pv =
∂L
∂Vt

= iψ,Pψ = 0. (16.9)

As Hamiltonians of the Nambu-theoretic formulation, we take the following integrals of motion

H1 =
∫

ddx(∆V − 1
2

V 2)ψ,

H2 =
∫

ddx(Pv− iψ),
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H3 =
∫

ddxPψ . (16.10)

We invent unifying vector notation, ϕ =(ϕ1,ϕ2,ϕ3,ϕ4)= (ψ,Pψ ,V,Pv). Then it may be verified
that the equations of the extended quantum theory can be put in the following Nambu-theoretic
form

ϕt(x) = {ϕ(x),H1,H2,H3}, (16.11)

where the bracket is defined as

{A1,A2,A3,A4}= iεi jkl

∫ δA1

δϕi(y)
δA2

δϕ j(y)
δA3

δϕk(y)
δA4

δϕl(y)
dy

= i
∫ δ (A1,A2,A3,A4)

δ (ϕ1(y),ϕ2(y),ϕ3(y),ϕ4(y))
dy = idet(

δAk

δϕl
). (16.12)

16.4 Nambu Dynamics, M theory

The basic building blocks of M theory are membranes and M5−branes. Membranes are fun-
damental objects carrying electric charges with respect to the 3-form C-field, and M5-branes are
magnetic solitons. The Nambu-Poisson 3-algebras appear as gauge symmetries of superconfor-
mal Chern-Simons nonabelian theories in 2 + 1 dimensions with the maximum allowed number of
N = 8 linear supersymmetries.

The Bagger and Lambert [Bagger, Lambert, 2007] and, Gustavsson [Gustavsson, 2007] (BLG)
model is based on a 3-algebra,

[T a,T b,T c] = f abc
d T d (16.13)

where T a, are generators and fabcd is a fully anti-symmetric tensor. Given this algebra, a maximally
supersymmetric Chern-Simons lagrangian is:

L = LCS +Lmatter,

LCS =
1
2

εµνλ ( fabcdAab
µ ∂νAcd

λ +
2
3

fcdag f g
e f bAab

µ Acd
ν Ae f

λ ), (16.14)

Lmatter =
1
2

BIa
µ BµI

a −BIa
µ DµX I

a

+
i
2

ψ̄aΓµDµψa +
i
4

ψ̄bΓIJxI
cxJ

dψa f abcd

− 1
12

tr([X I,XJ,XK ][X I,XJ,XK ]), I = 1,2, ...,8, (16.15)

where Aab
µ is gauge boson, ψa and X I = X I

aT a matter fields. If a = 1,2,3,4, then we can obtain an
SO(4) gauge symmetry by choosing fabcd = f εabcd , f being a constant. It turns out to be the only
case that gives a gauge theory with manifest unitarity and N = 8 supersymmetry.

The action has the first order form so we can use the formalism of the first section. The motion
equations for the gauge fields

f nm
abcdȦcd

m (t,x) =
δH

δAab
n (t,x)

, f nm
abcd = εnm fabcd (16.16)
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take canonical form

Ȧab
n = f abcd

nm
δH

δAcd
m

= {Aab
n ,Acd

m }
δH

δAcd
m

= {Aab
n ,H},

{Aab
n (t,x),Acd

m (t,y)}= εnm f abcdδ (2)(x− y) (16.17)

16.5 Nambu-Poisson Dynamics of an Extended Particle With Spin in an Accelerator

The quasi-classical description of the motion of a relativistic (nonradiating) point particle with
spin in accelerators and storage rings includes the equations of orbit motion

ẋn = fn(x), fn(x) = εnm∂mH, n,m = 1,2, ...,6;
xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1,2,3;
H = eΦ+ c

√
℘2 +m2c2, ℘n = pn−

e
c

An (16.18)

and Thomas-BMT equations [Tomas, 1927, Bargmann, Michel,Telegdi, 1959 ] of classical spin
motion

ṡn = εnmkΩmsk = {H1,H2,sn}, H1 = Ω · s, H2 = s2,

{A,B,C}= εnmk∂nA∂mB∂kC, (16.19)

Ωn =
−e
mγc

((1+ kγ)Bn− k
(B ·℘)℘n

m2c2(1+ γ)

+
1+ k(1+ γ)
mc(1+ γ)

εnmkEm℘k) (16.20)

where, parameters e and m are the charge and the rest mass of the particle, c is the velocity of light,
k = (g−2)/2 quantifies the anomalous spin g factor, γ is the Lorentz factor, pn are components of
the kinetic momentum vector, En and Bn are the electric and magnetic fields, and An and Φ are the
vector and scalar potentials;

Bn = εnmk∂mAk, En =−∂nΦ− 1
c

Ȧn,

γ =
H− eΦ

mc2 =

√
1+

℘2

m2c2 (16.21)

The spin motion equations we put in the Nambu-Poisson form. Hamiltonization of this dy-
namical system according to the general approach of the previous sections we will put in the ground
of the optimal control theory of the accelerator.

16.6 Hamiltonian Extension of the Spinning Particle Dynamics

The general method of Hamiltonization of the dynamical systems we can use also in the spin-
ning particle case. Let us invent unified configuration space q = (x, p,s), xn = qn, pn = qn+3, sn =

qn+6, n = 1,2,3; extended phase space, (qn,ψn) and hamiltonian

H = H(q,ψ) = vnψn, n = 1,2, ...9; (16.22)
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motion equations

q̇n = vn(q),

ψ̇n =−
∂vm

∂qn
ψm (16.23)

where the velocities vn depends on external fields as in previous section as control parameters
which can be determined according to the optimal control criterium.

16.7 Nonrelativistic charged point particle with radiation friction

Nonrelativistic motion equation of the point charged particle including effect of the radiation
self-friction is [Ginzburg, 1979]

m
d2xn

dt2 = Fn +
2e2

3c3
d3xn

dt3 , n = 1,2,3 (16.24)

where the second therm in r.h.s is the f(r)iction force and vector F is external force. Not that if we
invent an effective mass and charge as m⋆ = 2/3m and e⋆ = 2/3e the equation receives an universal
form

m⋆
d2x
dt2 = F⋆+

e2
⋆

c3
d3xn

dt3 , F⋆ =
2
3

F (16.25)

When the external force is electromagnetic-the Lorentz force,

F = e(E +
1
c
[V ×B]) (16.26)

and invention of the effective charge is consistent, F⋆(e) = F(e⋆).

17. Discrete Dynamical Systems and Quanputers

Computers are physical devices and their behavior is determined by physical laws. The Quan-
tum Computations [Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ], Quantum Computing,
Quanputing [Makhaldiani, 2007.2], is a new interdisciplinary field of research, which benefits from
the contributions of physicists, computer scientists, mathematicians, chemists and engineers.

Contemporary digital computer and its logical elements can be considered as a spatial type of
discrete dynamical systems [Makhaldiani, 2001]

Sn(k+1) = Φn(S(k)), (17.1)

where

Sn(k), 1≤ n≤ N(k), (17.2)

is the state vector of the system at the discrete time step k. Vector S may describe the state and
Φ transition rule of some Cellular Automata [Toffoli, Margolus, 1987].The systems of the type
(17.1) appears in applied mathematics as an explicit finite difference scheme approximation of the
equations of the physics [Samarskii, Gulin, 1989 ].
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Definition: We assume that the system (17.1) is time-reversible if we can define the reverse
dynamical system

Sn(k) = Φ−1
n (S(k+1)). (17.3)

In this case the following matrix

Mnm =
∂Φn(S(k))

∂Sm(k)
, (17.4)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case, for example, when N(k+
1) ̸=N(k), we have an irreversible dynamical system (usual digital computers and/or corresponding
irreversible gates).

Let us consider an extension of the dynamical system (17.1) given by the following action
function

A = ∑
kn

ln(k)(Sn(k+1)−Φn(S(k))) (17.5)

and corresponding motion equations

Sn(k+1) = Φn(S(k)) =
∂H

∂ ln(k)
,

ln(k−1) = lm(k)
∂Φm(S(k))

∂Sn(k)
= lm(k)Mmn(S(k)) =

∂H
∂Sn(k)

, (17.6)

where

H = ∑
kn

ln(k)Φn(S(k)), (17.7)

is discrete Hamiltonian. In the regular case, we put the system (17.6) in an explicit form

Sn(k+1) = Φn(S(k)),
ln(k+1) = lm(k)M−1

mn (S(k+1)). (17.8)

From this system it is obvious that, when the initial value ln(k0) is given, the evolution of
the vector l(k) is defined by evolution of the state vector S(k). The equation of motion for ln(k) -
Elenka is linear and has an important property that a linear superpositions of the solutions are also
solutions.

Statement: Any time-reversible dynamical system (e.g. a time-reversible computer) can be ex-
tended by corresponding linear dynamical system (quantum - like processor) which is controlled by
the dynamical system and has a huge computational power, [Makhaldiani, 2001, Makhaldiani, 2002,
Makhaldiani, 2007.2, Makhaldiani, 2011.2].

17.1 (de)Coherence Criterion

For motion equations (17.6) in the continual approximation, we have

Sn(k+1) = xn(tk + τ) = xn(tk)+ ẋn(tk)τ +O(τ2),
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ẋn(tk) = vn(x(tk))+O(τ), tk = kτ ,
vn(x(tk)) = (Φn(x(tk))− xn(tk))/τ;

Mmn(x(tk)) = δmn + τ
∂vm(x(tk))

∂xn(tk)
. (17.9)

(de)Coherence criterion: the system is reversible, the linear (quantum, coherent, soul) subsystem
exists, when the matrix M is regular,

detM = 1+ τ ∑
n

∂vn

∂xn
+O(τ2) ̸= 0. (17.10)

For the Nambu - Poisson dynamical systems (see e.g. [Makhaldiani, 2007])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

...
∂Hp

∂xmp

, p = 1,2,3, ...,N−1,

∑
n

∂vn

∂xn
≡ divv = 0. (17.11)

18. Construction of the Reversible Discrete Dynamical Systems

Let me motivate an idea of construction of the reversible dynamical systems by simple example
from field theory. There are renormalizable models of scalar field theory of the form (see, e.g.
[Makhaldiani, 1980])

L =
1
2
(∂µφ∂ µφ−m2φ2)−gφn, (18.1)

with the constraint

n =
2d

d−2
, (18.2)

where d is dimension of the space-time and n is degree of nonlinearity. It is interesting that if we
define d as a function of n, we find

d =
2n

n−2
(18.3)

the same function !
Thing is that, the constraint can be put in the symmetric implicit form [Makhaldiani, 1980]

1
n
+

1
d
=

1
2

(18.4)

18.1 Generalization of the Idea

Now it is natural to consider the following symmetric function

f (y)+ f (x) = c (18.5)

and define its solution

y = f−1(c− f (x)). (18.6)
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This is the general method, that we will use in the following construction of the reversible dynam-
ical systems. In the simplest case,

f (x) = x, (18.7)

we take

y = S(k+1), x = S(k−1), c = Φ̃(S(k)) (18.8)

and define our reversible dynamical system from the following symmetric, implicit form (see also
[Toffoli, Margolus, 1987])

S(k+1)+S(k−1) = Φ̃(S(k)), (18.9)

explicit form of which is

S(k+1) = Φ(S(k),S(k−1))
= Φ̃(S(k))−S(k−1). (18.10)

This dynamical system defines given state vector by previous two state vectors. We have
reversible dynamical system on the time lattice with time steps of two units,

S(k+2,2) = Φ(S(k,2)),
S(k+2,2)≡ (S(k+2),S(k+1)),
S(k,2)≡ (S(k),S(k−1))). (18.11)

18.2 Internal, Spin, Degrees of Freedom

Starting from a general discrete dynamical system, we obtained reversible dynamical system
with internal(spin,bit) degrees of freedom

Sns(k+2) ≡

(
Sn(k+2)
Sn(k+1)

)
=

(
Φn(Φ(S(k))−S(k−1))−S(k))

Φn(S(k))−Sn(k−1)

)
≡ Φns(S(k)), s = 1,2 (18.12)

where

S(k)≡ (Sns(k)), Sn1(k)≡ Sn(k), Sn2(k)≡ Sn(k−1) (18.13)

For the extended system we have the following action

A = ∑
kns

lns(k)(Sns(k+2)−Φns(S(k))) (18.14)

and corresponding motion equations

Sns(k+2) = Φns(S(k)) =
∂H

∂ lns(k)
,

lns(k−2) = lmt(k)
∂Φmt(S(k))

∂Sns(k)
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= lmt(k)Mmtns(S(k)) =
∂H

∂Sns(k)
, (18.15)

By construction, we have the following reversible dynamical system

Sns(k+2) = Φns(S(k)),
lns(k+2) = lmt(k)M−1

mtns(S(k+2)), (18.16)

with classical Sns and quantum lns(in the external, background S) string bit dynamics.

18.3 p-Point Cluster and Higher Spin States Reversible Dynamics, or Put String Dynamics

We can also consider p-point generalization of the previous structure,

fp(S(k+ p))+ fp−1(S(k+ p−1))+ ...+ f1(S(k+1))
+ f1(S(k−1))+ ...+ fp(S(k− p)) = Φ̃(S(k)),
S(k+ p) = Φ(S(k),S(k+ p−1), ...,S(k− p))
≡ f−1

p (Φ̃(S(k))− fp−1(S(k+ p−1))− ...− fp(S(k− p))) (18.17)

and corresponding reversible p-oint cluster dynamical system

S(k+ p, p)≡Φ(S(k, p)),
S(k+ p, p)≡ (S(k+ p),S(k+ p−1), ...,S(k+1)),
S(k, p)≡ (S(k),S(k−1), ...,S(k− p+1)), S(k,1) = S(k). (18.18)

So we have general method of construction of the reversible dynamical systems on the time (tame)
scale p. The method of linear extension of the reversible dynamical systems (see [Makhaldiani, 2001]
and previous section) defines corresponding Quanputers,

Sns(k+ p) = Φns(S(k)),
lns(k+ p) = lmt(k)M−1

mtns(S(k+ p)), (18.19)

This case the quantum state function lns, s = 1,2, ...p will describes the state with spin (p−
1)/2.

Note that, in this formalism for reversible dynamics minimal value of the spin is 1/2. There
is not a place for a scalar dynamics, or the scalar dynamics is not reversible. In the Standard
model (SM) of particle physics, [Beringer et al, 2012], all of the fundamental particles, leptons,
quarks and gauge bosons have spin. Only scalar particles of the SM are the Higgs bosons. Perhaps
the scalar particles are composed systems or quasiparticles like phonon, or Higgs dynamics is not
reversible (a mechanism for ’time arrow’).

19. Classically Nonalgorithmic but Quanputally Solvable Problems

19.1 Diophantine equations

Diophantine equations (DE)

D(n) = D(n1, ...,nm) = 0, (19.1)

are those equations that have integer solutions. In particular, they may be polynomials with integer
coefficients.
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19.2 Quantization of DE

For quantization of DE, (QDE), consider monomials

xn=̇xn1
1 ...xnm

m , (19.2)

than, for solutions of DE

0 = D(n)xn = D(δ )xn = 0, (19.3)

where

D(δ )=̇D(δ1, ...,δn), δk = xk∂xk , k = 1, ...,m,

δkxn = nkxn, (19.4)

so, existence of the solution of DE is equivalent to existence of the eigenstate-monomials of the
QED.

19.3 Quantum algorithm of solution of the QDE

For quanputing of the problem we introduce the following Hamiltonian operator,

H(δ ) = D(δ )2, H(δ )xn = H(n)xn, H(n)≥ 0. (19.5)

Quanputing may algorithmically define if H(n) = 0 for some n, so, may algorithmically solve DE.

20. How to work on quanputers

We explain the idea of programming on quanputers on the example of extended quantum me-
chanics. We extend the motion equation for the potential and corresponding action by introduction
of the external source J,

L = (iVt −∆V +
1
2

V 2− J)ψ,

iVt = ∆V − 1
2

V 2 + J,
iψt =−∆ψ +V ψ. (20.1)

Different sources define different potentials-programs which controls dynamics of the linear part
of quanputers, ψ. Having an algorithm for quanputer we know corresponding V (t,x). With this po-
tential we calculate corresponding source J. Note that J is the source therm in action (Lagrangian)
for ψ and enter as a source term in the motion equation of V.

20.1 How to make (simple) programs

The trivial case J = 0, corresponds to a vacation of the quanputer. As a next simplest case let
us consider J = m2/2 = const. From the motion equation, we obtain V = ±m. So, we have two
level quantum system, for the linear, quantum-like, ψ−subsystem. Then, we may consider simplest
time-dependent source J = m2eiωt . Note that the source do not define the potential uniquely.
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20.2 Extended Quantum Dynamics in One Dimensional Space

In the case of one dimensional space, D = 1 from the motion equation for the potential

iVt =Vxx−
1
2

V 2 + J (20.2)

we obtain

iψ̄t = ψ̄xx−V ψ̄ + j, ψ̄ =Vx, j = Jx (20.3)

so, when V is the solution for the motion equation for V, ψ̄ = Vx is the solution for the motion
equation for ψ̄ , corresponding equation for ψ ,

iψt =−∆ψ +V̄ ψ− j̄ (20.4)

20.3 Static case

For the potential, we have

V ′′− 1
2

V 2 + J = 0. (20.5)

In the case of trivial source, J = 0, the vanishing in the infinity solution is

V (x) =
12
x2 (20.6)

In the case of the constant source,∫ dV√
V 3/3−2JV

= 2
√

3
∫ dV√

4V 3−24JV
=±x,

(20.7)

21. Transcendental numbers and Hilbert’s seventh problem

In mathematics, a transcendental number is a (possibly complex) number that is not algebraic,
i.e. it is not a root of a non-zero polynomial equation with rational coefficients. The most prominent
examples of transcendental numbers are π and e. Though only a few classes of transcendental
numbers are known (in part because it can be extremely difficult to show that a given number is
transcendental), transcendental numbers are not rare. Indeed, almost all real and complex numbers
are transcendental, since the algebraic numbers are countable while the sets of real and complex
numbers are both uncountable. All real transcendental numbers are irrational, since all rational
numbers are algebraic. The converse is not true: not all irrational numbers are transcendental;
e.g., the square root of 2 is irrational but not a transcendental number. The name "transcendental"
comes from Leibniz in his 1682 paper where he proved that sin(x) is not an algebraic function of x.
Euler was probably the first person to define transcendental numbers in the modern sense. Johann
Heinrich Lambert conjectured that e and π were both transcendental numbers in his 1761 paper
proving the number π is irrational. In 1874, Georg Cantor proved that the algebraic numbers are
countable and the real numbers are uncountable. In 1882, Ferdinand von Lindemann published a
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proof that the number π is transcendental. He first showed that e to any nonzero algebraic power
is transcendental, and since eiπ = −1 is algebraic ( Euler’s identity), iπ and therefore π must be
transcendental. In 1900, David Hilbert posed an influential question about transcendental numbers,
Hilbert’s seventh problem: If a is an algebraic number, that is not zero or one, and b is an irrational
algebraic number, is ab necessarily transcendental? The affirmative answer was provided in 1934
by the Gelfond-Schneider theorem. This work was extended by Alan Baker in the 1960s in his
work on lower bounds for linear forms in any number of logarithms (of algebraic numbers).

Numbers proven to be transcendental includes e.g. the Gelfond’s constant= eπ and Chaitin’s
constant (since it is a non-computable number) Ω.

Numbers which have yet to be proven to be either transcendental or algebraic includes:
The Euler-Mascheroni constant γ (which has not even been proven to be irrational).
Catalan’s constant, also not known to be irrational.
Apéry’s constant, ζ (3) (which Apéry proved is irrational)
The Riemann zeta function at other odd integers, ζ (5),ζ (7), ... (not known to be irrational.)
The Feigenbaum constants, δ and α .
The non-computable numbers are a strict subset of the transcendental numbers.

If a given number a is algebraic, it is a solution of a polynomial equation: P(a) = 0. In the
operator form it is equivalent to the statement: P(δ )xa = P(a)xa = 0. For the Hamiltonian of the
quantum algorithm we take H = P(δ )2.

22. Discrete invertible dynamical systems

Let us consider the stationary Schrodinger equation

(− h̄2

2m
△+V )ψ = Eψ ⇒△ψ = aψ, a =

2m
h̄2 (V −E) (22.1)

for one dimensional case, corresponding discrete (approximation) equation is

ψn+1 =Vnψn−ψn−1,

Vn = 2+an, an =
2m
h̄2 (V (xn)−E), xn = nh, ψn = ψ(xn) (22.2)

from which we obtain

Φn+1 = AΦn,

Φn+1 =

(
ψn+1

ψn+2

)
, Φn =

(
ψn−1

ψn

)
,

A =

(
−1, Vn

−Vn+1, VnVn+1−1

)
, detA = 1, A−1 =

(
VnVn+1−1, −Vn

Vn+1, −1

)
,

A =

(
a b
c d

)
,

A−1 =

(
d −b
−c a

)
/detA (22.3)

80



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

Note that, the potential term Vn may depend on the wave function ψn, so we can consider also
nonlinear invertible dynamical systems.

22.1 q-Hermitian Polynomials

q-Hermitian Polynomials (qHp) are defined by the recurrent relation [Gasper, Rahman, 1990]

Pn+1 = xPn(x)−unPn−1, un = 1−qn (22.4)

from which we obtain

Φn+1 = AΦn,

Φn+1 =

(
Pn+1

Pn+2

)
, Φn =

(
Pn−1

Pn

)
,

A =

(
−un, x
−xun, x2−un+1

)
, detA = unun+1 = (1−q)2[n][n+1],

A−1 =

(
x2−un+1, −x

xun, −un

)
/ detA, A =

(
a b
c d

)
, A−1 =

(
d −b
−c a

)
/detA (22.5)

Note that, for q = 1, un = 0⇒ Pn = cxn. For q = 0, un = 1 and we obtain symmetric invertible
dynamical system

Pn+1 +Pn−1 = xPn(x) (22.6)

With the solution

Pn = can, a+a−1 = x⇒ a = (x±
√

x2−4)/2 (22.7)

If we are interested for real valued solutions, we have restriction |x| ≥ 0, we have the minimal value
for |x|, a fundamental length. For q =−1, u2k = 0, u2k+1 = 2

22.2 Fibonacci, Hindu-Arabic numerals and time-reversible discrete dynamical systems

Fibonacci, recognizing that arithmetic with Hindu-Arabic numerals is simpler and more ef-
ficient than with Roman numerals, travelled throughout the Mediterranean world to study under
the leading Arab mathematicians of the time. He returned from his travels around 1200, and in
1202, the 32-year-old recorded what he had learned in Liber Abaci (Book of Abacus or Book of
Calculation), and thereby popularized Hindu-Arabic numerals in Europe.

In the Fibonacci sequence of numbers, each number is the sum of the previous two numbers,

zn+1 = zn + zn−1 (22.8)

from which we obtain

Φn+1 = AΦn,

Φn+1 =

(
zn+1

zn+2

)
, Φn =

(
zn−1

zn

)
,
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A =

(
1 1
1 2

)
, detA = 1, A−1 =

(
2 −1
−1 1

)
,

A =

(
a b
c d

)
,

A−1 =

(
d −b
−c a

)
/detA (22.9)

From (22.8) we obtain

qn+1 = 1+1/qn−1, qn±1 = zn±1/zn, zn±1 = qn±1zn (22.10)

When this iteration process converges: qn→ q,

q = 1+1/q⇒ q+ =

√
5+1
2

, q− =
−
√

5+1
2

(22.11)

22.3 Bessel function (BF)

BF are the canonical solutions y(z) of Bessel’s differential equation

(z2∂ 2
z + z∂z +(z2−α2)y(z) = 0, (22.12)

for an arbitrary complex number α (the order of the Bessel function). The most important cases
are for α an integer or half-integer. Although α and -α produce the same differential equation for
real α , it is conventional to define different Bessel functions for these two values in such a way
that the Bessel functions are mostly smooth functions of α . Bessel’s equation arises when finding
separable solutions to Laplace’s equation and the Helmholtz equation in cylindrical or spherical
coordinates. Bessel functions are therefore especially important for many problems of wave prop-
agation and static potentials. In solving problems in cylindrical coordinate systems, one obtains
Bessel functions of integer order (α = n); in spherical problems, one obtains half-integer orders (α
= n+1/2). Bessel functions of the first kind, denoted as Jα(z), is possible to define the function by
its Taylor series expansion around z = 0:

Jα(z) = ∑
n≥0

(−1)n(n!Γ(n+1+α))−1(
z
2
)2n+α

= (z/2)α(Γ(δz/2+1)Γ(δz/2+1+α))−1(1+(z/2)2)−1 (22.13)

where Γ(z) is the gamma function, a generalization of the factorial function to non-integer values.
The Bessel function of the first kind is an entire function if α is an integer. For non-integer α ,
the functions Jα(x) and J−α(x) are linearly independent, and are therefore the two solutions of
the differential equation. For integer α , J−n(x) = (−1)nJn, and the second linearly independent
solution is then found to be the Bessel function of the second kind.

22.4 Bessel’s integrals

Bessel’s integrals

Jn(z) =
∫ π

−π

dt
2π

ei(nt−zsin t) =
∫ π

0

dt
π

cos(nt− zsin t) (22.14)
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The definition may be extended to non-integer orders by (for Re(x)> 0)

J−α(z) =
∫ π

0

dt
π

cos(αt− zsin t)+
sinαπ

π

∫ π

0
dte−αt−zsinh(t) (22.15)

22.5 Relation to hypergeometric functions and Laguerre polynomials

The Bessel functions can be expressed in terms of the generalized hypergeometric series as:

Jα(z) =
( x

2)
α

Γ(α +1) 0F1(α +1,−z2

2
)

=
( x

2)
αe−t

Γ(α +1) ∑ tn

n!
Lα

n (
z2

4t )(
n+α

n

) (22.16)

22.6 Spherical Bessel functions

When solving the Helmholtz equation in spherical coordinates by separation of variables, the
radial equation has the form:

(z2∂ 2
z +2z∂z +(z2−n(n+1)))y = 0 (22.17)

The two linearly independent solutions to this equation are called the spherical Bessel functions jn
and yn, and are related to the ordinary Bessel functions Jn and Yn by:

jn(z) =
√

π
2z

Jn+ 1
2
(z) = (−1)nzn(

d
zdz

)n sinz
z

,

yn(z) =
√

π
2z

Yn+ 1
2
(z) = (−1)n+1

√
π
2z

J−n− 1
2
(z) = (−1)n+1zn(

d
zdz

)n cosz
z

(22.18)

RiccatiŰBessel functions Sn,Cn only slightly differ from spherical Bessel functions:

Sn(z) = x jn(z)

√
πz
2

Jn+ 1
2
(z),

Cn(z) =−zyn(z) =−
√

πz
2

Yn+ 1
2
(z) (22.19)

They satisfy the differential equation:

(z2∂ 2
z +(z2−n(n+1)))y = 0 (22.20)

Another way to define the Bessel functions is the Poisson representation formula and the
Mehler-Sonine formula:

Jα(z) = aαzα
∫ 1

−1
dseizs(1− s2)α− 1

2 = bαz−α
∫ ∞

1

dusin(uz)

(u2−1)α+ 1
2
,

aα = (
√

π2αΓ(α +
1
2
))−1, bα = 2α+1(

√
πΓ(

1
2
−α))−1, α >−1

2
, z ∈ C (22.21)
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22.7 Recurrence relations and corresponding time-reversible dynamical system

The functions Jα(z) and Yα(z) satisfy the recurrence relations:

Zα+1(z) =
2α
z

Zα(z)−Zα−1(z),

Zα+1(z) =−2∂zZα(z)+Zα−1(z), Z = J,Y (22.22)

from which we obtain

Φα+1 = AΦα ,

Φα+1 =

(
Zα+1

Zα+2

)
, Φα =

(
Zα−1

Zα

)
,

A =

(
−1 2α/z

−2(α +1)/z 2α2(α +1)/z2−1

)
, detA = 1, A−1 =

(
2α2(α +1)/z2−1 −2α/z

2(α +1)/z −1

)
,

A =

(
a b
c d

)
,

A−1 =

(
d −b
−c a

)
/detA (22.23)

One can compute Bessel functions of higher orders (or higher derivatives) given the values at
lower orders (or lower derivatives). In particular,

ηm
z (z

αZα(z)) = zα−mZα−m(z),

ηm
z (Z

−αZα(z)) = (−1)mz−α−mZα+m(z), ηz =
d

zdz
(22.24)

Problem: consider proper generalization for non integer values of m.

Modified Bessel functions follow similar relations:

exp((t + t−1)x/2) =
∞

∑
n=−∞

In(x)tn (22.25)

22.8 Time-reversible dynamical system for Bessel functions

The recurrence relation for Modified Bessel functions reads

Cα+1(z) =−
2α
z

Cα +Cα−1(z),

Cα+1(z) = 2∂zCα −Cα−1(z), Cα = Iα , exp(iπα)Kα (22.26)

from which we obtain

Φα+1 = AΦα ,

Φα+1 =

(
Cα+1

Cα+2

)
, Φα =

(
Cα−1

Cα

)
,

A =

(
1 −2α/z

−2(α +1)/z 1+2α2(α +1)/z2

)
, detA = 1, A−1 =

(
2α2(α +1)/z2 2α/z

2(α +1)/z 1

)
,
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A =

(
a b
c d

)
,

A−1 =

(
d −b
−c a

)
/detA (22.27)

23. A Way to the Solution of the Traveling Salesman Problem (TSP) with
Quanputing

The NP ?
− P problem will be solved if for some NP− complete problem, e.g. TSP, a polyno-

mial algorithm find; or show that there is not such an algorithm; or show that it is impossible to
find definite answer to that question.

TSP means to find minimal length path between N fixed points on a surface, which attends any
point ones. We consider a system where N points with quenched positions x1,x2, ...,xN are inde-
pendently distributed on a finite domain D with a probability density function p(x). In general, the
domain D is multidimensional and the points xn are vectors in the corresponding Euclidean space.
Inside the domain D we consider a polymer chain composed of N monomers whose positions are
denoted by y1,y2, ...,yN . Each monomer yn is attached to one of the quenched sites xm and only
one monomer can be attached to each site. The state of the polymer is described by a permutation
σ ∈ ΣN where ΣN is the group of permutations of N objecs.

The Hamiltonian for the system is given by

H =
N

∑
n=1

V (|yn− yn−1|) (23.1)

Here V is the interaction between neighboring monomers on the polymer chain. For convenience
the chain is taken to be closed, thus we take the periodic boundary condition x0 = xN . A physical
realization of this system is one where the xn are impurities where the monomers of a polymer loop
are pinned. In combinatorial optimization, if one takes V (x) to be the norm, or distance, of the
vector x then H(σ) is the total distance covered by a path which visits each site xn exactly once.
The problem of finding σ0 which minimizes H(σ) is known as the traveling salesman problem
(TSP) [Gutin, Pannen, 2002].

In field theory language to the TSP we correspond the calculation of the following correlator

G2N(x1,x2, ...,xN) = Z−1
0

∫
dφ(x)φ2(x1)φ2(x2)...φ2(xN)e−S(φ)

=
δ 2NF(J)

δJ(x1)2...δJ(xN)2 , F(J) = lnZ(J),

Z(J) =
∫

dφe−
1
2 φ·A·φ+J·φ = e

1
2 J·A−1·J, A−1(x,y;m) = e−m|x−y|,

Lmin(x1, ...,xN) =−
d

dm
lnG2Ns +O(e−am)

< A−1 >≡ 1
Γ(s)

∫ ∞

0
dmms−1A−1(x,y;m) =

1
|x− y|s

= LsA−1(x− y;s)
k(d)∆dLsA−1(x;s) = δ d(x)⇒ A(x;s) = k(d)∆dLs,

s = d−2;φ = φ(x,m). (23.2)
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If we take relativistic massive scalar field, then A = ∆d +m2,

A−1(x)∼ |x|2−de−m|x|, (23.3)

and for d = 2, we also have the needed behaviour. Note that G2N is symmetric with respect to its
arguments and contains any paths including minimal length one.

24. The Theory Space (TS) and Fundamental Constants

Theoretical equations describing the physical world deal with dimensionless quantities and
their solutions depend on dimensionless fundamental parameters, like α−1≃ 137. But experiments,
from which these theories are extracted and by which they could be tested, involve measurements,
i.e. comparisons with standard dimensionful scales. Without standard dimensionful units and
hence without certain conventions physics is unthinkable.

According to the high school physics, there are three basic quantities in Nature: Length, Mass
and Time. All other quantities, such as electric charge or temperature, occupied a lesser status
since they could all be re-expressed in terms of these basic three. As a result, there are three basic
units: centimeter (cm), gram (g) and second (s), reflected in the three-letter name "CGS" system
(or perhaps meter, kilogram and second in the alternative, but still three-letter, "MKS" system).

In quantum mechanics, there is a minimum quantum of action given by PlanckŠs constant h̄;
in special relativity there is a maximum velocity given by the velocity of light c; in classical gravity
the strength of the force between two objects is determined by Newton’s constant of gravitation G.
In terms of length, time and mass their dimensions are

[c] = LT−1,

[h̄] = L2T−1M

[G] = L3T−2M−1 (24.1)

Max Planck identified a century ago three basic units, the Planck length lp, the Planck time tp and
Planck mass mp:

lp =

√
Gh̄
c3 = 1.616×10−35m

tp =

√
Gh̄
c5 = 5.390×10−44s

mp =

√
ch̄
G

= 2.177×10−8kg (24.2)

Note that, unlike h̄ and c, the dimension of G depends on dimension of space-time D:

F = G
mM
rD−2 = ma,⇓

[GD] = LD−1T−2M−1 (24.3)
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so,

h̄GD = lD+1
pD t−3

pD ,

c = lpDt−1
pD ,⇓

lD−2
pD =

h̄GD

c3 ,

tD−2
pD =

h̄GD

cD+1 ,

mD−2
pD =

c5−Dh̄D−3

GD
(24.4)

After compactification to four dimensions,

GD = vG4 (24.5)

where v - the volume of the compactifying manifold has the four-dimensional interpretation as the
vacuum expectation value of scalar modulus fields coming from the internal components of the
metric tensor, it depends on the choice of vacuum but does not introduce any more fundamental
constants into the lagrangian.

Note that in the gravity coupling constant and corresponding unites (24.4), the dimention D
can takes also non integer-fractal values.

In the 1870’s G.J. Stoney [Stoney, 1881], the physicist who coined the term "electron" and
measured the value of elementary charge e, introduced as universal units of Nature for L,T,M :

lS =
e
c2

√
G,

tS =
e
c3

√
G

=
lS
c
,

mS =
e√
G
,

lSmS =
e2

c2 (24.6)

The expression for mS has been derived by equating the Coulomb and Newton forces,

e2 = Gm2⇒ mS =
e√
G

(24.7)

The expressions for lS and tS has been derived from mS, c and e on dimensional grounds,

[
e2

r2 ] = [ma] = MLT−2⇒ e2 = mSL3T−2 = mSlSc2⇒ lS =
e2

c2mS
=

e
√

G
c2 (24.8)

Note that, we can define the units of Nature from fundamental length-l, charge-e and speed of
light-c

t = l/c, m = (
e
c
)2/l, G = (

lc2

e
)2 (24.9)
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When M. Planck discovered in 1899 h he introduced [Planck, 1899] as universal units of Nature
for L, T, M:

mP =

√
hc
G

=
mS√

α
,

lP =
h

cmP
=

lS√
α

= 11.7lS,

tP =
lP
c
=

tS√
α
,

(24.10)

Max Planck invented the system of fundamental unites c,h,G and k. G. Gamov, D. Ivanenko
and L. Landau [Gamov, Ivanenko, Landau, 1928] considered the system without the parameter k,
as fundamental one. Bronshtein [Bronshtein, 1933] and Zelmanov [Zelmanov, 1967], developed
the idea of the cube of theories. The cube is located along three orthogonal axes marked by c (ac-
tually by 1/c), h̄,G. The vertex (000) corresponds to nonrelativistic mechanics, (c00) - to special
relativity, (0h̄0) - to non-relativistic quantum mechanics, (ch̄0) - to quantum field theory, (c0G) - to
general relativity, (ch̄G ) - to futuristic quantum gravity and the Theory of Everything, TOE, modern
version of which is M-theory. There is a hope that in the framework of TOE the values of dimen-
sionless fundamental parameters will be ultimately calculated. Note that 3-dimensional TS-ch̄G
where invented for 3-dimensional space models, d-dimensional theory may need d-dimensional
TS, but, as we have seen, when extra dimensions are compactified the TS remain 3-dimensional;
Stoney’s fundamental constants are more fundamental just because they are less than Planck’s con-
stants :)

24.1 The Practical Meaning of Units

The meter was defined in 1791 as a 1/40 000 000 part of Paris meridian.The gram is the mass
of one cubic cm of water. The cm and sec are connected with the size and rotation of the earth. An
important step forward was made in the middle of XX century, when the standards of cm and sec
were defined in terms of of wave-length and frequency of a certain atomic line.

Enormously more universal and fundamental are c and h̄ given to us by Nature herself as units
of velocity [v] = [L/T ] and angular momentum [J] = [MvL] = [ML2/T ] or action [S] = [ET ] =
[Mv2T ] = [ML2/T ].

24.2 The Fundamental Meaning of c

It is important that c is not only the speed of light in vacuum. What is much more significant
is the fact that it is the maximal velocity of any object in Nature, the photon being only one of such
objects. The fundamental character of c would not be diminished in a world without photons. The
fact that c is the maximal v leads to new phenomena, unknown in newtonian physics and described
by relativity. Therefore Nature herself suggests c as fundamental unit of velocity.

c is more fundamental than α because it is the basis of relativity theory which unifies space
and time, as well as energy, momentum and mass.
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24.3 The Fundamental Meaning of h̄

The quantity h̄ is also fundamental: it is the quantum of the angular momentum J and a natural
unit of the action S. When J or S are close to h̄, the whole realm of quantum mechanical phenomena
appears. Particles with integer J (bosons) tend to be in the same state (i.e. photons in a laser, or
Rubidium atoms in a drop of Bose-Einstein condensate). Particles with half-integer J (fermions)
obey the Pauli exclusion principle which is so basic for the structure of atoms, atomic nuclei and
neutron stars. Symmetry between fermions and bosons, dubbed supersymmetry or SUSY, is badly
broken at low energies, but many theorists believe that it is restored near the Planck mass in partic-
ular in superstrings and M-theories. It is natural when dealing with quantum mechanical problems
to use h̄ as the unit of J and S.

24.4 A Fundamental Meaning of G

The status of G and its derivatives, m , l , t , is at present different from that of c and h̄, because
the quantum theory of gravity is still under construction. The majority of experts connect their
hopes with extra spatial dimensions and superstrings. The characteristic length of a superstring

ls(M2
GUT ) = lP/

√
α(M2

GUT ). Possible modifications of NewtonŠs potential at sub-millimetre dis-
tances demonstrates that the position of G is not as firm as that of c and h̄. If the theory of grav-
ity reduce to more fundamental structures, like old theory of weak interections with its coupling
constant G reduce to SM, than gravitation coupling constant become calculable in terms of the
fundamental theory. The Newtonian potential around the sun is for non-vanishing Λ modified to
[Axenides, Floratos, Perivolaropoulos, 2000], [Gibbons, Hawking, 1977]

V (r) =
GM

r
+

Λc2

6
r2 (24.11)

where M is the mass of the sun and r the distance from the sun.

24.5 Temperature and Meaning of Boltzmann’s Constant k

Mathematically temperature T is defined as a derivative of internal energy E of a system over
its entropy S:

Z(β ) = ∑
n

e−βEn = ∑
En

N(En)e−βEn = ∑
En

e−βFn = e−βF ,

F = E−T S = E− tSB, T = β−1 = kt, SB = kS,

(
∂F
∂S

)T = 0⇒ T =
dE
dS

, k = 8.69×10−5eV/K = 1.38×10−23J/K. (24.12)

As temperature is an average energy of an ensemble of particles, it is natural to measure it in units of
energy. So, the Boltzmann’s constant k connects microscopic phenomena to macroscopic one but
it is not necessary to have different unit for measuring temperature and corresponding dimensional
coefficient k,T = kt. We can put k = 1 and measuring the temperature in energy unites. In this
sense, the Boltzmann’s Constant k has not the fundamental meaning.
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24.6 Fundamental Constants

There are different opinions about the number of fundamental constants [Duff, Okun, Veneziano, 2001].
According to Okun there are three fundamental dimensionful constants in Nature: Planck’s con-
stant, h̄; the velocity of light, c; and Newton’s constant, G. According to Veneziano, there are only
two: the string length ls and c. According to Duff, there are not fundamental constants at all.

24.7 High-energy theories and Fundamental Constants

5-dimensional Einstein-Hilbert action

S = (12π2G5)
−1
∫

d5x
√
−g5R5 (24.13)

Decomposing 5-dimensional metric as

g5 =

(
gµν +ϕ 2AµAν/M2 ϕAµ/M

ϕAν/M ϕ 2

)
, (24.14)

we obtain

S = (16πG4)
−1
∫

d4x
√
−g4ϕ(R4−

ϕ 2

4M2 F2) (24.15)

where the 4-dimensional gravitational constant G4 is

G4 = G5
3π
4
/
∫

dx5 (24.16)

The scalar field couples explicitly to the kinetic term of the vector field and cannot be eliminated by
a redefinition of the metric. Such dependencies of the masses and couplings are generic for higher-
dimensional theories and in particular string theory. It is actually one of the definitive predictions
for string theory that there exists a dilaton, that couples directly to matter [Taylor, Veneziano, 1988]
and whose vacuum expectation value determines the string coupling constants [Witten, 1984,2].

24.8 Fundamental Constants from String Theory

In the Nambu-Goto string model

S
h̄
=

1
s

∫
d(Area), s = l2

s (24.17)

where ls is the characteristic size of strings. The characteristic length of a superstring

ls(M2
GUT ) =

lP√
α(M2

GUT )
(24.18)

We have seen, that α−1
GUT in MSSM is equal to 29, so, in String Minimal SM (SMSM)

s =
l2
p

αGUT
=

l2
s

αGUT α(me)
= 29×137e2G/c4 (24.19)
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where ls is Stony’s fundamental length,

ls =
lp√

α(me)
, α(me)

−1 = 137. (24.20)

the parameter s is the one which replace the gravitational constant in old triumvirate of fundamental
units G,c, h̄⇒ s,c, h̄. Important consequence of this statement is that a string theory phenomenon
we observe in everyday live as gravitation force.

String theory only needs two fundamental dimensionful constants c and s, i.e. one fundamental
unit of speed and one of area. The role of Planck constant plays s.

There is, in relativity, a fundamental unit of speed c; there is, in QM, a fundamental unit of
action h̄; there is, in string theory, a fundamental unit of action - area, s.

In string theory we would like to freeze the moduli at values that provide the correct values
of the coupling constant and unification scale of grand unified theories (GUTs). For instance, the
dilaton and compactification volume V6 should be frozen at values such that

αGUT ∼ eϕ ∼ m2
s

m2
P
∼ gs, m2

GUT ∼ α4/3
GUT g−1/3

s m2
P, gs =V6M6eϕ (24.21)

where mGUT ,ms,mP are GUT, string and the Planck scales, gs is the string coupling.

24.9 Effective Action of String Theory

The tree-level low-energy effective action of string theory reads:

S =
1
2

∫
d4x
√
−ge−ϕ (λ−2

s (R+∂µϕ∂ µϕ +HµνρHµνρ)+FµνFµν) (24.22)

where Hµνρ is Kalb-Ramond antisymmetric tensor field strength. Couplings are VEVs which,
hopefully, become dynamically determined. In particular, a scalar field, the so-called dilaton ϕ ,
controls all sorts of couplings, gravitational and gauge alike,

αgauge ∼ eϕ ∼
l2
p

l2
s
= GNT, T =

h̄
l2
s

(24.23)

where ls is string length, T is string tension.

24.10 Mathematical Foundation for Fundamental Constants

In mathematics we have two kind of structures, discrete and continuous one. If a physical
quantity has discrete values, it might not have dimension. If the values are continuous - the quantity
might have dimension, unit of measure. These structures may depend on scale, e.g. on macroscopic
scale condensed state of matter (and time) is well described as continuous medium, so we use
dimensional units of length (and time). On the scale of atoms, the matter has discrete structure,
so we may count lattice sites and may not use unit of length. If at small (e.g. at Plank) scale
space (and/or time) is discrete then we not need an unit of length (time) for measuring, there is the
fundamental length and we can just count.
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25. The Growth Points (GPs)

25.1 Toward M-Theory

Today a mathematical structure that underlies and explains all of the physical world consists
of two distinct parts: Relativistic Quantum Field Theory and General Relativity. General Relativity
is classical, and has not been successfully quantized (yet) whereas the known consistent quantum
field theories do not include gravity.
The fundamental theory might be:
Mathematically consistent;
Experimentally correct;
Predictive;
Unique;
We now think that the various string theories are actually five different perturbative expansions of
a single theory known as M-Theory. So this is our current best guess for a fundamental theory of
everything.

25.2 U-geometry

While Riemannian geometry singles out the spacetime metric, gmn , as its only fundamental
geometric object, T-duality in string theory or U-duality in M-theory put other form-fields at an
equal footing along with the metric. As a consequence, Riemannian geometry appears incapable
of manifesting the duality, especially in the formulations of low energy effective actions. Novel
differential geometry beyond Riemann is desirable which treats the metric and the form-fields
equally as geometric objects, and makes the covariance apparent under not only diffeomorphism
but also duality transformations. Despite of recent progress in various limits, eleven-dimensional
M-theory remains still Mysterious, not to mention its full U-duality group which was conjectured
to correspond to a certain Kac-Moody algebra, or an exceptional generalized geometry called E11

25.3 M-theory and Quanputing

Whenever two very different areas of theoretical physics are found to share the same mathe-
matics, it frequently leads to new insights on both sides. Knowledge of string theory and M-theory
leads to new discoveries about Quantum Information Theory (QIT) and vice-versa [Duff, 2007].

25.4 Normal Quantum Hall Effect (NQHE)

The quantization of the Hall conductance has the important property of being incredibly pre-
cise. This phenomenon, referred to as "exact quantization", has been shown to be a subtle manifes-
tation of the principle of gauge invariance [Laughlin, 1981]. It has allowed for the definition of a
new practical standard for electrical resistance, based on the resistance quantum given by the von
Klitzing constant

RK = h/e2 = 25812.807557(18)Ω (25.1)

This is named after Klaus von Klitzing, the discoverer of exact quantization. Since 1990, a fixed
conventional value RK−90 is used in resistance calibrations worldwide [Tzalenchuk, 2010].
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The NQHE, or integer quantum Hall effect, is a quantum-mechanical version of the Hall effect,
observed in two-dimensional electron systems subjected to low temperatures and strong magnetic
fields, in which the Hall conductivity σ takes on the quantized values

σ =
I
V

=
e2

h
q = 2q

α
h̄
, h̄ =

h
2π

, α =
e2

4π
(25.2)

were I is the channel current, V is the Hall voltage, e is the elementary charge and h is Planck’s
constant. The q is known as the "filling factor", and can take on either integer, q = n = 1,2,3, ... or
fractional values.

25.5 Anomalous Quantum Hall Effect (AQHE)

For the AQHE, or fractional quantum Hall effect, the factor q takes fractional values, n =1/3,
2/3, 1/5, 2/5, 3/5,...

So, the quantum Hall effect is referred to as the normal (integer) or fractional (anomalous)
quantum Hall effect depending on whether q is an integer or fraction respectively. The integer
quantum Hall effect is very well understood, and can be simply explained in terms of single-particle
orbitals of an electron in a magnetic field. The fractional quantum Hall effect is more complicated,
as its existence relies fundamentally on electron-electron interactions. Although the microscopic
origins of the fractional quantum Hall effect are unknown, there are several phenomenological
approaches that provide accurate approximations. For example the effect can be thought of as an
integer quantum Hall effect, not of electrons but of charge-flux composites known as composite
fermions. There is also a new concept of the quantum spin Hall effect which is an analogue of the
quantum Hall effect, where spin currents flow instead of charge currents.

25.6 Mesons under magnetic fields

Strong magnetic fields with strength of 1018 ∼ 1020G (corresponding to eB (0.1−1.0GeV )2 ),
can be generated in the laboratory through non-central heavy ion collisions at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC). In the surface of magnetars, magnetic
fields can reach 1014−15G, which is thousand of times larger than that of an average pulsar, and in
the inner core of magnetars the magnetic fields could reach as high as 1018∼ 1020G. Therefore, it is
important to understand the properties of Quantum Chromodynamics (QCD) vacuum and hot/dense
quark matter under strong magnetic fields. Progresses have been made in this field includ the
Chiral Magnetic Effect (CME), Chiral Vortical Effect (CVE), the Magnetic Catalysis and Inverse
Magnetic Catalysis, and the Vacuum Superconductor.

25.7 The Theory Space (TS)

Max Planck during years 1897-1899 invented the system of fundamental unites c,h,G and
k G. Gamov, D. Ivanenko and L. Landau [Gamov, Ivanenko, Landau, 1928] considered the sys-
tem without the parameter k, as fundamental one. Bronshtein [Bronshtein, 1933] and Zelmanov
[Zelmanov, 1967], developed the idea of the cube of theories. The cube is located along three
orthogonal axes marked by c (actually by 1/c), h̄,G. The vertex (000) corresponds to nonrelativis-
tic mechanics, (c00) - to special relativity, (0h̄0) - to non-relativistic quantum mechanics, (ch̄0) -
to quantum field theory, (c0G) - to general relativity, (ch̄G ) - to futuristic quantum gravity and
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the Theory of Everything, TOE, modern version of which is M-theory. There is a hope that in
the framework of TOE the values of dimensionless fundamental parameters will be ultimately
calculated. Note that 3-dimensional TS-ch̄G where invented for 3-dimensional space models, d-
dimensional theory may need d-dimensional TS.

25.8 Fractal dynamical systems

The differential operator in superspace, i.e., the superderivative, and its inverse, are

D =
∂

∂θ
+θ

∂
∂ t

= ∂θ +θ∂t , D−1 = θ +∂θ ∂−1
t , (25.3)

were, θ is a Grassmann odd variable, accordingly the square of D turns out to be ordinary deriva-
tive,

D2 = ∂t (25.4)

in other words D can be regarded as a square root of ∂t .

25.9 Inverse Problem of Fructal Calculus (IPFC) with Applications

The final form of the laws obeyed by the electromagnetic field was found by Maxwell, around
1860 - these laws survived relativity and quantum theory, unharmed. Gauge invariance allows
only two free parameters in the Lagrangian of this system: e,me. Moreover, only one of these is
dimensionless:

α =
e2

4π
= 1/137.035999074(44). (25.5)

U(1) symmetry and renormalizability fully determine the properties of the e.m. interaction, except
for this number, which so far still remains unexplained.

In 1965, Vanyashin and Terentyev [Vanyashin, Terentyev, 1965] found that the renormaliza-
tion of the electric charge of a vector field is of opposite sign to the one of the electron. In the lan-
guage of SU(2) gauge field theory, their result implies that the β -function is negative at one loop.
The first correct calculation of the β -function of a nonabelian gauge field theory was carried out
by Khriplovich, for the case of SU(2), relevant for the electroweak interaction [Khriplovich, 1969].
He found that β is negative and concluded that the interaction becomes weak at short distance. In
his PhD thesis, ’t Hooft performed the calculation of the β -function for an arbitrary gauge group,
including the interaction with fermions and Higgs scalars [’t Hooft, 1971]. He demonstrated that
the theory is renormalizable and confirmed that, unless there are too many fermions or scalars,
the β -function is negative at small coupling. In 1973, Gross and Wilczek [Gross, Wilczek, 1973]
and Politzer [Politzer, 1973] discussed the consequences of a negative β -function and suggested
that this might explain Bjorken scaling, which had been observed at SLAC in 1969. They pointed
out that QCD predicts specific modifications of the scaling laws. In the meantime, there is strong
experimental evidence for these.
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25.10 Renormdynamics of the spacetime

Geometry of the spacetime can change with scale. Different approaches to quantum grav-
ity, ranging from asymptotic safety, non-commutative geometry, causal dynamical triangulations,
and spin-foams to fractal field theory, Hořava-Lifshitz and superrenormalizable gravity, display
a feature known as dimensional flow or dimensional reduction, namely, the change of spacetime
dimensionality with the scale [’t Hooft, 1993],[Carlip, 2009],[Calcagni, 2009].

25.11 Quantum Fields and Gravity

Quantum Mechanics has been used successfully to describe the physics of the small i.e. from
atoms to quarks, their forces and interactions. Einstein’s General Theory of Relativity [Weinberg, 1972],
[Misner,Thorne,Wheeler,2000], which describes the physics of the very large, from the motion of
planets in the solar system to the motion of galaxies in the Universe, that is, the gravitational in-
teraction. General Relativity, or GR for short, is an excellent classical theory, it agrees with the
classical tests of GR [Will, 2006] and it provides a beautiful geometric interpretation of gravity.
However, GR is not renormalizable. This means among other things that, we cannot compute
quantum corrections to the classical results, black hole thermodynamics cannot be understood in
statistical terms (we cannot count states) and near the big bang, GR breaks down i.e. quantum
effects dominate the evolution of the Universe and perhaps this could explain inflation. To solve
these problems, physicist have tried to find a unified theory that can encompass all phenomena in
all scales and, in the particular case of the gravitational interaction, a Quantum Theory of Gravity.

25.12 Reduction of Couplings, Superintegrable Renormdynamics and Finite Quantum Field
Theories

The main goal of a unified description of interactions should be the understanding of the
present day free parameters of the Standard Model (SM) in terms of a few fundamental ones, or in
other words to achieve reduction of couplings at a more fundamental level. An impressive aspect of
the renormdynamic integrals of motion (RIM) is that one can guarantee their validity to all-orders in
perturbation theory by studying the uniqueness of the resulting relations at one-loop, as was proven
in the early days of the programme of reduction of couplings [Zimmermann, 1985],[Oehme, Zimmermann, 1985].
Even more remarkable is the fact that it is possible to find RIM that guarantee finiteness to all-orders
in perturbation theory [Lucchesi,Piguet,Sibold,1988],[Lucchesi,Zoupanos,1997],[Piguet,Sibold,1986].

25.13 Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1≤ n≤ N, we can formulate Renormdynamics
as Nambu - Poisson dynamics (see e.g. [Makhaldiani, 2007])

φ̇(x) = [φ(x),H1,H2, ...,HN ], (25.6)

where φ is an observable as a function of the coupling constants xm, 1≤ m≤M.

In the case of Standard model [Weinberg, 1995], we have three coupling constants, M = 3.
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25.14 Hamiltonian extension of the Renormdynamics

The renormdynamic motion equations

ġn = βn(g), 1≤ n≤ N (25.7)

can be presented as nonlinear part of a Hamiltonian system with linear part

Ψ̇n =−
∂βm

∂gn
Ψm, (25.8)

Hamiltonian and canonical Poisson bracket as

H =
N

∑
n=1

β (g)nΨn, {gn,Ψm}= δnm (25.9)

In this extended version, we can define optimal control theory approach [Pontryagin, 1983]
to the unified field theories. We can start from the unified value of the coupling constant, e.g.
α−1(M) = 29.0... at the scale of unification M, put the aim to reach the SM scale with values of
the coupling constants measured in experiments, and find optimal threshold corrections to the RD
coefficients [Makhaldiani, 2010].

25.15 Renormdynamic equation for effective action

For connected vertex functions Γn, (2.11)

Γn(x1,x2, ...,xn;g,m,µ) = Zn/2(µ)Γ0n(x1,x2, ...,xn;g0,m0),

(D− n
2

γ)Γn(x;g,m,µ) = 0; (25.10)

For effective action Sq,

(D− 1
2

γ
∫

dxϕ(x)
δ

δϕ(x)
)Sq(ϕ) = 0,

(D− 1
2

γϕ
∂

∂ϕ
)V (ϕ) = 0, V (ϕ) = Sq(ϕ(x))|ϕ(x)=ϕ=const , (25.11)

where V (ϕ) is effective potential.
For the effective potential in the RD (conformal) fixed point, γ(g) = γ(gc) ≡ γc we have the

following wave equation and corresponding (auto model) solution

(∂t −
γc

2
∂z)V = 0,

V (ϕ ,µ) = f (z+ vt) = F(
ϕ
µv ), t = ln

µ
µ0

,z = ln
ϕ
ϕ0

,v =
γc

2
. (25.12)

25.16 Renormdynamics of Observables

In an axiomatic setting it was shown [Zimmermann, 1980] that the S-operator scales with the
β -function

Ṡ = β (a)∂aS (25.13)
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This can be understood as the renormdynamic equation for the S-operator. There is no contribution
by γ-functions associated with anomalous dimensions of the fields.

If we take the solutions as the following expansion

S = ∑
n

gnSn, (25.14)

for conformal theories: β (a) = 0, we will have renormdynamic integrals of motion Sn. If we start
from free fields, we will have usual perturation expansion: n≥ 0. If we start from nonperturbative,
e.g. a soliton-like states, we will have also negative values for n.

We find the following exact form for the renormalization constant Z, [Makhaldiani, 1988]

Z(a,ε) = 1+Z1ε−1 + ...+Znε−n + ...

= 1+
∫ a

da ∑
n≥1

(
1
ε

dZ1

da
)n

= 1+
∫ a

da
dZ1
da

ε− dZ1
da

= 1+
∫ a

da
β (a)

εa2−β (a)
. (25.15)

In critical dimension ε = 0, and

0≤ Z(a,0) = 1−a≤ 1,
0≤ a≤ 1,ab = a(1−a)⇒

a± =
1±
√

1−4ab

2
,0≤ ab ≤

1
4

(25.16)

These formal considerations are correct in the nonstandard (non-archimedean) analysis [Davis, 1977].
For any multiplicative renormalized quantity A,Ab = Z(ε ,a)A,

Ȧ =−γ(ε ,a)A,γ = Ż/Z,

A = exp(−
∫ a

da
γ(ε ,a)

−εa+β (a)
), (25.17)

for A = a,γ = ε−β (a)/a.

25.17 Dual symmetry

The solutions for the observable values of the coupling constant a±, has the property

a+a− = ab, (25.18)

which is similar with the Dirac’s quantization

αeαm =
1
4
= (4π)2ab = e2

b,eb =±
1
2
,

ab =
n2

64π2 ≤
1
4
⇒ |n| ≤ 12 (25.19)

This condition gives the restriction on the charge, correspondingly, mass, size,..., of the cumulative
quasiparticles.

We have a dual symmetry with respect to the change a± → a∓, or a↔ Z. If a = a− is not
small, we can expend with respect to a+ = ab/a = Z = 1−a.
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25.18 Discrete renormdynamic interpretation

If we consider ab as effective coupling constant at the n-th RD iteration, a= an, take ab = an+1,

we will have

an = an+1 = kan(1−an),

∆an = an+1−an = an((k−1)− kan) =

{
> 0, an < (k−1)/k
< 0, an > (k−1)/k

}
(25.20)

So, we have two unstable UV (stable IR) fixed points: a = 0 and a = 1 and one stable UV (unstable
IR) fixed point as = (k−1)/k. When k = 1+ ε , ε << 1, as = ε/(1+ ε).

Another example of discrete dynamics without extra parameter k is

an+1 =
√

an(1−an) = γ(an)an ≤
1
2
, γ(an) =

√
a−1

n −1≥ 1,

an ↑
1
2

(25.21)

25.19 Renormdynamic functions (RDF)

We will call RDF functions gn = fn(t), which are solutions of the RD motion equations

ġn = βn(g),1≤ n≤ N. (25.22)

In the simplest case of one coupling constant, the function g = f (t), is constant g = gc when
β (gc) = 0, or is invertible (monotone). Indeed,

ġ = f ′(t) = f ′( f−1(g)) = β (g). (25.23)

Each monotone interval ends by UV and IR fixed points and describes corresponding phase of the
system.

25.20 Minimal Supersymmetric Standard Model (MSSM) and Higgs Particles

The LHC has discovered a scalar with mass around 125 GeV which resembles the Standard
Model (SM) Higgs boson [Aad et al. ATLAS Collaboration, 2012],[Chatrchyan et al. CMS Collaboration, 2012].
Since the MSSM predicts a light Higgs boson below 130 GeV [MSSMHiggs,1991-1993], the dis-
covery of such a 125 GeV Higgs boson may be the second hint of low energy supersymmetry
(SUSY). First hint was the possibility of unification of the coupling constants, the property beyond
the SM.

At an e+e− collider, the Higgs-strahlung process e+e−⇒ Zh is the dominant production chan-
nel for the Higgs boson, for which the Zh events can be inclusively detected by tagging a leptonic Z
decay without assuming the Higgs decay mode. For a center-of-mass energy of 240 - 250 GeV and
an integrated luminosity of 500 f b−1, an e+e− collider can produce about O(105) Higgs bosons per
year and allow for measuring the Higgs couplings at percent level [Peskin, 2012],[Blondel et al. 2013],
which may be able to unravel the SUSY effects in this production.

As a feasible option, the γγ collision can be achieved through the backward Compton scatter-
ing of laser light against high-energy electrons at a linear e+e− collider. At such a γγ collision the
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Higgs boson can be singly produced via the loop process γγ ⇒ h. This process is demonstrated to
be sensitive to the new charged SUSY particles. So the photon collider will be an ideal place to
investigate the anomalous hγγ coupling. At the γγ collider, the Higgs partial width Γγγ can be mea-
sured with an accuracy of about 2%. Besides, the CP property of the Higgs boson can be measured
using the photon polarizations. The single production of SUSY Higgs bosons through γγ fusion
has been calculated in [Bae et al. 2000-2008].

25.21 Dark Matter

Evidently, about 84 percent of the matter in the universe does not absorb or emit light. "Dark
matter," as it is called, cannot be seen directly, and it hasn’t yet been detected by indirect means,
either. Instead, dark matter’s existence and properties are inferred from its gravitational effects on
visible matter, radiation and the structure of the universe. This shadowy substance is thought to
pervade the outskirts of galaxies, and may be composed of "weakly interacting massive particles,"
or WIMPs. The mass m of the observable part of the universe is dominated by nucleons: m=Nnmn.

If the mass of the dark matter is dominated by the mass mD of a dark matter particle: M = NDmD,

than

M
m

=
ND

Nn

mD

mn
=

84
16

=
21
4

= 5.25 (25.24)

If we take ND = Nn than we predect: mD = 5.25mn = 5.25× 0.94 = 4.93 ≃ 5 GeV. If we take
mD = 41 GeV, than ND ≃ Nn/8. If we take mD = 2.4 TeV, than ND ≃ Nn/60. If we take mD = 0.33
GeV of the valence quark value, than ND ≃ 15Nn.

25.22 Candidates in dark matter particle

Many new physics models contain massive neutral particles whose stability is protected by
certain exact or approximate symmetries, and thus could serve as DM particles. Antimatter is a
good way to look for dark matter. Middle way for the mass scale of the DMP is 40 GeV. DMP with
mass less than 40 GeV we will call light candidates, DMP with mass more than 40 GeV we will
call heavy candidates.

According to the SM of cosmology, the critical density of matter in the flat universe is

ρc =
3H2

4πG
= 2×10−29 g

cm3 , (25.25)

The density of baryon matter is

ρb = 5×10−31 g
cm3 , (25.26)

If the number of the dark matter particles (DMP, Dm) of mass m, is k-times more than baryon
number than

m
mp

=
ρc

kρb
= 40k−1, (25.27)

so, for k = 3 we have

m
mp

& 13 = απN , (25.28)
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for k = 1/3

m = 120mp . 126GeV = mH (25.29)

If the Universe baryon number is zero, than DMP with mass m= 120GeV must have baryon number
nB = −3 and the Higgs particle with mass mH = 126GeV may decay as H → Dm + 3n, with low
energy (1 GeV) neutrons. More datal picture of the decay is

H→ H1/2 +n, H1/2→ H1 +n, H1→ H3/2 +n (25.30)

In this case the spin of Dm is 3/2.
In the case of k = 1, m = 40mp = 37.6GeV. We have seen that at the scale 41GeV the weak

coupling constant α−1
2 = 29.0 and can be unified with electromagnetic and strong coupling con-

stants. The case with m/mp ≃ 4 or 3 corresponds to the (anti-)helium, in the superfluid-dark matter
phase.

25.23 Strangelet

A strangelet is a hypothetical particle consisting of a bound state of roughly equal numbers
of up, down, and strange quarks. Its size would be a minimum of a few femtometers across (with
the mass of a light nucleus). Once the size becomes macroscopic (on the order of metres across),
such an object is usually called a quark star or "strange star" rather than a strangelet. An equivalent
description is that a strangelet is a small fragment of strange matter. The term "strangelet" originates
with E. Farhi and R. Jaffe [Farhi, Jaffe, 1984]. Strangelets have been suggested as a dark matter
candidate [Witten, 1984].

According to the "strange matter hypothesis" of Bodmer [Bodmer, 1971] and Witten [Witten, 1984],
when a large enough number of quarks are collected together, the lowest energy state is one which
has roughly equal numbers of up, down, and strange quarks, namely a strangelet. This stability
would occur because of the Pauli exclusion principle; having three types of quarks, rather than two
as in normal nuclear matter, allows more quarks to be placed in lower energy levels. The known
particles with strange quarks are unstable because the strange quark is heavier than the up and down
quarks, so strange particles, such as the Lambda particle, which contains an up, down, and strange
quark, always lose their strangeness, by decaying via the weak interaction to lighter particles con-
taining only up and down quarks. But states with a larger number of quarks might not suffer from
this instability.

25.24 A Scenario for Centauro Events

A primary cosmic-ray particle interacts with air nuclei and produce a fireball, which decays on
neutral pions: γγ ⇒ π0, by inverse mein decay channel, and/or γ → ρ0⇒ π+π−, by vector meson
dominance.

25.25 Density of states description of the statistical systems

If we take the trace of the transition amplitude,

∑
sn

< sn|U(t)|sn >= ∑
n,m

< sn|Em >
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< Em|sn > exp(− i
h̄

Em)

= ∑
Em

N(Em)e−βEm =

∫ ∞

0
dEρ(E)e−βE

= ρ(Ec)e−βEc = e−βF = Z(β ),
F = Ec−T S, S = lnρ(Ec),

∂S/∂E = T−1 = β , (25.31)

for density of states we will have

ρ(E) = ∑
Em

N(EM)δ (E−EM)

= ∑
m

δ (E−Em) = tr(E− Ĥ)

=
1

2πih̄

∫ +∞

−∞
dte

i
h̄ tEtr(e−

i
h̄ tĤ) (25.32)

Note, that in this type of expressions, we clearly see the origin of the energy - time uncertainty
relation, ∆E∆t ∼ 2π h̄.

If there are besides of the energy also other integrals of motion, N1, ...,Nk,

ρ(E,N1, ...,Nk) = tr(δ (E− Ĥ)δ (N1− N̂1)

... δ (Nk− N̂k)) (25.33)

25.26 High energy, baryon number and temperature asymptotics

If one knows the zero temperature dynamics, i.e. the complete spectrum of the hamiltonian,
then the quantum statistical mechanics just requires an additional statistical summation

Z = tr(e−βH). (25.34)

In practice, the complete non-perturbative spectrum of H is unknown so one must resort to per-
turbative methods, such as the Matsubara approach, that typically entangle the zero temperature
dynamics from the quantum statistical mechanics. Let us take the hamiltonian form of the func-
tional integral

tre−
i
h̄ tĤ =

∫
x(0)=x(t)

dxd p
2π h̄

e
i
h̄
∫ t

0(pẋ−H) (25.35)

For higher energy, small time and static approximation we have

ρ(E) =
1

2πih̄

∫ +∞

−∞
dte

i
h̄ tEtr(e−

i
h̄ tĤ)

=
1

2πih̄

∫ +∞

−∞
dte

i
h̄ tE
∫ dxd p

2π h̄
e−

i
h̄ tH(p,x)

=
∫ dxd p

2π h̄
δ (E−H(p,x))

=
∫ dx

2π h̄
2m√

2m(E−V (x))
(25.36)

The number of states

N(E) =
∫

dEρ(E) =
∫

H(p,x)=E

dxd p
2π h̄

(25.37)
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25.27 Exactly solvable model with maximal temperature

At high energy and temperature, we have classical statistical description

Z(β ) =
∫ dDxdD p

(2π)D e−βH(p,x)

= (
m

2πβ
)D/2

∫
dDxe−βV (x) (25.38)

For potential of the form

V (x) = 0, 0≤ |x| ≤ a,

= b · ln |x|
a
, |x|> a, (25.39)

we have

Z(β ) = (
m

2πβ
)D/2 ΩD

D
aDβb

βb−D
(25.40)

So the temperature of the system is restricted by condition

T = β−1 < b/D≡ TH (25.41)

Statistical energy of the system is

E = Ec =−
∂ lnZ(β )

∂β

=
D/2−1

β
+

1
β −D/b

(25.42)

The case when E = 0 corresponds to a self supporting, non expending, no collapsing state of the
system at the temperature

βN =
2
b
(
D
2
−1) =

D
b
− 2

b
< βH

TN =
b

D−2
=

TH

1−2/D
> TH (25.43)

The normal temperature is positive, corresponds to the stable state, for D > 2. It decrees when
dimension increase, from infinity to zero. So it is easy (easier)to crate higher dimensional normal
states. The volume of the system is

Vc =

∫
dxd pVe−βH∫
dxd pe−βH

=
ΩD

D

∫ a
0 dxx2D−1 +

∫ ∞
a dxx2D−1(a

x )
bβ

Z(β )

=
ΩD

D
aD bβ −D

2(bβ −2D)
, VN =

V (a)
D+2

(25.44)

The volume has positive value, for T > T2 = b/D = TH or T < T1 = b/2D, TN > T2.

This Normal state can not be reached by rising continually temperature of the system. In the
corresponding realistic models, e.g. for a heavy nucleus, we can obtain such a state in high energy
collisions.To this kind of physical states maybe ascribed ball lightning. Our model has one of the
main observable properties of the ball lightning, the normal states stable for temperatures T > TN ,

decays for lower temperatures, when T ≤ TN . Probably famous Tunguska Event was a Big ball
lightning explosion. This model maybe also useful as a model of the Centauro fireball.
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25.28 Ridges

In nucleus-nucleus collisions, ridges occur in the di-hadron correlations as structures that are
elongated in pseudorapidity difference ∆η = η1−η2, and peak on the near ∆ϕ ∼ 0 and away sides
∆ϕ ∼ π , where ∆ϕ is the azimuthal angle difference between hadron pairs.

25.29 n-field effective action and quasi particle spectrum

The O(N)−σ model is given by the following action functional (in euclidian) space(time)
(see e.g. [Novikov et al, 1984])

A =
N
2g

∫
dDx(∂µna)

2,

N

∑
a=1

na
2 ≡ n2 = 1. (25.45)

After scaling of the field variable and including the constraint using the Lagrange multiplier, for
GF we will have

ZJ =
∫

dnadα exp(−S(n,α)+ j ·n),

S =
∫

dx(
1
2
((∂n)2 +α(x)(n2− N

g
))),

ZJ =

∫
dαe−Se f f +

1
2 Ja·D−1·Ja

Se f f =
N
2

trlnD− N
2g

∫
dxα,

D(α) =−∂ 2 +α (25.46)

If the motion equation for α has a classical solution αc = m2, we can expend the effective action
in quantum fluctuations, α = m2 +αq,

Se f f =
N
2

trln(−∂ 2 +m2)

− N
2g

∫
dxm2− N

2g

∫
dxαq

+
N
2 ∑

k≥1

(−1)k+1

k
tr(D−1αq)

k. (25.47)

When αc is classical solution, linear terms in the expansion compensates each other,

1
g

∫
dxαq = tr

1
−∂ 2 +m2 αq

=
∫

dx < x| 1
−∂ 2 +m2 |x > αq(x)

=< 0| 1
−∂ 2 +m2 |0 >

∫
dxαq, (25.48)

so, in D = 2,

1
g
=< 0| 1

−∂ 2 +m2 |0 >=
∫ dD p

(2π)D
1

p2 +m2
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=
1

2π

∫ ∞

0

d pp
p2 +m2 ⇒

1
2π

∫ Λ

0

d pp
p2 +m2

=
1

4π
ln

Λ2

m2 ,

g⇒ g(Λ) =
2π

ln Λ
m

− (25.49)

is bare coupling constant, the running coupling constant is

g(µ) =
2π

ln µ
m
=

g0

1+ g0
2π ln µ

µ0

; (25.50)

the model is asymptotically free; the mass depends on the coupling constant non analytically,

m = µ exp(− 2π
g(µ)

) (25.51)

25.30 Neutral quasiparticle α

The quadratic therm in the effective action generates the propagator of the new α−quasiparticle,

Se f2 =−
N
4

tr(
1

−∂ 2 +m2 α
1

−∂ 2 +m2 α)

=−N
4

∫
d2xd2y < x| 1

−∂ 2 +m2 |y >

α(y)< y| 1
−∂ 2 +m2 |x > α(x) =

1
2

α ·V2 ·α

=
1
2

∫
d2xd2yα(x)V2(x− y)α(y)

=
1
2

∫
d2 p|α(p)|2V2(p), V2(p) =−N

2
V (p),

V (p) =
∫

d2xe−ixp 1
(2π)4

∫
d2qd2reix(q+r)

1
q2 +m2

1
r2 +m2 =

1
(2π)2∫

d2q
1

q2 +m2
1

(p+q)2 +m2 =
1

(2π)2∫ 1

0
dx
∫

d2q
1

(q2 + x(1− x)p2 +m2)2

=
∫

dxI(p,x), I(p,x) =

1
(2π)2

∫
d2q

1
(q2 + x(1− x)p2 +m2)2

=
1

4π

∫ ∞

0
du

1
(u+a(p,x))2 =

1
4π

1
a(p,x)

,

a(p,x) = x(1− x)p2 +m2,

V (p) =
1

4π

∫ 1

0

dx
a(p,x)

,V (0) =
1

4πm2

V (p) =
1

2π p2
1

x1− x2
ln |x1

x2
|

=
1

2π p2
1√

1+ 4m2

p2

ln

√
1+ 4m2

p2 +1√
1+ 4m2

p2 −1
(25.52)
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where x1 and x2 are roots of a(p,x)

x± =
1±
√

1+ 4m2

p2

2
. (25.53)

Note that when, p2 = m2, the roots take Golden ratio values,

x1 =

√
5+1
2

(25.54)

The n− field propagator has pole at the mass shell, p2 =−m2; the quasi particle propagator has cut
at −4m2 < Rep2 < 0.

For |p2| ≫ 4m2

V (p)≃ Z(p)
1

p2 +2m2 ,

Z(p) =
1

2π
ln

p2

m2 ; (25.55)

for 0 < p2≪ 4m2,

V (p)≃ 1
π

1
4m2 + p2 , Z =

1
π

(25.56)

First of all, we need to make a scaling transformation of the field α,

α(p)→ (NZ(p))−1/2α, (25.57)

to give a sense to the kinetic term of the action. This transformation suppress higher order terms in
action, for high values of N. Then, for high and low values of p2 the term is like of the source term
of the particle field with mass M1 =

√
2m and M2 = 2m, correspondingly,

−1
2

∫
d p|α(p)|2 1

p2 +M2 ⇒∫
dx(

1
2
((∂ϕ)2 +M2ϕ 2)

+α(x)φ(x)), (25.58)

so in this region of scales α−field interacts with the fundamental color field of mass m, na, a =

1, ...,N, and acts as a source of the neutral hadron field of mass M, ϕ . Note that, M2
2 −M2

1 = 2m2,

and on the way from small distance to large one, the neutral quasi-particle from strongly coupled
bound state of two colored particles become weakly coupled.

25.31 D-dimensional case

In D dimension, the coupling constant has mass dimension, gD = µ2−Dg0, so

1
g0

= µ2−D
∫ dD p

(2π)D
1

p2 +m2

=
ΩD

(2π)D µ2−D
∫ ∞

0

d ppD−1

p2 +m2
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=
ΩD

2(2π)D (
m
µ
)D−2Γ(1− D

2
)Γ(

D
2
),

g0(µ) = c(D)(
µ
m
)D−2,

c(D) =
(4π)D/2

Γ(1−D/2)
(25.59)

It is interesting to obtain the previous expression for running coupling constant in critical
dimension with momentum cutoff. For this we take D = 2−2ε and expend in ε the inverse value
of the coupling constant

1
g0

= Γ(1−D/2)(4π)−D/2(
µ
m
)2−D

=
1
ε

Γ(1+ ε)
1

4π
(4π)ε(

µ
m
)2ε

=
1
ε
(1− γε)(1+ ε ln(4π))(1+2ε ln

µ
m
)

1
4π

=C+
1

2π
ln

µ
m
,

1−Cg0

g0
=

Z
g0

=
1

g(µ)
=

1
2π

ln
µ
m
,

C =
1
ε
− γ + ln(4π) (25.60)

25.32 Hadronization in Skyrme and other models of QCD

Model independent predictions of semiclassical - 1/N expansion of the SU(N)QCD includes
the following relations

µP−µN = µP∆/
√

2, gπN∆ = 3/2gπN ⇒ απN∆ = (3/2)2απN = 29.25 (25.61)

which are valid within few percent approximation. So we may take απN∆ = p = 29 and con-
sider p-adic convergence of the απN∆ expansion. For two flavors the ground state barons have
spin isospin J = I = 1/2 for any odd N. Both in the quark and skyrmion models the short range
interaction between two nucleons is repulsive but the short range interaction between two Λ0 is
attractive. So, a bound state H of two Λ0 with binding energy of 110-200 MeV was predicted
[Balachandra,Kurkcuoglu,Rojas,2002].

25.33 Geometry of dynamics and confinement

Let us consider a particle with mass m and energy E in the potential V (x),

E =
m
2
(
dxn

dt
)2 +V (x)⇒

ds2 = c(x)2dt2−dx2
n = 0,

c(x) =

√
2
m
(E−V (x)). (25.62)

So, we can interpret this dynamics as lights with variable velocity c(x). For rising potentials, when
V (x) = E, c(x) = 0 and the particle and corresponding light are confined.
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25.34 Constraints from CMB on NcSM

Modern cosmology has now emerged as a testing ground for theories beyond the standard
model of particle physics. In 1992, the Cosmic Background Explorer (COBE) satellite detected
anisotropies in the CMB radiation, which led to the conclusion that the early universe was not
smooth: there were small density perturbations in the photon-baryon fluid before they decoupled
from each other. Quantum corrections to the inflaton field generate perturbations in the metric and
these perturbations could have been carried over to the photon-baryon fluid as density perturbations.
We then observe them today in the distribution of large scale structure and anisotropies in the CMB
radiation.

Primordial metric fluctuations can be decomposed into scalar, vector and second rank tensor
fluctuations according to their transformation properties under spatial rotations [Brandenberger,2004].
They evolve independently in a linear theory. Scalar perturbations are most important as they cou-
ple to matter inhomogeneities. Vector perturbations are not important as they decay away in an
expanding background cosmology. Tensor perturbations are less important than scalar ones, they
do not couple to matter inhomogeneities at linear order.

25.35 Einstein-Maxwell-Dilaton Theory and Coupling Constants

Charged black holes in four-dimensional Einstein-Maxwell-Dilaton (EMD) gravity exhibit
different features depending on the value of the dilaton coupling constant a entering the Maxwell
term in the Lagrangian,

L = R−2Λ−2(∂φ)2− exp(−2aφ)F2 (25.63)

Let us assume the static ansatz for the metric and the Maxwell one-form:

ds2 =−e−2δ Ndt2 +N−1dr2 +R2dΣ2
k ,

A =− f dt−Pcosϑdφ , (25.64)

where P is the magnetic charge and metric on the 2-space maybe spherical, flat or hyperbolic:
k = 1,0,−1

dΣ2
k =

{ dθ 2 + sin2 θdφ2, k = 1
dθ 2 +ϑ 2dφ2, k = 0

dθ 2 + sinh2 θdφ2, k =−1
(25.65)

the functions f ,φ ,N,R and δ depend on the radial variable r only

25.36 Geometric flows

Geometric flows (GF), and, in particular, Ricci flows, are interesting in their own right. In
physics they originally appeared in off-critical string theory via the renormalization-group equa-
tions of two-dimensional non-linear sigma models, where the evolution of the metric under the
Ricci flow equations provides the running of the bulk coupling to lowest order in perturbation the-
ory (see [Friedan,1980] for the original result). In this context, the renormalization-group time is
provided by the logarithmic length scale of the world-sheet, but in some cases it can also assume
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the role of genuine time, describing real-time evolution in string theory in regimes where the fric-
tion due to the motion of the dilaton effectively reduces the second-order evolution equations to the
first-order renormalization-group flow equations [Schmidhuber,Tseytlin,1994],[Bakas et al,2007].
In mathematics GF play a crucial role in implementing Hamilton’s program for proving Poincar’s
and Thurston’s conjectures [Hamilton,1982], [Perelman,2002-2003] (but see also [Morgan,2007]
and references therein).

25.37 Main flow

Main flows (MF) we call the following generalizationof the Geometric flows. MF is charac-
terised by a regular matrix Gmn. When this matrix is symmetric, MF reduce to GF. Let us consider a
point particle system with configuration space ℜ and a system of local coordinates qn that describe
its physical degrees of freedom. Let us consider the following functional E

E =
1
2

∫
dt(ẋn−

∂W
∂xk

Mkn)Mnm(ẋm−Mml
∂W
∂xl

) = H−△W,

H =
1
2

∫
dt(ẋnMnmẋm +

∂W
∂xk

Mkl
∂W
∂xl

), △W =
∫ t f

ti
dtẋn

∂W
∂xn

=Wf −Wi,

Wi f =W (x(ti f )), MnkMkl = δ l
n (25.66)

which corresponds to a point particle system with configuration space ℜ and a local coordinates qn

that describe its physical degrees of freedom.
Note that in the kinetic part of the energy H

1
2

∫
dtẋnMnmẋm, (25.67)

gives contribution the symmetric part Ms of the matrix M = Ms +Ma and in the potential part of
the energy

1
2

∫
dt

∂W
∂xk

Mkl
∂W
∂xl

, (25.68)

gives contribution the symmetric part of the inverse function M−1
s . We have the following relation

MM−1 = MsM−1
s +MsM−1

a +MaM−1
s +MaM−1

a = I (25.69)

Which in the symmetric and antisymmetric cases reduce correspondingly to

Ma = 0⇒MsM−1
s = I; Ms = 0⇒MaM−1

a = I (25.70)

For antisymmetric M,H = 0,E =−△W. For symmetric and positive M, the functional E ≥ 0 is the
Liapunov’s functional, with its minimum on the solutions of the following motion equation (ME)

ẋm−Mml
∂W
∂xl

= 0, H =△W ≥ 0. (25.71)

For antisymmetric M, ME is the Hamiltonian ME of the following Lagrangian

L = fn(x)ẋn−W (x), (25.72)
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with ME

ẋn = Mml
∂W
∂xl

,

Mnm = F−1
nm , Fnm =

∂ fn

∂xm
− ∂ fm

∂xn
(25.73)

On the solutions of the ME, E = H =△W = 0.

25.38 Ricci flow

In Hamilton’s Ricci flow (RF) [Hamilton,1982], the time evolution of the metric is proportional
to the Ricci tensor,

ġnm =−2Rnm (25.74)

and yields a forced diffusion equation for the curvature; i.e., the scalar curvature evolves as

Ṙ =△R+2R2 (25.75)

25.39 Skyrmions

The skyrmion is a hypothetical particle related originally to baryons. Skyrmions as topological
objects are also important in solid state physics, especially in the emerging technology of spintron-
ics. A two-dimensional skyrmion, as a topological object, is formed, e.g., from a 3d effective-spin
"hedgehog" (in the field of micromagnetics: out of a so-called "Bloch point" singularity of homo-
topy degree +1) by a stereographic projection, whereby the positive northpole spin is mapped onto
a far-off edge circle of a 2d-disk, while the negative southpole spin is mapped onto the center of
the disk.

In field theory, skyrmions are homotopically non-trivial classical solutions of a nonlinear
sigma model with a non-trivial target manifold topology - hence, they are topological solitons.
In chiral models of mesons, a topological term can be added to the chiral Lagrangian, whose inte-
gral depends only upon the homotopy class; this results in superselection sectors in the quantised
model. A skyrmion can be approximated by a soliton of the Sine-Gordon equation; after quantisa-
tion by the Bethe ansatz or otherwise, it turns into a fermion interacting according to the massive
Thirring model.

Skyrmions have been reported, but not conclusively proven, to be in Bose-Einstein conden-
sates, [Al Khawaja,Stoof,2001] superconductors,[Baskaran,2011] thin magnetic films [Kiselev et al,2011]
and also chiral nematic liquid crystals [Fukuda,Žumer,2011]. One particular form of the skyrmions
is found in magnetic materials that break the inversion symmetry and where the Dzyaloshinskii-
Moriya interaction plays an important role. They form "domains" as small as a 1 nm (e.g. in Fe on
Ir(111)[Heinze et al,2011]). The small size of magnetic skyrmions makes them a good candidate
for future data storage solutions. Physicists at the University of Hamburg have managed to read
and write skyrmions using scanning tunneling microscopy [Romming et al,2013].
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25.40 Neutron-Antineutron Oscillations

The neutron-antineutron oscillations are of great interest because their observation would al-
low to test very accurately the most fundamental CPT-symmetry, where C is charge conjugation,
P is inversion of space and T is reversal of time. The three discrete symmetries C, P, T were es-
tablished soon after discovery of Quantum Mechanics. C-symmetry or in other words symmetry
between particles and corresponding antiparticles was introduced in 1932 when the existence of
positron (the antiparticle of electron) was predicted by Paul Dirac and discovered by Carl Ander-
son. Particles which are identical with their antiparticles are called genuinely neutral. Such is the
photon - the particle of light; its C-parity is negative. P-symmetry or in other words - spatial parity
- the mirror symmetry between lefthanded and right-handed objects and its violation was known to
people long before the first scientific papers on the concepts of left and right appeared. In the XIX-
th century the importance of left-right asymmetry (dissymmetry) for the processes of life became
evident due to Luis Pasteur and others. With the advent of quantum mechanics in the 1920s it was
decided that biological dissymmetry is based on the P-symmetry of the basic fundamental interac-
tions. In the language using the concepts of Hamiltonian or Lagrangian that meant that scalar and
pseudo-scalar terms in them cannot coexist. For almost 30 years it was believed that only scalar
terms are present and no pseudoscalar terms could be added. This ended with the discovery of the
discovery of the V-A weak current. T-symmetry as well as P-symmetry was mainly formulated
in the framework of quantum mechanics around 1930 by Eugene Wigner. In the language using
the concepts of Hamiltonian or Lagrangian the time-reversal invariance meant that the coupling
constants of scalar and pseudocalar terms must be real.

25.41 Electric Dipole Moments (EDM) of Protons and Deuterons

EDM are one of the keys to understand the origin of our Universe [Sakharov, 1967]. Andrei
Sakharov formulated three conditions for baryogenesis:
1. Early in the evolution of the universe, the baryon number conservation must be violated suffi-
ciently strongly,
2. The C and CP invariances, and T invariance thereof, must be violated, and
3. At the moment when the baryon number is generated, the evolution of the universe must be out
of thermal equilibrium.

CP violation in kaon decays is known since 1964, it has been observed in B-decays and
charmed meson decays. The Standard Model (SM) accommodates CP violation via the phase
in the Cabibbo-Kobayashi-Maskawa matrix.

CP and P violation entail nonvanishing P and T violating electric dipole moments (EDM) of
elementary particles d⃗ = d⃗s. Although extremely successful in many aspects, the SM has at least
two weaknesses: neutrino oscillations do require extensions of the SM and, most importantly, the
SM mechanisms fail miserably in the expected baryogenesis rate.

Simultaneously, the SM predicts an exceedingly small electric dipole moment of nucleons
10−33 < dn < 10−31e · cm, way below the current upper bound for the neutron EDM, dn < 2.9×
10−26e · cm. In the quest for physics beyond the SM one could follow either the high energy trail
or look into new methods which offer very high precision and sensitivity. Supersymmetry is one of
the most attractive extensions of the SM and
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S. Weinberg emphasized [Weinberg, 1993]: "Endemic in supersymmetric (SUSY) theories are CP
violations that go beyond the SM. For this reason it may be that the next exciting thing to come
along will be the discovery of a neutron electric dipole moment."

The SUSY predictions span typically 10−29 < dn < 10−24e · cm and precisely this range is
targeted in the new generation of EDM searches [Roberts, Marciano, 2010]. There is consensus
among theorists that measuring the EDM of the proton, deuteron and helion is as important as that
of the neutron. Furthermore, it has been argued that T-violating nuclear forces could substantially
enhance nuclear EDM [Flambaum, Khriplovich, Sushkov, 1986]. At the moment, there are no sig-
nificant direct upper bounds available on dp or dd . Non-vanishing EDMs give rise to the precession
of the spin of a particle in an electric field. In the rest frame of a particle

ṡn = εnmk(Ωmsk +dmEk), Ωm =−µBm, (25.76)

where in terms of the lab frame fields

Bn = γ(Bl
n− εnmkβmE l

k),

En = γ(E l
n + εnmkβmBl

k) (25.77)

Now we can apply the Hamiltonization and optimal control theory methods to this dynamical
system.

25.42 Relativistic Heavy Ion Collider (RHIC)

RHIC is one of only two operating heavy-ion colliders, and the only spin-polarized proton
collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and
used by an international team of researchers, it is the only operating particle collider in the US. By
using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of
matter that existed in the universe shortly after the Big Bang. By colliding spin-polarized protons,
the spin structure of the proton is explored.

RHIC is now the second-highest-energy heavy-ion collider in the world. As of November 7,
2010, the LHC has collided heavy ions of lead at higher energies than RHIC. The LHC operating
time for ions is limited to about one month per year.

In 2010, RHIC physicists published results of temperature measurements from earlier exper-
iments which concluded that temperatures in excess of 4 trillion kelvin had been achieved in gold
ion collisions, and that these collision temperatures resulted in the breakdown of "normal matter"
and the creation of a liquid-like quark-gluon plasma.

RHIC is an intersecting storage ring particle accelerator. Two independent rings (arbitrarily
denoted as "Blue" and "Yellow" rings, see also the photograph) circulate heavy ions and/or protons
in opposite directions and allow a virtually free choice of colliding positively charged particles
(the eRHIC upgrade will allow collisions between positively and negatively charged particles).
The RHIC double storage ring is itself hexagonally shaped and 3,834 m long in circumference,
with curved edges in which stored particles are deflected and focused by 1,740 superconducting
niobium-titanium magnets. The dipole magnets operate at 3.45 T. The six interaction points (be-
tween the particles circulating in the two rings) are at the middle of the six relatively straight
sections, where the two rings cross, allowing the particles to collide. The interaction points are
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enumerated by clock positions, with the injection near 6 o’clock. Two large experiments, STAR(-
RHIC :) and PHENIX, are located at 6 and 8 o’clock respectively.

25.43 Cumulative particle production (CPP)

CPP is a process, when a heavy projectile produce lighter particle with higher velocity. Let
us consider a heavy particle with momentum mass M, velocity v, colliding with a fixed target and
producing a lighter particle with mass m and velocity V. In the medium we have not the momentum
conservation and generally we have Mv>mV. When V > v, we say that we have CPP, because if we
imaging the initial particle as a bound state of weakly coupled particles of mass m, the velocity V
can not be more than v. In CPP we have a collective effect in which constituents somehow transfer
their momentum to the produced particle.

25.44 Cosmic rays

Cosmic rays are very high-energy particles, mainly originating outside the Solar System. They
may produce showers of secondary particles that penetrate and impact Earth’s atmosphere and
sometimes even surface. Comprised primarily of high-energy protons and atomic nuclei, their
origin has, until recently, been a mystery. With data from the Fermi space telescope published in
February 2013, [Ackermann et al, 2013] it is now known that cosmic rays primarily originate from
the supernovae of massive stars, with each explosion producing roughly 3× 1042− 3× 1043J of
cosmic rays.

The term "cosmic rays" was coined in the 1920s by Robert Millikan who made measurements
of ionization due to cosmic rays from deep under water to high altitudes and around the globe. Dur-
ing the years from 1930 to 1945, a wide variety of investigations confirmed that the primary cosmic
rays are mostly protons, and the secondary radiation produced in the atmosphere is primarily elec-
trons, photons and muons. In 1948, observations with nuclear emulsions carried by balloons to
near the top of the atmosphere showed that approximately 10% of the primaries are helium nuclei
(alpha particles) and 1% are heavier nuclei of the elements such as carbon, iron, and lead.

Of primary cosmic rays, which originate outside of Earth’s atmosphere, about 99% are the
nuclei (stripped of their electron shells) of well-known atoms, and about 1% are solitary electrons
(similar to beta particles). Of the nuclei, about 90% are simple protons, i. e. hydrogen nuclei;
9% are alpha particles, and 1% are the nuclei of heavier elements. A very small fraction are stable
particles of antimatter, such as positrons or antiprotons, and the precise nature of this remaining
fraction is an area of active research.

Cosmic rays attract great interest practically, due to the damage they inflict on microelectronics
and life outside the protection of an atmosphere and magnetic field, and scientifically, because
the energies of the most energetic ultra-high-energy cosmic rays (UHECRs) have been observed
to approach 3× 1020eV , about 40 million times the energy of particles accelerated by the Large
Hadron Collider (LHC). At 50J, the highest-energy ultra-high-energy cosmic rays have energies
comparable to the kinetic energy of a 90-kilometre-per-hour (56 mph) baseball.

As a result of these discoveries, there has been interest in investigating cosmic rays of even
greater energies. Most cosmic rays, however, do not have such extreme energies; the energy distri-
bution of cosmic rays peaks at 0.3GeV (4.8×10−11J).
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There is a theoretical Greisen-Zatsepin-Kuzmin limit to the energies of cosmic rays from long
distances (about 160 million light years) which occurs above 1020eV because of interactions with
the remnant photons from the big bang origin of the universe. The highest energy events are
strongly correlated with the locations of active galactic nuclei (AGNs), where bare protons are
believed to be accelerated by strong magnetic fields associated with the large black holes at the
AGN centers to energies of 1020eV and higher.

Most galactic cosmic rays are probably accelerated in the blast waves of supernova remnants.
This doesn’t mean that the supernova explosion itself gets the particles up to these speeds. The
remnants of the explosions, expanding clouds of gas and magnetic field, can last for thousands of
years, and this is where cosmic rays are accelerated. Bouncing back and forth in the magnetic
field of the remnant randomly lets some of the particles gain energy, and become cosmic rays.
Eventually they build up enough speed that the remnant can no longer contain them, and they
escape into the Galaxy. Because the cosmic rays eventually escape the supernova remnant, they
can only be accelerated up to a certain maximum energy, which depends upon the size of the
acceleration region and the magnetic field strength. However, cosmic rays have been observed at
much higher energies than supernova remnants can generate, and where these ultra-high-energies
come from is a big question. Perhaps they come from outside the Galaxy, from active galactic
nuclei, quasars or gamma ray bursts. Or perhaps they’re the signature of some exotic new physics:
superstrings, exotic dark matter, strongly-interacting neutrinos, or topological defects in the very
structure of the universe. Questions like these tie cosmic-ray astrophysics to basic particle physics
and the fundamental nature of the universe.

Cosmic rays originate as primary cosmic rays, which are those originally produced in various
astrophysical processes. Primary cosmic rays are composed primarily of protons and alpha particles
(99%), with a small amount of heavier nuclei ( 1%) and an extremely minute proportion of positrons
and antiprotons. Secondary cosmic rays, caused by a decay of primary cosmic rays as they impact
an atmosphere, include neutrons, pions, positrons, and muons. Of these four, the latter three were
first detected in cosmic rays.

25.45 Spherical model of the multiparticle production

Now we would like to consider a model of multiparticle production based on the d-dimensional
sphere, and (try to) motivate the values of the NBD parameter k. The volum of the d-dimensional
sphere with radius r, in units of hadron size rh is

v(d,r) =
πd/2

Γ(d/2+1)
(

r
rh
)d (25.78)

Note that,

v(0,r) = 1, v(1,r) = 2
r
rh
,

v(−1,r) =
1
π

rh

r
(25.79)

If we identify this dimensionless quantity with corresponding coulomb energy formula,

1
π
=

e2

4π
, (25.80)
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we find e =±2.
For less then -1 even integer values of d, and r ̸= 0, v= 0. For negative odd integer d =−2n+1

v(−2n+1,r) =
π−n+1/2

Γ(−n+3/2)
(
rh

r
)2n−1, n≥ 1, (25.81)

v(−3,r) =− 1
2π2 (

rh

r
)3, v(−5,r) =

3
4π3 (

rh

r
)5 (25.82)

Note that,

v(2,r)v(3,r)v(−5,r) =
1
π
, v(1,r)v(2,r)v(−3,r) =− 1

π
(25.83)

Using (10.12), for higher values of the space dimension, for the volume of the sphere, we obtain

V (d,r) =
π d

2

Γ(d
2 +1)

(
r
rh
)d =

π d
2 e

d
2

(d
2 )

d
2
(1+O(

1
d
))(

r
rh
)d (25.84)

To the following evolution of the dimension with r corresponds invariant volume of the sphere

d(r) = 2πe(
r
rh
)2(1+O(

1
r2 )) (25.85)

We postulate that after collision, it appear intermediate state with almost spherical form and
constant energy density. Than the radius of the sphere rise, dimension decrease, volume remains
constant. At the last moment of the expansion, when the crossection of the one dimensional sphere
- string become of order of hadron size, hadronic string divide in k independent sectors which start
to radiate hadrons with geometric (Boze-Einstein) distribution, so all of the string final state radiate
according to the NBD distribution.

So, from the volume of the hadronic string,

v = π(
r
rh
)2 l

rh
= πk, (25.86)

we find the NBD parameter k,

k =
πd/2−1

Γ(d/2+1)
(

r
rh
)d (25.87)

Knowing, from experimental date, the parameter k, we can restrict the region of the values of the
parameters d and r of the primordial sphere (PS),

r(d) = (
Γ(d/2+1)

πd/2−1 k)1/drh,

r(3) = (
3
4

k)1/3rh, r(2) = k1/2rh, r(1) =
π
2

krh (25.88)

If the value of r(d) will be a few rh, the matter in the PS will be in the hadronic phase. If the value
of r will be of order 10rh, we can speak about deconfined, quark-gluon, Glukvar, phase. From the
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formula (25.88), we see, that to have for the r, the value of order 10rh, in d = 3 dimension, we need
the value for k of order 1000, which is not realistic.

So in our model, we need to consider the lower than one, fractal, dimensions. It is consistent
with the following intuitive picture. Confined matter have point-like geometry, with dimension
zero. Primordial sphere of Glukvar have nonzero fractal dimension, which is less than one,

k = 3, r(0.7395)/rh = 10.00,
k = 4, r(0.8384)/rh = 10.00 (25.89)

From the experimental data we find the parameter k of the NBD as a function of energy, k = k(s).
Then, by our spherical model, we construct fractal dimension of the Glukvar as a function of k(s).

If we suppose that radius of the primordial sphere r is of order (or less) of rh. Than we will
have higher dimensional PS, e.g.

d r/rh k
3 1.3104 3.0002
4 1.1756 3.0003
6 1.1053 2.9994
8 1.1517 3.9990

25.46 Extra dimension effects at high energy and large scale Universe

With extra dimensions gravitation interactions may become strong at the LHC energies,

V (r) =
m1m2

m2+d
1

r1+d (25.90)

If the extra dimensions are compactified with(in) size R, at r >> R,

V (r)≃ m1m2

m2(mR)d
1
r
=

m1m2

M2
Pl

1
r
, (25.91)

where (4-dimensional) Planck mass is given by

M2
Pl = m2+dRd, (25.92)

so the scale of extra dimensions is given as

R =
1
m
(
MPl

m
)

2
d (25.93)

If we take m = 1TeV,(GeV−1 = 0.2 f m)

R(d) = 2 ·10−17(
MPl

1TeV
)

2
d cm,

R(1) = 2 ·1015cm,

R(2) = 0.2 cm !
R(3) = 10−7cm !
R(4) = 2 ·10−9cm,

R(6)∼ 10−11cm (25.94)
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Note that lab measurements of GN(= 1/M2
Pl,MPl = 1.2×1019GeV ) have been made only on scales

of about 1 cm to 1 m; 1 astronomical unit(AU) (mean distance between Sun and Earth) is 1.5×
1013cm; the scale of the periodic structure of the Universe, L = 128Mps≃ 4 ·1026cm. It is curious
which (small) value of the extra dimension corresponds to L?

d = 2
ln MPl

m
ln(mL)

= 0.74, m = 1TeV,

= 0.81, m = 100GeV,
= 0.07, m = 1017GeV. (25.95)

25.47 Large-scale structure of the Universe

In 1929 astronomer Hubble discovered expansion of the Universe predicted early by mathe-
matician Freedman in 1922. The expansion of the Universe means that the distance between any
two points of it, r(t) rise with the time according to the Hubble’s low

ṙ = H(t)r, r(t) = r0 exp(
∫ t

t0
dτH(τ)) (25.96)

where H(t) is time dependent (running) Hubble’s constant. Today

H = 100h = 70.5km/s/Mpc, 1Mpc = 106 pc, pc≃ 3.26lyrs (25.97)

Large-scale structures of the Universe (LSSU) are considered in the region from 1Mpc to several
hundred Mpc. On these scales galactics can be considered as point particles in good approximation.
In the co-moving system r = a(t)x, the coordinate x and velocity v of a galactic is defined from the
Hubble low

v = ṙ−Hr = a(t)ẋ, r(t) = a(t)x, ȧ = Ha, H =
d lna

dt
. (25.98)

The scale factor a(t) is connected with red shift of spectrum z as

a(t) =
1

1+ z(t)
, a(t0) = 1⇔ z(t0) = 0. (25.99)

The scale factor a(t) monotonically rise with time and describes homogeneous expansion.

25.48 Sloan Digital Sky Survey

The survey makes the data releases available over the Internet. The SkyServer provides a range
of interfaces to an underlying Microsoft SQL Server. Both spectra and images are available in this
way, and interfaces are made very easy to use so that, for example, a full color image of any region
of the sky covered by an SDSS data release can be obtained just by providing the coordinates. The
data are available for non-commercial use only, without written permission. The SkyServer also
provides a range of tutorials aimed at everyone from schoolchildren up to professional astronomers.

116



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

25.49 Spatial Periodicity of Galaxy Number Counts

It is currently believed that the expansion of our universe at present is in an accelerated stage.
The measurements of the temperature anisotropy of the cosmic microwave background radiation
(hereafter CMB) by the Wilkinson microwave anisotropy probe (WMAP) have indicated that our
universe is flat. The high precision of these and other observations have enabled us to intercompare
and verify various candidate cosmological models.

A flat ΛCDM model consisting of Einstein’s cosmological constant Λ and cold dark matter, in
addition to the ordinary baryonic matter and radiation is currently the standard model because it can
account reasonably well for the acceleration of the cosmic expansion the spatial power spectrum
of the CMB temperature anisotropy observed by WMAP satellite, and the primordial abundance of
the light chemical elements produced through big-bang nucleosynthesis. Nevertheless, some key
questions remain as to the validity of the standard ΛCDM model. For instance, the physical origin
of the cosmological constant is presently unknown, although it might possibly be a component of
vacuum energy. As such, we have yet to understand why the energy density of the cosmological
constant remains unchanged with time. The numerical size of the Λ-term estimated based on
a particle physics consideration is generally more than 120 orders of magnitude too large to be
compared to the observed values.

As an alternative approach to circumvent these problems of the Λ-term, cosmological models
possessing quintessence or a phantom have been proposed. These methods interpret the dark energy
in terms of the type of time-varying scalar field.

The second consideration is that the cosmic age of the standard model, which is largely based
on the WMAP 3-yr data, is supposed to be 13.7 Gyrs, whereas the possibility of it being, for
instance, approximately 14-15 Gyrs has been raised based on observations of certain globular clus-
ters.

25.50 Fermi- and bose-statistics and Cosmological constant problem

One of the stranger consequences of quantum mechanics is that even empty space has energy.
The problem of how to calculate this vacuum energy is arguably the most intriguing mystery in
theoretical physics. For decades physicists tried to understand why this energy is so small, but no
definitive solution has yet been found. Vacuum is empty space, but it is far from being "nothing".
It is a complicated physical object in which particles like electrons, positrons and photons are be-
ing incessantly produced and destroyed by quantum fluctuations. Such virtual particles exist only
for a fleeting moment, but their energies combine to endow each cubic centimeter of space with a
nonzero energy. This vacuum energy density does not change in time; it is called the cosmolog-
ical constant and is usually denoted by Λ. The trouble is that theoretical calculations of Λ give
ridiculously large numbers, 120 orders of magnitude greater than what is observed. According to
Einstein’s General Relativity, vacuum energy produces a repulsive gravitational force, and if the
energy were so large, its gravity would have instantly blown the universe apart. It is conceivable
that positive vacuum energy contributions from some particle species are compensated by negative
contributions from other species, so that the net result is close to zero. But then the compensation
must be amazingly precise, up to 120 decimal places. There seems to be no good reason for such a
miraculous cancellation. Until recently, the great majority of physicists believed that something so
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small could only be zero: some hidden symmetry should force exact cancellation of all contribu-
tions to the cosmological constant. However, observations of distant supernova explosions in the
late 1990’s yielded the surprising discovery that the expansion of the universe accelerates with time
[Riess et al, 1998], [Perlmutter et al, 1999]- a telltale sign of cosmic repulsion caused by a nonzero
(positive) cosmological constant.

The observed magnitude of Λ has brought about another mystery: its value is roughly twice the
average energy density (or, equivalently, mass density) of matter in the universe. This is surprising
because the matter and vacuum densities behave very differently with cosmic expansion. The
vacuum density remains constant, while the matter density decreases; it was much greater in the
past and will be much smaller in the future. Why, then, do we happen to live at the very special
epoch when the two densities are so close to one another? This became known as the cosmic
coincidence problem.

WMAP’s measurements played the key role in establishing the current Standard Model of
Cosmology: the Lambda-CDM model. WMAP data are very well fit by a universe that is dominated
by dark energy in the form of a cosmological constant. Other cosmological data are also consistent,
and together tightly constrain the Model. In the Lambda-CDM model of the universe, the age of
the universe is 13.772 ± 0.059 billion years. The WMAP mission’s determination of the age of the
universe to better than 1% precision was recognized by the Guinness Book of World Records. The
current expansion rate of the universe (Hubble constant) is of

69.32±0.80 km · s−1 ·Mpc−1. (25.100)

The content of the universe presently consists of 4.628±0.093% ordinary baryonic matter; 24.02+
0.88(−0.87)% Cold dark matter (CDM) that neither emits nor absorbs light; and 71.35+0.95(−0.96)%
of dark energy in the form of a cosmological constant that accelerates the expansion of the universe.
Less than 1% of the current contents of the universe is in neutrinos, but WMAP’s measurements
have found, for the first time in 2008, that the data prefers the existence of a cosmic neutrino back-
ground with an effective number of neutrino species of 3.26± 0.35. The WMAP measurements
also support the cosmic inflation paradigm in several ways, including the flatness measurement,
and Euclidean flat geometry, with curvature Ωk =−0.0027+0.0039(−0.0038).

25.51 Cosmological constant (CC)

The polish priest Nicolaus Copernicus (1473-1543) started a revolution with his heliocen-
tric cosmology that displaced the Earth from the center of the Universe. His remarkable shift in
paradigm continues to this day, the cornerstone of a concept we now call the Cosmological Prin-
ciple, in which the Universe is assumed to be homogeneous and isotropic, without a center or
boundary. But few realize that even this high degree of symmetry is insufficient for cosmologists to
build a practical model of the Universe from the equations of General Relativity. The missing in-
gredient emerged from the work of mathematician Hermann Weyl (1885-1955), who reasoned that
on large scales the Universe must be expanding in an orderly fashion. He argued that all galaxies
move away from each other. In this view, the evolution of the universe is a time-ordered sequence
of 3-dimensional space-like hypersurfaces, each of which satisfies the Cosmological Principle-an
intuitive picture of regularity formally expressed as the Weyl postulate. Together, these two philo-
sophical inputs allow us to use a special time coordinate, called the cosmic time t , to represent
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how much change has occurred since the big bang, irrespective of location. The Weyl postulate
reduces formally to the mathematical expression R(t) = a(t)r, meaning that the proper distance
R(t) between any two spacetime points must be the product of a fixed, co-moving distance r, which
never changes even as the Universe expands, and a universal function of time a(t) independent of
position, but not necessarily of time. A galaxy a proper distance R(t) from us must therefore be
receding at speed

Ṙ(t) = ȧr =
ȧ
a

R = H(t)R (25.101)

- the Hubble Law. The Hubble constant H(t) is independent of position. Notice how easily such a
simple consequence of the Weyl postulate accounts for all of Hubble’s famous observations, which
convinced even Einstein-an early advocate of the static Universe-that the cosmos is expanding at
a speed proportional to proper distance. There is much to learn about the Universe-perhaps even
its beginnings-by understanding H or a(t), and so much of the effort in cosmological research is
dedicated to this task.

In Cosmology, the cosmological constant CC Λ is equivalent to an energy density in otherwise
empty space. It was proposed by Albert Einstein as a modification of his original theory of general
relativity to achieve a stationary universe. It appears in Einstein’s field equation in the form of

Rµν +(Λ− 1
2

R)gµν = aTµν , a =
8πG
c4 (25.102)

CC has the same effect as an intrinsic energy density of the vacuum, ρvac (and an associated pres-
sure). In this context it is commonly moved onto the right-hand side of the equation,

Rµν −
1
2

Rµν = a(Tµν −ρvacgµν), a =
8πG
c4 = 8π, (25.103)

where

Λ =
8πG
c4 ρvac = 8πρvac, (25.104)

and the unit conventions of general relativity are used (G=c=1). It is common to quote values of
energy density directly, though still using the name "cosmological constant". The Lambda-CDM
model of the Universe (the most accepted modern cosmological model) asserts that Λ is positive,
although negligible even by the scale of Milky Way. A positive vacuum energy density resulting
from a cosmological constant implies a negative pressure, and vice versa. If the energy density is
positive, the associated negative pressure will drive an accelerated expansion of the universe, as
observed. CC is a subject of theoretical and empirical interest. Empirically, the onslaught of cos-
mological data in the past decades strongly suggests that our universe has a positive cosmological
constant. The explanation of this small but positive value is an outstanding theoretical challenge.
The current standard model of cosmology, the Lambda-CDM model, includes the cosmological
constant, which is measured to be on the order of 10−52m−2, in metric units. Multiplied by other
constants that appear in the equations, it is often expressed as 10−35s−2,10−47GeV 4,10−29g/cm3

[Tegmark, 2004]. In terms of Planck units, and as a natural dimensionless value CC is on the order
of 10−122 [Barrow, Shaw, 2011]. A positive cosmological constant has surprising consequences,
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such as a finite maximum entropy of the observable universe [Dyson, Kleban, Susskind, 2002]. A
problem arises with inclusion of the cosmological constant in the standard model: i.e., the appear-
ance of solutions with regions of discontinuities. Discontinuity also affects the past sign of the
pressure of the cosmological constant, changing from the current negative pressure to attractive,
with lookback towards the early Universe. The cosmological time, dt, diverges for any finite inter-
val, ds, associated with an observer approaching the cosmological horizon, representing a physical
limit to observation for the standard model when the cosmological term is included. This is a key
requirement for a complete interpretation of astronomical observations, particularly pertaining to
the nature of dark energy and the cosmological constant. All of these findings should be consid-
ered major shortcomings of the standard model, but only when the cosmological constant term is
included.

A major outstanding problem is that most quantum field theories predict a huge value for
the quantum vacuum. A common assumption is that the quantum vacuum is equivalent to the
cosmological constant. Although no theory exists that supports this assumption, arguments can
be made in its favor. Such arguments are usually based on dimensional analysis and effective
field theory. If the universe is described by an effective local quantum field theory down to the
Planck scale, then we would expect a cosmological constant of the order of m4

Pl . The measured
cosmological constant is smaller than this by a factor of 10−120. For TeV scale we will have instead
the factor 10−56. This discrepancy has been called "the worst theoretical prediction in the history
of physics!". Some supersymmetric theories require a cosmological constant that is exactly zero,
which further complicates things. This is the cosmological constant problem, the worst problem of
fine-tuning in physics: there is no known natural way to derive the tiny cosmological constant used
in cosmology from particle physics.

One possible explanation for the small but non-zero value was noted by Steven Weinberg in
1987 following the anthropic principle [Weinberg, 1987]. Weinberg explains that if the vacuum
energy took different values in different domains of the universe, then observers would necessarily
measure values similar to that which is observed: the formation of life-supporting structures would
be suppressed in domains where the vacuum energy is much larger. Specifically, if the vacuum
energy is negative and its absolute value is substantially larger than it appears to be in the observed
universe (say, a factor of 10 larger), holding all other variables (e.g. matter density) constant, that
would mean that the universe is closed; furthermore, its lifetime would be shorter than the age of our
universe, possibly too short for the intelligent life to form. On the other hand, a universe with a large
positive cosmological constant would expand too fast, preventing galaxy formation. According to
Weinberg, domains where the vacuum energy are compatible with life would be comparatively
rare. Using this argument, Weinberg predicted that the cosmological constant would have a value
of less than a hundred times the currently accepted value. In 1995 Weinberg’s argument was refined
by Alexander Vilenkin to predict a value for the cosmological constant that was only ten times the
matter density, i.e. about three times the current value since determined [Vilenkin, 1995].

Let us describe a mechanism of estimation of the CC [Makhaldiani, 2003]. We suppose that
we have a supersymmetric spectrum of the matter at some (small) temperature. In the simplest
case of one supersymmetric harmonic oscillator, we have one bose- and one fermi-oscillators. The
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energy spectrum of the bose-oscillator is

En = h̄ω(n+
1
2
), n = 0,1,2, ... (25.105)

Corresponding statistical sum is

ZB = ∑
n≥0

e−a(n+ 1
2 ) =

e−
a
2

1− e−a =
1

2sinh a
2
, a =

h̄ω
kT

(25.106)

For fermi-oscillator we have

En = h̄ω(n− 1
2
), n = 0,1

ZF =
1

∑
n=0

e−a(n− 1
2 ) = e

a
2 + e−

a
2 = 2cosh

a
2

(25.107)

For super-oscillator system composed from one fermi- and one bose-oscillators,

Z = ZBZF = e−βF = coth
a
2
= 1+2e−

a
2 + ..., a =

h̄ω
kT
≫ 1 (25.108)

so, the contribution of the supersymmetric oscillator in the cosmological constant Λ∼ lnZ∼ e−
a
2 ≃

0, and a suppersymmetry of the effective action on the cosmological scale may solve cosmological
constant problem and explain the dark matter and energy problem.

Let us estimate the energy-masse of the corresponding state for the temperature of the relict
radiation as follows

10−120 = e−120ln10⇒ a =
h̄ω
kT

= 240ln10⇒ m = h̄ω ≃ 553T

300K ≃ 1
38.7

eV ⇒ 3K ≃ 2.58x10−4eV ⇒ m = 0.143eV (25.109)

25.52 Axion candidates for dark matter

Astrophysical considerations place the axion mass in a range 10−2−10−6 eV, [Kuster et al, 2008].

25.53 Massive neutrinos

Neutrino may be the same with its antiparticle-the Majorana neutrino, or may be different
with its antiparticle-the Dirac neutrino. In some extensions of the SM, Dirac neutrino with mass
mD reduce to two Majorana neutrinos with masses mM and mn in relation mnmM ≃m2

D− the seesaw
relation. It is also natural for MD to be of the order of ml or mq, the mass of a typical charged lepton
or quark. Now, if mN ≫ ml or mq , then mn≪ ml or mq. For light quark u mass mu ∼ 1 MeV so
when mM ∼ 107mu ∼ 10 TeV, mn ∼ 10−7mu ∼ 0.1eV.

25.54 Hadrons in a hot and dense medium

Understanding the modification of hadron properties in a hot and dense medium is one of the
most important issues, since it is deeply related to the restoration of chiral symmetry of quantum
chromodynamics (QCD) [Brown and Rho, 1996]. The nucleon in medium also undergoes modifi-
cation and eventually its structure gets altered.

121



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

25.55 Quark-Gluon Phase of QCD: Gluquar

Most ordinary hadrons can only exist up to temperatures of about 150-170 MeV. Beyond
that, chiral symmetry is restored and confinement is lost. We know that this hot state of matter
- the QuarkGluon Plasma (QGP), Gluquar - existed in the early universe: the transition from the
Gluquar to the hadronic world is the latest cosmological transition. The Gluquar can be re-created
in accelerators.

25.56 Valence Quark Counting

In the development of hadron elliptic flow at RHIC it appears that elliptic flow of any hadron
species depends on the transverse kinetic energy K = mT −m0 in a similar manner provided both
v2 and K are divided by the number of constituent quarks, nq, in a given hadron, nq = 2 for a meson
and nq = 3 for a baryon. So, we have universal, scaling, form of distribution from which we obtain
elliptic flow for concrete reaction by multiply v2 and K on corresponding valence quarks number,
we have the Valence Quark Counting (VQC). Experimental studies indicate that the scaling holds
up only until K/nq ≃ 1GeV [Adare et al, 2007].

25.57 Classically Scale Invariant Standard Model

The discovery of the 125 GeV scalar particle [Aad et al. ATLAS Collaboration, 2012],
[Chatrchyan et al. CMS Collaboration, 2012] with the properties of the Standard Model Higgs bo-
son together with the so far negative results for searches of supersymmetry are pointing to a possi-
bility of a very different model building paradigm based on a minimally extended Standard Model
with manifest classical scale invariance.

In the minimal classically scale-invariant extension of the Standard Model the Higgs mecha-
nism is triggered and the electroweak symmetry breaking is generated radiatively by the Coleman-
Weinberg sector which is coupled to the SM Higgs [Khoze, 2013]. Higgs portal interactions of the
theory include an additional singlet which is also non-minimally coupled to gravity. The singlet
field responsible for inflation also gives a viable dark matter candidate.

25.58 Abraham-Lorentz-Dirac equation for the charged particle dynamics

Dirac relativistic theory of classical point electron [Dirac, 1938] has its equation of motion

d pµ

dτ
= Fµ + fµ , (25.110)

where pµ is the particle’s 4-momentum, τ is the particle’s proper time, and fµ is the covariant
generalization of the radiative reaction force

f =
2e2

3c3 v̈ (25.111)

as

fµ = k(
d2 pµ

dτ2 +
pµ

mc2
d pν

dτ
d pν

dτ
)

= k(p̈µ +
ṗ2

mc2 pµ), k =
2e2

3c3 (25.112)
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Note that, pµ f µ = 0. In the case of the one dimensional space, the motion equation reduce to
[Jackson, 1999]

ṗ = k(p̈− pṗ2

p2 +m2c2 )+ f (τ)
√

1+
p2

m2c2 , (25.113)

where p is the momentum in the direction of motion and f (τ) is the ordinary Newtonian force as a
function of the proper time. After substitution p = mcsinhy, this equation reduce to the Abraham-
Lorentz equation [Jackson, 1999]

ẏ = f + kÿ, (25.114)

with following general solution

y(τ) = y0(τ)+
∫

G(τ , t) f (t)dt,

(∂τ − k∂ττ)G(τ , t) = δ (τ− t),
(∂τ − k∂ττ)y0(τ) = 0. (25.115)

25.59 Electrodynamics with external currents

In a good approximation the Maxwell electrodynamics can be approximated as

∂ µFµν = Jµ ,

∂ µ F̃µν = 0,

F̃µν =
1
2

εµνρσ Fρσ , (25.116)

where Jµ is external current- a given function of the spacetime. From the antisymmetric property
of Fµν , we obtine the conservation of the current(charge),

∂ µJµ = 0. (25.117)

Introducing the vector potential Aµ and the following ansatz

Fµν = ∂µAν −∂νAµ , (25.118)

the second equation of the Maxwell equations is solved automatically. The first equation become

�Aν −∂ν(∂A) = Jν ,

�= ∂ µ∂µ , ∂A = ∂ µAµ . (25.119)

With the gauge condition ∂A = const, the solution is

Aµ = aµ +�−1Jµ ,

�aµ = 0. (25.120)

Without any gauge condition,

Aµ = aµ +Gν
µJν ,
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Gν
µJν(x) =

∫
Gν

µ(x− y)Jν(y)dy,

Gµν(x) =
∫ dxD

(2π)D Gµν(k)eikx,

Gµν(k) =
1
k2 Pµν , Pµν = (gµν −

kµkν

k2 ), P2 = P, Pa = 0, (25.121)

where under k2, we understand k2 + i0
If we consider point charge

J0(x) = eδ (x− x(t)), δ (x− x(t)) =
D−1

∏
n=1

δ (xn− xn(t)),
∫

dD−1xJ0 = e;

Jn = evnδ (x− x(t)),
∂tJ0(x) =−eẋn∂nδ ; ∂nJn = evn∂nδ + e(∂nVn)δ (x− x(t)), (25.122)

due to the current conservation, we have

ẋn = vn, ∂nvn = 0 (25.123)

In particular, if the velocity dos not changes direction with changing coordinates, it must be con-
stant and there is the rest frame of the point particle.

25.60 Riemann surfaces

Any Riemann surface of genus g = 1,2 can be written as a hyperelliptic curve, i.e they admit
a map f : Σg→ CP1 to the Riemann sphere [Griffiths and Harris, 1994]. For genus g = 1 one has

y2 =
4

∏
n=1

(x−an), g = 1 (25.124)

and for genus g = 2 the curve is

y2 =
6

∏
n=1

(x−an), g = 2 (25.125)

where {an ∈ C} are branch points.

25.61 Hyper-elliptic curves

Hyper-elliptic curve is defined by

y2 = PN(x) (25.126)

where PN(x) is polynomial of degree N. There are 2g cycles Ai,Bi, i = 1...g which can be chosen as
follows (Ai,A j) = 0,(Bi,B j) = 0,(Ai,B j) = di j . For genus g hyper-elliptic curve there are exactly
g holomorphic abelian-differentials of the first kind ωk:∮

Ai

ωk = δik (25.127)
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which are linear combinations of

dx
y
, ... ,

x(N−1)/2dx
y

(25.128)

Period matrix is given by: ∮
Bi

ωk = τik (25.129)

25.62 Computation of the Determinant of a Generalized Vandermonde Matrix

"Vandermonde" matrix is a matrix whose (i, j)-th entry is in the form of x j
i . The matrix has

a lot of applications in many fields such as signal processing and polynomial interpolations. We
consider generalization of the matrix, when its (i, j) entry is f j(xi) where f j(x) is a "fine" functions,
e.g. polynomial of x [Kitamoto, 2014].

25.63 Constrained Dynamics

Constrained dynamics represents a cornerstone of theoretical physics, as every relativistic
theory and every theory with gauge symmetries necessarily possesses constraints. The classical
Hamiltonian treatment of systems with constraints was developed by Dirac, [Dirac, 1950, 1964].
In the case of finite-dimensional systems his algorithm corresponds to rendering the equations of
motion involutive.

25.64 p-adic string theory

p-adic string amplitudes can be obtained as tree amplitudes of the field theory with the follow-
ing lagrangian and motion equation (see e.g. [Brekke, Freund, 1993])

L =
1
2

ΦQpΦ− 1
p+1

Φp+1,

QpΦ = Φp, Qp = pD (25.130)

D =−1
2
△, △=−∂ 2

x0
+∂ 2

x1
+ ...+∂ 2

xn−1
, (25.131)

Φ - is real scalar field on D-dimensional space-time with coordinates x = (x0,x1, ...,xD−1). We have
trivial, Φ = 0 and Φ = 1, and following nontrivial solutions of the equation (25.130)

Φ(x0,x1, ...,xD−1) = p
D

2(p−1) e
1−p−1

2ln p (x2
0−x2

1−x2
2−...−x2

D−1) (25.132)

25.65 p-adic solitons

The equation (25.130) permits factorization of its solutions Φ(x) = Φ(x0)Φ(x1)...Φ(xD−1),

every factor of which fulfils one dimensional equation

pε∂ 2
x Φ(x) = Φ(x)p, ε =±1

2
(25.133)

The trivial solution of the equations are Φ = 0 and Φ = 1. For nontrivial solution of (25.133), we
have

pε∂ 2
x Φ(x) = ea∂ 2

Φ(x) =
1√
4πa

∫ ∞

−∞
dye−

1
4a y2+y∂ Φ(x)
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=
1√
4πa

∫ ∞

−∞
dye−

1
4a y2

Φ(x+ y) = Φ(x)p, a = ε ln p (25.134)

If we (de quantize) put, p = q, and take (classical) limit, q→ 1, the motion equation reduce to

ε∂ 2
x Φ = Φ lnΦ, (25.135)

with solution

Φ(x) = e
1
2 e

x2
4ε . (25.136)

It is obvious that the anzac

Φ = Aebx2
, (25.137)

can pass the equation (25.134). Indeed, the solution is

Φ(x) = p
1

2(p−1) e
1−p−1
4ε ln p x2

,

Φ(x0,x1, ...,xD−1) = p
D

2(p−1) e
1−p−1

2ln p (x2
0−x2

1−x2
2−...−x2

D−1) (25.138)

25.66 Corresponding class of the motion equations

Now, we can define the following class of motion equations

QqF = Fq, (25.139)

where

Qq = qD, D = D1(x1)+ ...+Dl(xl), (25.140)

Dk(x) is some (differential) operator depending on x. In the case of the NBD GF,

Dk(x) =
xd
dx

. (25.141)

For this (Qlike) class of equations, we have factorization property

F = F(x1, ...,xl) = F1(x1)...Fl(xl),

qDk(x)Fk(x) = ckFk(x)q,1≤ k ≤ l, c1c2...cl = 1. (25.142)

25.67 NBD motivated equations

For NBD distribution we have corresponding multiplication(convolution)formulas

(P⋆P)n ≡
n

∑
m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k,2 < n >) = Q2Pn(k,< n >), ... (25.143)

So, we can say, that star-product on the distributions of NBD corresponds ordinary product for GF.
It will be nice to have similar things for string field theory(SFT) [Kaku, 2000].
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SFT motion equation is

QΦ = Φ⋆Φ (25.144)

For stringfield GF F we may have

QF = F2. (25.145)

By construction we know the solution of the nice equation (10.27) as GF of NBD, F. We obtain
corresponding differential equations, if we consider q = 1+ ε , for small ε ,

(D(D−1)...(D−m+1)− (lnF)m)Ψ = 0,

(
Γ(D+1)

Γ(D+1−m)
− (lnF)m)Ψ = 0,

(Dm−Φm)Ψ = 0,m = 1,2,3, ...

Dm =
Γ(D+1)

Γ(D+1−m)
,Φ = lnF, (25.146)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adic string, we have correspond-
ingly

D =
x1d
dx1

+
x2d
dx2

;

D =−1
2
△, △=−∂ 2

x0
+∂ 2

x1
+ ...+∂ 2

xn−1
. (25.147)

These equations have meaning not only for integer m.

For high mean multiplicities we have corresponding equations for KNO

Q2Ψ(z) = Ψ⋆Ψ≡
∫ z

0
Ψ(t)Ψ(z− t)dt

= z
∫ 1

0
dttδ1(1− t)δ2Ψ(z1)Ψ(z2)|z1=z2=z

= z
Γ(δ1 +1)Γ(δ2 +1)

Γ(δ1 +δ2 +2)
Ψ(z1)Ψ(z2)|z1=z2=z (25.148)

Due to the explicit form of the operator D, these equations and corresponding solutions have the
symmetry under the change of the variables

k→ ak, < n >→ b < n > . (25.149)

When

a =
< n >

k
, b =

k
< n >

, (25.150)

we obtain the symmetry with respect to the transformations k↔< n >,x1↔ x2.
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25.68 The Theory of Invariants with some applications

The effective action of any field theory in classical, static and homogeneous approximation
reduce to the effective potential of the polynomial type, stable critical points of which give us the
ground states of corresponding physical system. In the case of one field, for critical points we have
usual polynomial equation

Pn(x) = anxn + ...+a1x+a0 = 0 (25.151)

We know that the solutions of this equation is given in the class of algebraic function for n 6 4 and
can be expressed in terms of the θ−functions for n≥ 5, [Mumford, 1983].

In the field of complex numbers, x ∈ C, we have for Pn(x) = 0, n solutions, we have n roots
xk,1≤ k≤ n. In the regular case, the roots are different, xn ̸= xm,n ̸=m. In the singular or degenerate
case, some of the roots coincides, we have multiple root, we have only k≤ n different roots xm,1≤
m≤ k, with multiplicity nm, of root xm,n≥ nm ≥ 1,n1 +n2 + ...+nk = n.

Let us start, for warmup from simplest considerations. If we have linear equation,

kx−a = 0, (25.152)

when k ̸= 0, we have the following unique solution

x =
a
k
. (25.153)

If a ̸= 0 and k = 0, we have not a solution. And the last case: if k = a = 0, any x is solution.
Now, we consider the simplest case of deformation, which we will use than for higher order

equations too. Let us consider second order equation which will approximate, is deformation, the
previous one

εx2− kx+a = 0, kx−a = εx2, (25.154)

This equation will serve us as exactly solvable example on which we will illustrate the perturbation
theory method usable for higher dimensional equations. The well known solution is

x =
k±
√

k2−4aε
2ε

=
k(1± (1−2aε/k2 +O(ε2))

2ε
(25.155)

So the minus-sign solution

x− =
a
k
+O(ε), (25.156)

is the deformation of the original solution. The plus-sign solution

x+ =
k
ε
+O(ε) (25.157)

is the extra, pseudo solution, which disappear from any finite region for rather small ε.
Already for second order equation we have both, the regular case, with two different solutions

and the singular case, when we have one solution with multiplicity 2. We will see that by defor-
mation method we can transform the singular case into regular one. Than we answer the question
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how regular case reduce in the limit of zero deformation to the singular case and regular solutions
become singular one. The general second order equation is

x2−2kx+ c = 0. (25.158)

Its solution is

x = k±
√

k2− c (25.159)

They are slightly different form of the second order equation with small parameter and its solution
considered before as deformation of the first order equation. In regular case, D = k2−c ̸= 0 and we
have two different solutions. In the singular case, D = 0 and we have one solution with multiplicity
2. Now we make deformation of the singular equation

(x− k)2− εx3 = 0. (25.160)

In this case we can also use the known exact solution of the third-order equation, but we prefer
the approximate perturbation theoretic method which is applicable also for higher order equations.
We try to find a solution which is a small deformation of the singular solution in the following form

x = k+ εax1 (25.161)

Put this anzac into deformed equation, than we find

ε2ax2
1− εk3 +O(ε1+a) = 0⇒ a =

1
2
, x1 =±k3/2

x = k± ε1/2k3/2 +O(ε3/2) (25.162)

So after deformation we obtain instead of one degenerate solution two regular one.
Now let us consider deformation of the regular case,

x2−2kx+ c− εx3 = 0, D = k2− c ̸= 0,
(x− x0+)(x− x0−)− εx3 = 0,
x0± = k±

√
k2− c,

x± = x0±+ εx1±,

x1+(x0+− x0−)− x3
0+ = 0,

x1+ =
x3

0+

x0+− x0−
=

x3
0+

2
√

k2− c
, x1− =−

x3
0−

x0+− x0−
(25.163)

Regular case corresponds to the deformation of the singular one, when

x1+ =
k3
√

k3ε
, k2− c = k3ε/4 (25.164)

Next case is third-order equation,

P3(x,a) = x3 +a2x2 +a1x+a0 = 0, (25.165)

With forth-order deformation,

P3− εx4 = 0 (25.166)
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In the most singular case we have one root with multiplicity 3, which transforms into three regular
roots after deformation:

(x− x0)
3− εx4 = 0,

xk = x0 + ε1/3x4/3
0 exp(

2π
3
(k−1)), k = 1,2,3 (25.167)

Now it is obvious the deformation picture in the case of general polynomial equation with one root
of multiplicity n:

(x− x0)
n− εxn+1 = 0,

xk = x0 + ε1/nx(n+1)/n
0 exp(

2π
n
(k−1)), k = 1,2, ...,n−1. (25.168)

Now consider semi-singular (or semi-regular, as you like to name this case) case, when one
have singular and regular roots. The simplest example, when we have one regular and one singular
roots, is

(x−a)2(x−b)− εx4 = 0,

x± = a± ε1/2 a2
√

a−b
,

x3 = b+ ε
b4

(a−b)2 (25.169)

we see that the ε−dependence of the deformed values of the roots are similar with previous exam-
ples.

For the deformation of the corresponding regular equation we have

(x− e1)(x− e2)(x− e3)− εx4 = 0,

x1 = e1 + ε
e4

1
(e1− e2)(e1− e3)

(25.170)

The singular case corresponds to ei− e j ∼ ε1/3x4/3
0

25.69 Numerical methods of finding roots

Finding of the real numerical values of the simple roots is not a problem with computer. Near
a simple root xk a polynomial Pn(x) has form

Pn(x) = (x− xk)Pn−1(xk)+O((x− xk)
2), (25.171)

so it changes sign in a small interval containing xk and dividing the interval in two, usually by mid-
dle point, parts, we find in which of them is the root, repetition of this procedure gives exponentially
quickly convergent approximations to the root.

In the case of the multiple zeros,

Pn(x) = (x− xk)
mPn−m(xk)+O((x− xk)

m+1), m≥ 2, (25.172)
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it is not easy to find multiplicity of the root when it is odd integer and it is difficult to find the root
and its multiplicity when multiplicity is even integer number. In the way of developing effective
numerical algorithms and computer programs, we note that, when we have good procedure of
finding logarithmic derivative of the polynomial,

Pn(x)′

Pn(x)
= (lnPn(x))′ = ∑

k

mk

x− xk
, ∑

k
mk = n, (25.173)

we can find roots as resonances in particle physics spectrum of crosssections.

25.70 Quantum groups with some applications

Deformation or an intelligent introduction of the new parameters is the useful concept in the-
oretical physics and mathematics. Quantum mechanics may be considered as a deformation (the
deformation parameter being h̄) of classical mechanics and relativistic mechanics is, to a certain
extent, another deformation (with 1/c as deformation parameter) of classical mechanics. In a sense
a three dimensional space (h̄,1/c,G), where G is Newton’s gravitational constant defines a theories
space. In this space the points: (0,0,G),(0,1/c,0),(h̄,0,0),(h̄,1/c,0),(h̄,0,G),(h̄,1/c,G) denote
correspondingly: classical gravitation, special theory of relativity, quantum mechanics, quantum
field theories, non-relativistic quantum gravity and M-theory. It is natural to travel in the theories
space by renormdynamics with running parameters.

The concept of a quantum algebra (or quantum group) was introduced, under different names,
by Kulish, Reshetikhin,Sklyanin,(from the Faddeev school), Drinfeld and Jimbo in terms of a quan-
tized universal enveloping algebra or an Hopf bi-algebra and, independently, by Woronowicz in
terms of a compact matrix pseudo-group [Kulish et al, 1981-87].

Among the various motivations that led to the concept of a quantum group, we have to mention
the quantum inverse scattering technique, the solution of the quantum Yang-Baxter equation and,
more generally, the study of exactly solvable models in statistical mechanics; conformal field the-
ories in two dimensions ; (quantum) dynamical systems ; quantum optics ; molecular, atomic and
nuclear spectroscopies ; condensed matter physics ; knot theory, theory of link invariants (Jones
polynomials) and braid groups ; and so on. In addition, the concept of a quantum group constitutes
a basic tool in non-commutative geometry. Thus, quantum groups are of paramount importance
not only in physics and quantum chemistry but in pure mathematics equally well.

25.71 pq-oscillators

We define the state vectors |n > from (one-particle) Fock space F = {|n >, n = 0,1,2, ...} as
eigenstates for an ordinary harmonic oscillator in one dimension; the linear operators a,a+ and N
on the vector space F by the relations

a+|n >=
√

[n+1]|n+1 >, a|n >=
√

[n]|n−1 >, a|0 >= 0, N|n >= n|n > (25.174)

where we use the notation

[c] =
pc−qc

p−q
, c ∈ C, (25.175)

the two parameters p and q being fixed parameters taken in the field of complex numbers C.

131



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

In the limiting case p = q−1→ 1, we have simply [c] = c so that a+,a and N are (respectively)
in this case the ordinary creation, annihilation and number operators. Observe that the operator N is
a non-deformed operator that coincides with the usual number operator. Two particular situations
are of special interest, viz., p = q−1, which is mainly encountered in the physical literature and
p = 1, which comes from the mathematical literature. A simple iteration of equation (25.174)
yields

|n >=
(a+)n√
[n]!
|0 >, [n]! = [n][n−1]...[1], n ∈ N, [0]! = 1. (25.176)

We have

(a)+ = a+, (N)+ = N, [N,a+] = a+, [N,a−] =−a− (25.177)

where (X)+ denotes the adjoint of the operator X and [A,B] = [A,B]− = AB−BA.
Indeed, e.g.

[N,a+]|n >=
√

[n+1](n+1)|n+1 >−n
√

[n+1]|n+1 >= a+|n > (25.178)

Equation (a)+ = a+ is valid under the condition that the pq-deformed numbers [n],n ∈ N, are real
; this is certainly the case if p and q ∈ R or p = q−1 ∈ S1,2

We have the following basic property

aa+ = [N +1], a+a = [N]. (25.179)

Indeed,

aa+|n >= a
√

[n+1]|n+1 >= [n+1]|n >= [N +1]|n >, ∀n (25.180)

As a corollary of the basic property we have the following expression for the c-mutator

[a,a+]c = aa+− ca+a =
pN(p− c)− (q− c)qN

p−q
, c ∈ C (25.181)

For p = 1, we have

[a,a+]q = 1, [a,a+]1 = qN , (25.182)

that correspond to the deformed bosons encountered mainly in the mathematical literature. Note
that the relation [a,a+]q = 1, which interpolates between fermions and bosons for−1≤ q≤ 1, may
be of interest in anyonic statistics and construction of the models with small deviation from Pauli
(exclusion) principle.

25.72 Coherent states description (CSD)

CSD at a point x we define as

â|x >= x|x >, â =
i√
2
(x̂− ip̂) =

1√
2
(p̂+ ix̂), â+ =

1√
2
(p̂− ix̂), [â, â+] = 1, (25.183)

2For p = q−1 = eiφ ∈ S1, φ ∈ R, [n+1] = sin(nφ+φ)
sinφ =Un(cosφ)-the Chebyshev polynomial of the second kind.
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25.73 Pauli exclusion principle and its small violation

The Pauli exclusion principle is the quantum mechanical principle that no two identical fermions
(particles with half-integer spin) may occupy the same quantum state simultaneously. A more rig-
orous statement is that the total wave function for two identical fermions is anti-symmetric with
respect to exchange of the particles. The principle was formulated by Austrian physicist Wolfgang
Pauli in 1925.

Integer spin particles, bosons, are not subject to the Pauli exclusion principle: any number of
identical bosons can occupy the same quantum state, as with, for instance, photons produced by a
laser and BoseŰEinstein condensate.

According to the spin-statistics theorem, particles with integer spin occupy symmetric quan-
tum states, and particles with half-integer spin occupy antisymmetric states; furthermore, only
integer or half-integer values of spin are allowed by the principles of quantum mechanics. In
relativistic quantum field theory, the Pauli principle follows from applying a rotation operator in
imaginary time to particles of half-integer spin. Since, nonrelativistically, particles can have any
statistics and any spin, there is no way to prove a spin-statistics theorem in nonrelativistic quantum
mechanics.

In one dimension, bosons, as well as fermions, can obey the exclusion principle. A one-
dimensional Bose gas with delta function repulsive interactions of infinite strength is equivalent
to a gas of free fermions. The reason for this is that, in one dimension, exchange of particles re-
quires that they pass through each other; for infinitely strong repulsion this cannot happen. This
model is described by a quantum nonlinear Schrodinger equation. In momentum space the ex-
clusion principle is valid also for finite repulsion in a Bose gas with delta function interactions
[Izergin, Korepin, 1982], as well as for interacting spins and Hubbard model in one dimension, and
for other models solvable by Bethe ansatz. The ground state in models solvable by Bethe ansatz is
a Fermi sphere.

The Pauli Exclusion Principle (PEP) uncovered by Wolfgang Pauli in 1925 [Pauli, 1925] is
one of the corner stones of quantum physics and thus it is at the basis of the foundation of modern
physics. It is connected with spin statistics dividing the world in fermions and bosons. Therefore,
PEP is one of the most important rules in physics. Based on it is our understanding of nature and
the consequences for the world of elementary particles up to compact objects (e.g. neutron stars)
in the universe - but it is lacking a simple explanation as already stated by Pauli himself.

Wolfgang Pauli showed later in 1940 the interconnection of the principle with the spin-statistics
[Pauli, 1940]. We know that the Pauli Principle is extremely well fulfilled but the the limit of va-
lidity - if any - is still an open question. Even a tiny violation of PEP would point to new physics
which could show up at very high energies (at the Planck scale).

25.74 Fermion vacuum condensate and Ultracold neutrons

It was Enrico Fermi who realized first that the coherent scattering of slow neutrons would
result in an effective interaction potential for neutrons traveling through matter, which would be
positive for most materials [Fermi, 1936]. The storage of neutrons with very low kinetic ener-
gies was predicted by Yakov Borisovich Zel’dovich [Zeldovich, 1959] and experimentally realized
simultaneously by groups at Dubna [Lushikov, 1969] and Munich [Steyerl, 1969].
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Ultracold neutrons (UCN) are free neutrons which can be stored in traps made from certain
materials. The storage is based on the reflection of UCN by such materials under any angle of inci-
dence. The reflection is caused by the coherent strong interaction of the neutron with atomic nuclei.
It can be quantum-mechanically described by an effective potential which is commonly referred to
as the Fermi pseudo potential or the neutron optical potential. The corresponding velocity is called
the critical velocity of a material. Neutrons are reflected from a surface if the velocity component
normal to the reflecting surface is less or equal the critical velocity. As the neutron optical potential
of most materials is below 300 neV, the kinetic energy of incident neutrons must not be higher than
this value to be reflected under any angle of incidence, especially for normal incidence. The kinetic
energy of 300 neV corresponds to a maximum velocity of 7.6 m/s or a minimum wavelength of 52
nm. As their density is usually very small, UCN can also be described as a very thin ideal gas with
a temperature of 3.5 mK. Due to the small kinetic energy of an UCN, the influence of gravitation
is significant. Thus, the trajectories are parabolic. Kinetic energy of an UCN is transformed into
potential (height) energy with ∼102 neV/m. The magnetic moment of the neutron, produced by its
spin, interacts with magnetic fields. The total energy changes with ∼60 neV/T.

Any material with a positive neutron optical potential can reflect UCN. The height of the
neutron optical potential is isotope-specific. The highest known value of VF is measured for 58Ni :
335neV (vC = 8.14m/s). It defines the upper limit of the kinetic energy range of UCN. The most
widely used materials for UCN wall coatings are Beryllium, Beryllium oxide, Nickel and more
recently also diamond-like carbon (DLC), VF=304 neV, vC =7.65 m/s. Non-magnetic materials
such as DLC are usually preferred for the use with polarized neutrons. Magnetic centers in e.g. Ni
can lead to depolarization of such neutrons upon reflection. If a material is magnetized, the neutron
optical potential is different for the two polarizations, caused by

VF =V0±µB (25.184)

where µ is the magnetic moment of the neutron and B = µ0M the magnetic field created on the
surface by the magnetization.

Each material has a specific loss probability per reflection,

η(E,θ) = η

√
E cos2 θ

VF −E cos2 θ
(25.185)

which depends on the kinetic energy of the incident UCN (E) and the angle of incidence (θ ). It
is caused by absorption and thermal upscattering. The loss coefficient η is energy-independent
and typically of the order of 10−4 to 10−3. The production, transportation and storage of UCN is
currently motivated by their usefulness as a tool to determine properties of the neutron and to study
fundamental physical interactions. Storage experiments have improved the accuracy or the upper
limit of some neutron related physical values.

The neutron electric dipole moment (nEDM) is a measure for the distribution of positive and
negative charge inside the neutron. No nEDM has been found until now. Today’s lowest value for
the upper limit of the nEDM was measured with stored UCN.
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25.75 Quantum vortex trapping of UCN

In physics, a quantum vortex is a topological defect exhibited in superfluids and superconduc-
tors. The existence of these quantum vortices was predicted by Lars Onsager in 1947 in connection
with superfluid Helium. Onsager also pointed out that quantum vortices describe circulation of su-
perfluid and conjectured that their excitations are responsible for superfluid phase transition. These
ideas of Onsager were further developed by Richard Feynman in 1955 [Feynman, 1955] and in
1957 were applied to describe magnectic phase diagram of type-II superconductors by Alexei Alex-
eyevich Abrikosov [Abrikosov, 1957]. Quantum vortices are observed experimentally in Type-II
superconductors, liquid helium, and atomic gases (in Bose-Einstein condensate). In a superfluid, a
quantum vortex "carries" quantized angular momentum, thus allowing the superfluid to rotate; in a
superconductor, the vortex carries quantized magnetic flux.

In a superfluid, a quantum vortex is a hole with the superfluid circulating around the vortex;
the inside of the vortex may contain excited particles, air, vacuum,..., UCNs, etc. The thickness of
the vortex depends on a variety of factors; in liquid helium, the thickness is on the order of a few
Angstroms. A superfluid has the special property of having phase, given by the wavefunction, and
the velocity of the superfluid is proportional to the gradient of the phase. The circulation around
any closed loop in the superfluid is zero, if the region enclosed is simply connected. The superfluid
is deemed irrotational. However, if the enclosed region actually contains a smaller region that is an
absence of superfluid, for example a rod through the superfluid or a vortex, then the circulation is,∮

v ·dl =
1
m

∮
p ·dl =

h̄
m

∮
∇ϕ ·dl =

h̄
m
△ϕ (25.186)

where m is the mass of the superfluid particle, and ϕ is the phase difference around the vortex.
Because the wavefunction must return to its same value after an integral number of turns around
the vortex (similar to what is described in the Bohr model), then△ϕ = 2πn, where n is an integer.
Thus, we find that the circulation is quantized:∮

v ·dl =
h̄
m

2πn =
h
m

n, (25.187)

where h is Planck’s constant.

25.76 Vortex in a superconductor

A principal property of superconductors is that they expel magnetic fields; this is called the
Meissner effect. If the magnetic field becomes sufficiently strong, one scenario is for the supercon-
ductive state to be "quenched". However, in some cases, it may be energetically favorable for the
superconductor to form a lattice of quantum vortices, which carry quantized magnetic flux through
the superconductor. A superconductor that is capable of having vortex lattices is called a type-II
superconductor. Over some enclosed area S, the magnetic flux is

Φ =
∮

∂S
A ·dl =

∮
S

B ·nd2x (25.188)

Substituting a result of London’s equation:

js =−ns
e2

s

m
A−ns

esh̄
m

∇ϕ , (25.189)
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we find

Φ =− m
nse2

s

∮
∂S

js ·dl− h̄
es

∮
∂S

∇ϕ ·dl (25.190)

where ns,m, and es are the number density, mass and charge of the Cooper pairs. If the region S, is
large enough so that js = 0 along ∂S , then

Φ =− h̄
es

∮
∂S

∇ϕ ·dl =− h̄
es

∮
S
△ϕ =

h
es

n (25.191)

The flow of current can cause vortices in a superconductor to move, it causes the electric field due
to the phenomenon of electromagnetic induction. This leads to energy dissipation and causes the
material to display a small amount of electrical resistance while in the superconducting state.

25.77 Quantum levels for UCN in gravitational field

Physicists have observed quantized states of matter under the influence of gravity for the first
time. Valery Nesvizhevsky of the Institute Laue-Langevin and colleagues found that cold neu-
trons moving in a gravitational field do not move smoothly but jump from one height to another,
as predicted by quantum theory. The finding could be used to probe fundamental physics such
as the equivalence principle, which states that different masses accelerate at the same rate in a
gravitational field (V Nesvizhevsky et al. 2001 Nature 415 297).

25.78 Quanputing and non-locality in quantum mechanics

Well-known examples of non-locality in quantum mechanics are EPR pairs [Einstein, Podolsky, Rosen, 1935]
and the GHZ state [Greenberger, Horne, Zeilinger, 1989 ]. States of quantum codes contradict
local realism, too [DiVincenzo, Peres, 1997]. One common feature of these states is that the
non-local properties do not change under local transformations, i. e., unitary operations act-
ing independently on each of the subsystems. Thus, any function invariant under local unitary
transformations (LUT) can be used to describe these non-local properties [Schlienz, Mahler, 1995,
Schlienz, Mahler, 1996].

25.79 Entanglement entropy (EE)

Entanglement is a fundamental phenomena in a wide variety of areas ranging from quan-
tum information and condensed matter physics, [Entangl1] to quantum gravity and string theory,
[Entangl2]

25.80 AdS/CFT correspondence and Holographic Rényi entropy

The tree level contribution and 1-loop correction of Rény holographic entanglement entropy
(RHE) exactly match the direct CFT computation in the large central charge limit. This allows the
Rény entanglement entropy to be a new window to study the AdS/CFT correspondence.
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25.81 Constituent Nature of Particles and Coupling Constant Numbers

In one copling constant-one dimensional renormdynamics, dimensional quantities, like hadron
masses in QCD, have the following dependence on the coupling constant

m = Λexp(−a/α(µ)) (25.192)

Now, if the inverse fine structure constant α−1 = N = n1n2 = α−1
1 α−1

2 is integer but not prime
number than we have the following relations

m = Λexp(−a1/α1(µ1)) = Λexp(−a2/α2(µ2)),

a1 = n2a = 2π/b1, a2 = n1a = 2π/b2, µ > µ1 > µ2, n1 > n2,

a = 2π/b, b =
11
3

nc−
2
3

n f , b1 =
11
3

nc

n2
− 2

3
n f

n2
, b2 =

11
3

nc

n1
− 2

3
n f

n1

α =
g2

4π
= 1/N, α < α1 < α2, α1 = 1/n1, α2 = 1/n2, N = n1n2 (25.193)

In 123-SM, we have three coupling constants,α1,α2,α3. If at a scale m, they have inverse integer
values with common factor: α−1

k = nnk, than

exp(−ak/αk(m)) = exp(−Ak/α(M)), Ak = nkak, α(M)−1 = n (25.194)

where at the scale M we have unified theory with fine structure coupling constant α(M). In MSSM
α(M)−1 = 25, M = 1016GeV, [Weinberg, 2000], [Kazakov, 2004].

We can extract also from some bk an integer factor and include it into αk, hence decrease their
values.

25.82 String-Field Duality

In the relativistic string-gauge field duality [Maldacena, 1999] (see review [Aharony et al, 2000]),
the string coupling constant gs and the gauge field fine structure constant αs are related: gs = αs.

The statement that the later is (prime) integer means (prime) integer quantization of the string
coupling constant.

25.83 Instantons

Instanton configuration has the following value of classical action

S[A] =
∫

d4x
1
4
(Ga

µν) =
8π2

g2 =
2π
α

= 2π p, α = p−1 (25.195)

So, in Minkowski space we have not destructive interference between instanton contributions

eiS = 1, (25.196)

when α = p−1. When α = p, we need at least p instantons in a cluster-molecule, we have cumula-
tive action of p instantons. So, on the valence quark scale, gluon fields are presented implicitly as
instanton clusters. When p = 2, we have instanton dipoles.
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25.84 Instantons of G2 gauge theory

Yang-Mills theory and QCD are well-defined theories for an arbitrary (semi-)simple Lie group
as gauge group. One remarkable choice for the group is the exceptional Lie group G2 instead of the
physical group SU(3). Since its center is trivial the Wilson confinement criterion is not fulfilled,
even in the pure Yang-Mills case. The reason is that any static fundamental charge can be screened
by three adjoint charges, i. e. gluons. The most remarkable difference compared to the SU(3) or
SU(2) case is the topological charge of the G2 instanton [Ernst-Michael Ilgenfritz, Axel Maas, 2012]

Q =
1

64π2

∫
d4xFa

µνεµνρσ Fa
ρσ = 2 (25.197)

which is twice as large as the one of the (embedded) SU(2) instanton.

25.85 Topological Field Theories

In the case of the N = 4 super Yang-Mills the moduli space is the upper half plane parametrized
by

τ =
θ
2π

+ i
4π
g2 =

θ
2π

+
i
α

=
1

2π
(θ + i

2π
α

) (25.198)

25.86 Nekrasov Instanton Partition Function

The instanton part of the partition function is given by

Z = ∑
k≥0

zkqk (25.199)

where instanton parameter q is given by

q = e2πτ i = e
− 8π2

g2 +iθ
, τ =

θ
2π

+ i
4π
g2 (25.200)

25.87 Gluodynamics with the θ−term

The Lagrangian is

L =−1
4

Fa
µνFa

µν +θ
g2

8π2 Fa
µν F̃a

µν =
1
2
(E2−B2)+

θα
2π

E ·B,

F̃a
µν =

1
2

εµνρσ Fa
ρσ (25.201)

The θ -term is a total derivative and does not contribute to the classical equation of motion. It does,
however, change the canonical momentum from Pa

n = Fa
0n to

Pa
n = Fa

0n +θ
g2

8π2 Ba
n, n = 1,2,3 (25.202)

and after canonical quantization in Weyl gauge one finds the Hamiltonian Hθ

Hθ =
∫

d3x(
1
2
(Pa

n −θ
g2

8π2 Ba
n)

2 +
1
2
(Ba

n)
2) (25.203)
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25.88 The U(1)A Anomaly and QCD Phenomenology

An important historical role in establishing QCD as the theory of the strong interactions was
played by U(1)A anomaly.The description of radiative decays of the pseudoscalar mesons in the
framework of a gauge theory requires the existence of the electromagnetic axial anomaly and de-
termines the number of colours to be Nc = 3. The compatibility of the symmetries of QCD with the
absence of a ninth light pseudoscalar meson, the so called U(1)A problem, in turn depends on the
contribution of the colour gauge fields to the anomaly. The anomaly-mediated link between quark
dynamics and gluon topology (the non-perturbative dynamics of topologically nontrivial gluon con-
figurations) is the key to understanding a range of phenomena in polarised QCD phenomenology,
most notably the ’proton spin’ sum rule for the first moment of the structure function g1p. A wide
variety of phenomena in QCD, ranging from the low-energy dynamics of the pseudoscalar mesons
to sum rules in polarised deep-inelastic scattering reveal subtle aspects of quantum field theory, in
particular topological gluon dynamics, which go beyond simple current algebra or parton model
interpretations.

25.89 Low Energy Supersymmetry of Nucleons in the Pion Condensate Medium

The pseudoscalar pion-nucleon interaction model at low energy and external pion condensate
field reduce to the model given by Hamiltonian

H =
p2

2M
+

g2π2

2M
+

g
2M

(σ∇)(τπ), (25.204)

If condensate is electro-neutral, πa = δa3π then the Hamiltonian have the following supersymmetric
form

H =
1

2M
{Q+,Q−}, Q± = (σ p± igπ(x))τ± (25.205)

25.90 Quarkonia, potential and space dimension renormdynamics

Phenomenological approach to the nonrelativistic potential-model study of ϒ and ψ spectra
leads to a static Coulombic Power-law potential of the form

V (r) = a(r)r2−d(r) ∼ 1/r, r ∼ 0.1 f m
r, r ∼ 1. f m

(25.206)

E.g. in the case of the ϒ and small r

V (r) =
4
3

αs

r
, αs =

2π
b lnrΛ

, b = 9. (25.207)

This behavior corresponds not only to the running fine structure constant but also to the running
space dimension. Confinement-the point-like hadrons on the scales higher than hadronic, corre-
sponds to the zero dimensional space for hadron constituents.

RD equations of QCD beyond the critical dimention has explicit dependence on the space
dimension. When the dimension becomes running we should consider two dimensional renormdi-
namics

ȧ1 = β1(a1,a2), a1 = a,
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ȧ2 = β2(a1,a2), a2 = d,
da
dd

= β (a,d) =
β1(a,d)
β2(a,d)

(25.208)

25.91 Physical models connected to the zeta function

Consider a gas of massless, relativistic bosons with single-particle energy Ek = |k| in d spatial
dimensions, where k is the momentum vector, at a temperature T = 1/β and zero chemical poten-
tial. The free energy density, which is minus the pressure, is given by the well-known formula:

F = β−1
∫ dDk

(2π)D ln(1− e−β |k|) =− Γ(D)

2D−1π D
2 Γ(D

2 )β D+1
ζ (D+1), ℜ(D)> 0 (25.209)

When the boson in question is one polarization of a physical photon, then the above formula leads to
Planck’s black body spectrum, and this discovery in fact marked the birth of Quantum Mechanics;
Planck’s constant h̄ was first determined in this way. In performing the above integral we use

∫
dDk = ΩD

∫ ∞

0
dkkD−1, k = |k|, ΩD =

2π D
2

Γ(D
2 )

,∫ ∞

0
dkkD−1 ln(1− e−k) =− 1

D

∫ ∞

0

dkkD

ek−1
=− 1

D
Γ(D+1)ζ (D+1), ℜ(D)> 0 (25.210)

In many other physical situations, in order to regularize divergent integrals, one analytically con-
tinues certain functions of the dimension d into the complex plane in a procedure referred to as
"dimensional regularization". To the zeros of zeta corresponds zeros of free energy. Zeros on
critical line corresponds ℜ(D) =−1

2

25.92 Solvable model of Renormdynamics

As a solvable model which will illustrates of the renormdynamics let us consider the following
equation

ẋ = β (x), β (x) =
εx

1− εx
= ∑

n≥1
βnxn, ≥ 0, βn = εn, x≥ 0. (25.211)

Here β (x)≤ 0, for ε < 0, and x decries with time monotonically. For ε > 0, and x < 1/ε (x > 1/ε),
β (x)≥ 0 (β (x)≤ 0), and x increase (decries) with time. From the equation we find

1− εx
εx

dx = dt⇒ x1/εe−x = cet ⇒ xe−εx = cεeεt , t =
1
ε

lnx− x− lnc (25.212)

So, we have an implicit form of the solution, t = f (x), x = f−1(t). More realistic example is

βn = (−1)nn!, β (x) = Γ(δx +1) ∑
n≥1

(−x)n =
∫ ∞

0
dte−t −tx

1+ tx
=
∫ ∞

0
dt

e−t

1+ tx
−1 (25.213)
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25.93 Solvable Models of QCD Renormdynamics

The renormdynamic properties of Quantum Chromodynamics were the reason of acceptance
of this theory as the theory of strong interactions. The central role played by the QCD β -function,
calculated at the one-[’t Hooft, 1972],[Gross, Wilczek, 1973],[Politzer, 1973], two-[Caswell, 1974],[Jones,1974],
[Egorian,Tarasov, 1979], three-[Tarasov,Vladimirov,Zharkov,1980],[Larin,Vermaseren,1993] and fi-
nally at the four-loop [van Ritbergen,Vermaseren,Larin,1997] level, cannot be overestimated in this
respect.

The minimal form of the QCD renormdynamics (RD) is

ẋ =−b2x2−b3x3,

b2 = 11− 2
3

n, b3 = 2(51− 19
3

n), x =
αs

4π
= (

g
4π

)2, (25.214)

where n is the number of the light quarks,e.g. n = 3 for energy scales less then the mass of the
c−quark, mc ≃ 1GeV but higher than the mass of s− quark, ms ≃ 100MeV.

Let us consider the following model of QCD RD

ẋ =−(csin(dx))2 =−b2x2 + ..., b2 = (cd)2, dx0 = d
2

4π
= π ⇒ d = 2π2, c =

√
b2

d
,

cot(dx) = c2dt + const⇒ x(t) =
1
d
(
π
2
− arctan(c2dt)),

x(−∞) =
π
d
, αs(−∞) =

4π2

d
= 2, αs(∞) = 0. (25.215)

So, this model describes ultraviolet and infrared asymptotics of QCD, but it has not the nontrivial
(and invariant) second term of the perturbative RD. Note that, for non-integer (effective) value n

n = n∗ =
3 ·51

19
= 8+ ε , ε = 1/19, b3 = 0, (25.216)

and we have complete agreement with the minimal model of QCD RD, because there is a parametriza-
tion were the solvable model is exact one. For a general compact simple Lie group,

b2 =
11
3

CA−
4
3

TFn

b3 =
34
3

C2
A− (

20
3

CA +4CF)TFn, (25.217)

where, CA and CF are quadratic Casimir operators of the adjoint and fundamental representations;
TF is the normalization of the fundamental representation generators T a,

tr(T aT b) = TFδ ab; (25.218)

n is the number of fermion families. In the case of the SU(N) gauge group,

CA = N, CF =
N2−1

2N
, TF =

1
2

(25.219)

The two loop contribution is zero, b3 = 0, for the following effective number of families

n =
34
3

C2
A/(

20
3

CA +4CF)TF (25.220)

In the case of the SU(2) group, the effective families number is n = 136/49≃ 2.78≃ 3.
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25.94 Next to the minimal renormdinamics of QCD

We have seen that motion equation of the minimal renormdynamics of the one charge QCD is

ẋ =−b2x2−b3x3,

b2 = 11− 2
3

n, b3 = 2(51− 19
3

n), x =
αs

4π
= (

g
4π

)2, (25.221)

when we ask that IR fixed point is αs = 2, a = c = 1/2π, we take nontrivial next term in the motion
equation,

ẋ = β2x2 +β3x3 +β4x4 = β2x2(1+ c1x+ c2x2),

1+ c1c+ c2c2 = 0⇒ c2 = β4/β2 =−(1+ cβ3/β2)/c2 =−(1+ cb3/b2)/c2,

b2 = 11− 2
3

n, b3 = 2(51− 19
3

n), x =
αs

4π
= (

g
4π

)2, (25.222)

When β3 = 0,

ẋ = β2x2(1− x2/c2) (25.223)

Note that due to

c2x2 + c1x+1 = c2(x− x1)(x− x2), c2x1x1 = 1, x2 = 1/c2x1 =−
2π

1+2πb3/b2
(25.224)

is the UV fixed point. The negative value of the αs indicates instability at higher energies, but
before the coupling constant reach that value from low energy evolution it will stop at at the trivial
zero. So, from higher energy, in heavy ion collision e.g. we expect the instable phase of QCD.
Similar consideration takes place for QED, with IR fixed point of α = α∗ = 1/137.036... Now we
should include next term in the β−function

ẋ = β2x2 +β3x3 +β4x4 +β5x5 = β2x2(1+ c1x+ c2x2 + c3x3), (25.225)

with UV fixed point at α = 2

25.95 Next to the critical renormdynamics

We have seen, that one charge renormdynamic motion equation of QCD

ȧ = β (a) = β1a+β2a2 +β3a3 +β4a4 + ... (25.226)

is critical, β1 = 0 in four dimensional space-time. When not only β1 = 0 but also β2 = 0 we have
the next to the critical renormdynamics. This case, by reparametrization

a = f (A) = A+ f2A2 + f3A3 + ... (25.227)

we obtain the following minimal form of renormdynamics

Ȧ = b3A3 +b5A5, b3 = β3, b5 = β5 +2 f2β4 + f 2
2 β3 (25.228)

Indeed,

b4 = β4 + f2β3, b4 = 0⇒ f2 =−β4/β3⇒ b5 = β5−β 2
4 /β3,
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b5 = 0⇒ β3β5 = β 2
4 (25.229)

This case we will call the second critical case with the solution

A(t) =
A0√

1−2b3A0t
(25.230)

Beyond the second critical case, when b5 ̸= 0, the motion equation of renormdynamics reduce to
first critical form

ẋ = k2x2 + k3x3, x = A2, k2 = 2b3, k3 = 2b5. (25.231)

General one charge-dimensional renormdynamic motion equation is convenient put in form

ȧ = βmam(1+ c1a+ c2a2 + ...) = βmamc(a), m≥ 1 (25.232)

ȧ = β1(A+ f2A2 + f3A3 + ...)+β2(A+ f2A2 + f3A3 + ...)2

+β3(A+ f2A2 + f3A3 + ...)3 +β4(A+ f2A2 + ...)4 +β5(A+ ...)5 + ... (25.233)

25.96 QED three loop β−function

The renormdymamic β−function is given up to third order in α by De Rafael and Rosner [?]
For the electron-photon QED it is known 5-loop β−function [Kataev, Larin, 2012]. We will

consider only three-loop approximation

µ2 da
dµ2 = ȧ = β (a) = a2(β0 +β1aa +β2a2),

a = (
e

2π
)2, β0 =

1
3
, β1 =

1
4
, β2 =−

31
288

, (25.234)

25.97 Why theoretical and experimental values of απN differ

Qualitatively the difference between our theoretical value of απN = 13 and the values extracted
from experimental date αexπN ≥ 14 can be explained by following examples

1. αexπN = απN(1+ x+ x2 + ...) = απN/(1− x)

=
13
12

απN =
13
12

13 = 14.08, x = |13|p = 1/13

2. αexπN = απN(1+ x+ x2/2!+ ...) = απNex = 13e1/13 = 14.04 (25.235)

25.98 Exact Renormdynamics

The perturbative β -function is known exactly in a number of supersymmetric theories and in
the ’t Hooft renormalization scheme in the φ4

4 model.
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25.99 Perturbatively Exact Renormdynamics

From renormdynamics to exect dynamics. In a number of instances, the perturbative renor-
malization group β−function is known exactly. In N = 4 supersymmetric Yang-Mills (SYM)
theory, an β−function vanishes [Mandelstam, 1983],[Howe,Stelle,Townsend, 1983]. In N = 2
SYM theory, the β−function is exact at one-loop order when minimal subtraction (MS) is used
[Howe,Stelle,West, 1983], [Koh,Rajpoo, 1983 ]. In N = 1 SYM theory, the all-orders expression for
the β−function can be determined through instanton calculus [Novikov et al 1983] or by consid-
ering the multiplet structure of anomalies [Jons, 1983],[Elias, 2001], though such an expression dif-
fers from the perburbative result derived using MS [Jack,Jones,North, 1997],[Jack,Jones,Pickering, 1998].
Although models such as the φ4

4 scalar theory and Yang-Mills (YM) theory have all-orders con-
tributions to the β−function in the MS scheme, one can nevertheless perform in principle a finite
renormalization at each order of perturbation theory so as to have contributions to the β−function
vanish beyond two-loop order and to have anomalous dimensions as entirely one-loop effects.

25.100 Infrared fixed points of the renormdynamics

QCD ultraviolet fixed point is at zero. The value of the infrared fixed point depends on the
definition of αs, but the scale at which we have infrared fixed point is universal. Indeed, we have

a = f (A),
ȧ = βa = f ′(A)Ȧ,
0 = ȧ = βa⇔ Ȧ = βA = 0� (25.236)

By different parametrization, we will have different infrared fixed values. The nearest prime num-
ber to zero is the fist prime number 2. Next one is 3. There are parameterizations corresponding to
these values of infrared fixed points which we prefer.

25.101 Strong coupling models of QCD

We know that old four-fermion week interaction of Fermi is low energy effective theory of the
U(1) ·SU(2) part of SM. The value of the Fermi constant

G∼ 10−5m−2
p ∼ m−2

W , mW ∼ 102GeV (25.237)

Photon (in vacuum) and gluon, in perturbation theory approximation, are massless, so we have
not local effective theory like Fermi interaction. If we suppose that gluon at low energy become
massive, we will have Fermi type effective theory,

LQCD = q̄(γD−mq)q−G j j−Aa
µJa

µ , ja
µ = q̄γµtaq (25.238)

where J is external source of the gluon field.

25.102 Exact renormdynamics of QCD

In a sense QCD in the critical dimension 4 is simple than beyond, because dynamical dimen-
sion is an other coupling constant. So, let us start in critical dimension. We have seen that in one
dimensional renormdynamics, the coupling function is monoton function of the scale and connects
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UV and IR fixed points. UV fixed point is zero, IR fixed point is αs = 2. Now we will formalize
(formulize, if you like) this statement in the exact renormdynamic beta-function. We know that
first two term of the beta-function is reparametrization invariant. There are parametrizations, were
we have positive third term and zero higher terms,

ȧ =−a2a2−a3a3 +a4a4 = a4a2(a2−2ba− c), b =
a3

2a4
> 0, c =

a2

a4
> 0,

ȧ =
da
dt

=
µ2d
dµ2 a, a2 = 11− 2

3
n f , a3 = 102− 38

3
n f , (25.239)

where n f is the number of quarks with masses less than the energy scale µ. For IR fixed point we
have

4πa = αIR = 2 = b+
√

b2 + c⇒ a4 =
a3

2
+

a2

4
(25.240)

Beyond critical dimension in one loop approximation

ȧ = (D−4)a− ka2, ȧ =
da
dt

=
µ2d
dµ2 a (25.241)

For D > 4, we have UV fixed point at (D−4)/k and IR fixed point at 0. For small ε = D−4 this
is plausible picture: at small distances we will have small deviation from scaling; at big distances
we have not colored particles. In this case colorless fractionally charged quarks with finite mass
exist. If the quarks are only valence and there masses depend on the coupling constant as ∼ α−n,

as nonperturbative solutions of nonlinear equations, the masses rise with distance and quarks are
unobservable on large scales. For D < 4, we have asymptotic freedom on small scales and IR fixed
point,

2 = αIR =
k

D−4
⇒ k = 2(D−4)< 0. (25.242)

25.103 Toward the Finite Unified Field Theory

The reduction of the dimensionless couplings in N = 1 GUTs is achieved by searching for
integrals of motion-renormdynamic invariant (RDI) relations among them holding beyond the uni-
fication scale. Finiteness results from the fact that there exist RDI relations among dimensional
couplings that guarantee the vanishing of all beta-functions in certain N = 1 GUTs even to all or-
ders. Developments in the soft supersymmetry breaking sector of N = 1 GUTs and FUTs lead
to exact RDI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too.
Based on the above theoretical framework phenomenologically consistent FUTs have been con-
structed. The main goal expected from a unified description of interactions by the particle physics
community is to understand the present day large number of free parameters of the Standard Model
(SM) in terms of a few fundamental ones. In other words, to achieve reduction of couplings at a
more fundamental level.

25.104 Noncommutative QFT

QFT require regularization and the conventional nonperturbative regularization is lattice regu-
larization. It has been extensively studied for forty years. It fails to preserve space-time symmetries
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of quantum fields. It also has problems in dealing with topological subtleties like instantons, and
can deal with index theory and axial anomaly only approximately. Instead fuzzy (noncommutative)
physics does not have these problems. A related positive feature of fuzzy physics, is its ability to
deal with supersymmetry(SUSY) in a precise manner [Grosse,Klimcik,Presnajde,1997],
[Balachandra,Kurkcuoglu,Rojas,2002]. Fuzzy SUSY models are also finite-dimensional matrix
models amenable to numerical work, so this is another reason for our attraction to this field.

25.105 Scalar quarks and MSSM

One of the most important tasks at the LHC is to search for physics effects beyond the Standard
Model (SM), where the Minimal Supersymmetric Standard Model (MSSM) [Nilles,1984] is one of
the leading candidates.

Typically, strongly bound solutions of the Bethe-Salpeter equation exist only when the cou-
pling constant is on the order of or greater than unity.

Three times in the past 150 years particles that were - or are currently - thought to be ele-
mentary could be organized into families: (1) In the 1860’s Meyer and Mendelev arranged the
atoms into the periodic table that consists of 18 families. The existence of families was ultimately
explained by the realization that atoms are composite. (2) Almost 100 years later two of the then-
fundamental particles, the neutron and proton - as well as many other baryons and mesons-were
placed into SU(3) multiplets with the ultimate result that the neutron and proton were no longer
viewed as being fundamental but instead were comprised of quarks. (3) By the mid 1970’s many
physicists realized that the charged leptons, the neutrinos, the positively charged quarks and the
negatively charged quarks constitute four families. Today the three charged families are known
to have three members each, and the neutrino family almost certainly has three members as well
[3]. Because the existence of families of "fundamental" particles has twice been explained by the
realization that the particles are actually composite, although speculative, as is any physics be-
yond the standard model, the most conservative approach to explain the existence of the lepton and
quark families likely is to assume that the particles are composite. In the 1970’s the hypothetical
constituents of quarks and leptons were given the name "preons" [Pati,Salam,1974].

25.106 AdS/QCD as nice phenomenology

For AdS/CFT connection it is necessary that the QFT part of the connection is a conformal
field. In the case of the QCD we do not know for sure the scale at which we are at the IR fixed
point beyond which we are in the hadronic phase. I suggested that at that point αs = 2.

25.107 Graphene

Graphene is a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like
electronic excitations. The Dirac electrons can be controlled by application of external electric and
magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in
unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic prop-
erties of graphene stacks are discussed and vary with stacking order and number of layers. Edge
(surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the
physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading
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to unusual spectroscopic and transport properties. There are different effects of electron-electron
and electron-phonon interactions in single layer and multilayer graphene [Castro Neto et al, 2009].

Carbon is the materia prima for life and the basis of all organic chemistry. Because of the
flexibility of its bonding, carbon-based systems show an unlimited number of different structures
with an equally large variety of physical properties.

The effective field model of graphene (EFG) monolayer without the Coulomb interactions is
a good approximation to the original tight - binding model. The EFG model operates with the
continuum Dirac field living in the graphene sheet.

The principle feature of graphene is that the quasi-particle excitations satisfy the Dirac equa-
tion, where the speed of light c is replaced by the so-called Fermi velocity vF ≃ c/300. Therefore,
the quantum field theory methods are very useful in the physics of graphene. By applying these
methods, one can explain anomalous Hall Effect in graphene, the universal optical absorption rate,
the Faraday effect, and predict the Casimir interaction of graphene, and do much more (see, e.g.
[Fialkovsky, Vassilevich, 2011]).

The Dirac model for quasi-particles in graphene was elaborated in full around 1984 - twenty
years before actual discovery of graphene. However, its basic properties, like the linearity of the
spectrum, etc., were well known and widely used much earlier due to the 1947 paper by Wallace.
The purpose of most of the works of the time was to describe graphite rather than graphene (see
review [Castro Neto et al, 2009]).

Note that, effective fine structure constant in graphene is αg ≃ 300α = 2.19 We will take
αg = 2 and consider p-adic perturbation theory for graphene. Corresponding effective light speed
is cg = 274, which is two orders more precise prediction-proposal than cg ≃ 300.

25.108 Conformal Field Theories, Mellin Amplitudes

Mellin amplitudes are an alternative representation of conformal correlation functions that are
analogous to scattering amplitudes. The Operator Product Expansion (OPE) leads to the factoriza-
tion of the residues of the poles of Mellin amplitudes [Gonalves et al, 2014]. Convergent OPE is a
basic property of a Conformal Field Theory (CFT). This means that we can replace the product of
m local operators (inside a correlation function) by an infinite sum of local operators

Q1(x1)Q2(x2)...Qm(xm) = ∑
p

A1,2,...,m;p
µ1µ2,...,µk(x1, ...xm,y,∂y)Qµ1µ2,...,µk

p (y) (25.243)

where p runs over all primary local operators. This sum converges inside a M-point correlation
function if there is a sphere centred at y that contains all points x1, ...,xm and does not contain any
of the other M−m points.

25.109 Mittag-Leffler Functions Eα(z),Eα,β (z)

Mittag-Leffler function Eα(z) is defined over the entire complex plane by

Eα(z) = ∑
n≥0

zn

Γ(αn+1)
, α > 0, z ∈ C (25.244)
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Note that E1(z) = exp(z), so, it is extension-deformation of usual exp(z). The two parameter de-
formation also considered

Eα,β (z) = ∑
n≥0

zn

Γ(αn+β )
=

Γ(δ +1)
Γ(αδ +β )

exp(z), α,β > 0, z ∈ C (25.245)

Note that Eα,1(z) = Eα(z). Using our definition of the fractal calculus

Dα f (z) = z−α Γ(δ +1)
Γ(δ +1−α)

f (z), δ = z∂z (25.246)

we obtain

E1,β (z) = z1−β D1−β exp(z) (25.247)

Note that E1,1(z) = exp(z)

25.110 Higher Spin Gauge Fields

In the standard model of particle physics, interaction between matter field particles, quarks and
leptons, devised on massless vector gauge fields, gluons, photons, W and Z bosons-massive due to
scalar higgs fields. Einstein-Hilbert theory of gravitation, is based on the tensor gauge field, local
metric of space-time gµν(x). Existence of a vector massless gauge field is connected with existence
of corresponding conserved vector current. E.g. in electrodynamics motion equation for photons is

∂µFµν = Jν , ∂µJµ = 0. (25.248)

Existence of the interacting Higher Spin Gauge Fields (HSGF) are connecting with the existence
of conserved tensors. In the case of the gravity, with the energy-momentum tensor. The manifolds
with nontrivial conserved tensor fields are candidates of the backgrounds for HSGF.

25.111 Mass Gap Problem in Yang-Mills Field Theory and QCD

Yang-Mills theory is the name of a relativistic quantum field theory exhibiting local gauge
invariance (i.e., gauge invariance of the second kind). It describes a quantized field corresponding
to the connection 1-form with values in the Lie algebra of a Lie group, G, called the gauge group;
(in QED, this field is the vector potential, and G=U(1)). There may be other quantum fields in the
theory, such as matter fields (quantized sections of G-vector bundles). One important problem is
to show that Yang-Mills theories compatible with relativistic invariance (i.e., without ultraviolet
cutoffs) exist in four space-time dimensions. If this can be shown then the joint spectrum of the
energy-momentum operator forms a Lorentz-invariant subset of the forward light cone in four-
dimensional momentum space. If the theory has a ground state (called "vacuum" in quantum
field theory) then the origin, 0, is an eigenvalue of the energy-momentum operator. The mass gap
problem is the problem to show that, above the eigenvalue 0 of the energy operator (the Hamiltonian
of the theory) the spectrum of the Hamiltonian exhibits a gap, i.e., excitations of energy arbitrarily
close to 0 do not exist. One can formulate this property in terms of the mass operator,

M =
√

P2
0 −P2

n (25.249)
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and say that one would like to show that the operator M has a spectral gap above the eigenvalue 0
(corresponding to the vacuum).

In four space-time dimensions, this problem remains open from the point of view of rigorous
mathematics; (in spite of heroic efforts and great results due to Tadeusz Balaban, and some others).
This problem is one of the "Clay one-million dollars problems". It is presumably a very difficult
problem, and there are no clear ideas of how to go about solving it.One should add that, from
a more heuristic physics point of view, there are good reasons to think that the problem has a
positive solution. In this connection, insights gained from "lattice gauge theory" - the study of
which has originally been initiated by the late Ken Wilson - and numerical simulations of lattice
gauge theories have played a very useful role.

25.112 Social profit of big collaborations

Nowadays there are several big collaborations in science, e.g. LHC. Scientific value of LHC
depends on three components, the highest quality of accelerator, highest quality of detectors and
distributed data processing. The first two components need good mathematical and physical mod-
eling. Third component and the collaboration as a social structure are not anther the control by
scientific methods and corresponding modeling.

By definition, scientific collaborations (SC) have a main scientific aim: to obtain answer on
the important scientific question(s) and maybe gain extra scientific bonus: new important questions
and discoveries.

SC is more open information system than e.g. finance or military systems. So, it is possible to
describe and optimize SC by scientific methods. Profit from scientific modeling of SC maybe also
for other information systems and social structures.

26. Appendixes

26.1 Mathematica

The following short program uses the command Plot to graph the functions x2,x3, and x4 from
x = 0 to x = 1. The graphs are stored in the graphic objects gr1,gr2, and gr3. Finally, the three
graphs are shown together by using the Mathematica command Show,

gr1 = Plot[x2,{x,0,1}];
gr2 = Plot[x3,{x,0,1}];
gr3 = Plot[x4,{x,0,1}];
Show[{gr1,gr2,gr3}] (26.1)

Mathematica can also solve systems of differential equations as seen in the following example

sol = NDSolve[{x′[t] == (Exp[y[t]]−Exp[z[t]]),y′[t] == (Exp[z[t]]−Exp[x[t]]),
z′[t] == (Exp[x[t]]−Exp[y[t]]),x[0] == y[0] == 1},
{x,y},{t,20}]x[0] == 3,y[0] == 4,z[0] == 4},{x,y,z},{t,10}];
Plot[{x[t]/.sol,y[t]/.sol,z[t]/.sol},{t,0,3}] (26.2)

with appropriate initial conditions. The command Plot is again used to graph the solutions x(t),y(t)
and z(t).
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26.2 Relativistic particle propagator

G(x− y,D,m) =
1

(2π)D

∫
dDk

eik(x−y)

m2 + k2 =
1

(4π)D/2

∫ ∞

0

dα
αD/2 e−m2α− (x−y)2

4α ,

G(x,D,0) =
Γ(D/2−1)
4πD/2xD−2 ,

G(x,4,0) =
1

4π2x2 , G(x,3,0) =
1

4πx
, G(x,1,0) =

x
2

(26.3)

In the case of D = 2+2ε,

G(x,2+2ε ,0) =
Γ(ε)

4π1+εxε =
1

4π
(

1
ε
− γ− lnπx) =− 1

4π
lnMx+O(1/ε) (26.4)

26.3 Relativistic kinematics

For the elastic two particle scattering

a(p1)+b(p2)→ a(p′1)+b(p′2), (26.5)

the Mandelstam variables s and t are

s = (p1 + p2)
2 = E2

cm = 4E2 = 4m2 +4p2 > 0;
t = (p1− p′1)

2 = q2 = 2m2−2(m2 + p2−2p2 cosθ)
=−4p2 sin2 θ/2≃ p2θ 2 ≃ p2 sin2 θ =−k2 < 0,
u = (p1− p′2)

2 = 2m2−2(m2 + p2−2p2 cos(π−θ))
=−4p2 cos2 θ/2,
s+ t +u = 4m2. (26.6)

where, for simplicity, we take equal mass particles; p is the length of the momentum in the CM
system and k is the transverse momentum of the particle, k = p′1 sinθ .

For the Reggeon kinematics, s >> m2,−t/s << 1, the scattering is effectively described by
exchange of the Reggeon quasi particle with the angular momentum as a function of the transfer
momentum, t = q2

J = α(q2) = α(0)+α ′q2 + ...≃ 1−α ′k2, (26.7)

so, we have non-relativistic 1+2 dimensional analog system with energy, momentum and mass

E =
k2

2M
= 1− J, M = 1/2α ′. (26.8)

Rapidity is defined as

Y =
1
2

ln
E + p||
E− p||

=
1
2

ln
4E2−2E(E− p||)−E2

⊥
E2
⊥

≃ ln
√

s
E⊥

, E2
⊥ = m2 + p2

⊥ (26.9)
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26.4 Experiments at high-energy colliders

In particle colliders, collisions actually take place between beams containing large number of
particles. If two beams collide head-on, the number of collisions leading to a final state with par-
ticular characteristics (type of particles, their momenta, etc.) should be proportional to the number
of particles in each beam, Na and Nb, and inversely proportional to the beams cross-sectional area
A. The coefficient of proportionality is the scattering cross section for this particular final state:

N = σ
NaNb

A
, (26.10)

where the coefficient of proportionality σ is the scattering cross section for this particular final
state.

If beams collide at a frequency f Hz, the rate R, number of events of a particular kind recorded
per second, can be written as

R = N f = σL (26.11)

where

L = f
NaNb

A
(26.12)

is the instantaneous luminosity. The rate R is measured directly by experimentalists; L (together
with Ecm) contains all the information about the accelerator needed to analyze the experiment.
Experimental collaborations monitor and record L, as a function of time. The experimentally mea-
sured value of the cross section can then be compared with the theoretically expected cross section.
Note that, L is higher for higher f and/or lower A. The values of f and A are connected to the bunch
size, length and radius.

A unit typically used in experimental nuclear and particle physics is 1barn = 10−24cm2. In
theory units, c = h̄ = 1, the natural unit for cross section is GeV−2; the conversion factor is

1bn = 2568GeV−2,

1GeV−2 = 3.89410−4bn. (26.13)

To get a very rough estimate of cross sections expected in particle physics experiments, we
can use dimensional analysis: away from thresholds and resonances, the only energy scale in a
collision of two massless particles is Ecm, and we should expect the (total) scattering cross section
to behave roughly as

σ ∼ E−2
cm (26.14)

A similar result is obtained by replacing the colliding particles with a balls of diameter equal to
their Compton wavelength d ∼ 1/E, and taking their geometric cross section as an estimate. The
geometric cross section also coincides with the upper bound on the total inelastic cross section
(assuming s-wave scattering) from unitarity considerations.

The cross sections for specific processes are typically lower, than this bound: For example, the
e+e−→ Z cross section on resonance (

√
s=MZ) is about 40nb, compared to σgeom = 1/M2

Z ≃ 47nb.
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The decrease of cross sections with energy has an important implication for accelerator design:
Colliders operating at higher center-of-mass energies must also have higher luminosity, adding to
the technical challenges of expanding the high-energy frontier.

The main formula for evaluating the cross section and kinematic distributions for a 2→ N
scattering process is

dσ =
1
2s

N

∏
n=1

d3 pn

(2π)32En
· (2π)4δ 4(pa + pb−Σpn) · |M(pa, pb;{pn}|2, (26.15)

where M is the invariant matrix element, and pn = (En, pn) are the 4-momenta of the final-state
particles. M contains all information specific for the process under consideration (such as coupling
constant dependence, etc.), whereas all other ingredients are simply kinematic factors common for
any 2→ N process. Eq. (26.15) is written in the center of mass frame of the colliding particles,
but it is in fact invariant under boosts parallel to the collision axis. This feature is important when
hadron collisions are considered. If the colliding beams are unpolarized, one needs to average
the quantity |M|2| over all possible initial-state polarizations. If the beams are polarized , an ap-
propriately weighted average should be computed instead. In addition, if the final-state particles
have spin, |M|2 should typically be summed over all possible spin states, since no collider detector
is capable of detecting spins of individual particles. (Exception occurs when the final-state par-
ticles decay promptly, in which case the angular distribution of their decay products may carry
information about their polarization state.) The appropriately averaged and/or summed scattering
amplitude will be denoted by |M|2.

The number of independent kinematic variables in a 2→ N process is 3N−4. In practice, the
initial state is always symmetric under rotation around the collision axis, and no physical observable
can depend on the overall azimuthal coordinate, leaving 3N−5 physical variables.

The simplest case, most commonly encountered in practice, is 2→ 2 scattering. The only
observable not constrained by energy and momentum conservation is the scattering angle θ , which
by convention is defined as the angle between the 3-momenta of particles a and 1. The differential
cross section is given by

dσ
d(cosθ)

=
1

16π
|p1|
s3/2 · |M|

2,
√

s > m1 +m2, (26.16)

where

|p1|=

√
(s−m2

1−m2
2)

2−4m2
1m2

2
4s

. (26.17)

In the case of equal masses in the final state, m1 = m2 = m, this formula further simplifies to

dσ
d(cosθ)

=
1

32πs

√
1− 4m2

s
· |M|2,

√
s > 2m. (26.18)

where the square-root factor is simply the velocity of the final-state particles (in units of c). The
quantity |M|2 is often expressed in terms of the Mandelstam variables, s and t.

The main advantage of using Mandelstam variables comes in applications of crossing symme-
try to relate processes such as, for example, electron-positron annihilation e+e−→ γγ and Compton
scattering e−γ → e−γ . They are also convenient for analyzing hadron collisions, being invariant
under boosts connecting the parton and lab reference frames.
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26.5 Inverse scattering transform (IST)

IST is a non-linear analogue, and in some sense generalization, of the Fourier transform, which
is applied to solve many linear partial differential equations. IST is a method for solving some non-
linear partial differential equations. The name "inverse scattering method" comes from the key idea
of recovering the time evolution of a potential from the time evolution of its scattering data: inverse
scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to
the direct scattering problem of finding the scattering matrix from the potential. A characteristic of
solutions obtained by the IST is the existence of solitons, solutions resembling both particles and
waves, which have no analogue for linear partial differential equations. The term "soliton" arises
from non-linear optics. The IST can be written as a Riemann-Hilbert factorization problem. This
formulation can be generalized to differential operators of order greater than 2 and also to periodic
potentials.

References

[Aad et al. ATLAS Collaboration, 2012] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)

[Abrikosov, 1957] Abrikosov, A. A. (1957) On the Magnetic properties of superconductors of the second group,
Sov.Phys.JETP 5:1174-1182 and Zh.Eksp.Teor.Fiz.32:1442-1452.

[Ackermann et al, 2013] Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.
G.; Bastieri, D. et al. (2013-02-15). Detection of the Characteristic Pion-Decay Signature in Supernova Remnants.
Science (American Association for the Advancement of Science) 339 (6424): 807-811.

[Adare et al, 2007] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 162301 (2007).

[Adler, 1965] S. L. Adler, Phys. Rev. 140 (1965) B736.

[Adler, Dashen, 1965] S.L. Adler, R. Dashen, Current Algebra and Applications to Particle Physics, Benjamin, New
York 1965.

[Aharony et al, 2000] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string
theory and gravity, Phys. Rept. 323 (2000) 183, hep-th/9905111.

[ALICE, 2010] K. Aamodt et al. [ALICE collaboration] Eur. Phys. J. C65 (2010) 111 [arXiv:1004.3034],
[arXiv:1004.3514].

[Al Khawaja,Stoof,2001] Al Khawaja, Usama; Stoof, Henk (2001). "Skyrmions in a ferromagnetic BoseŰEinstein
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[Fukuda,Žumer,2011] Fukuda, J.-I.; Žumer, S. (2011). "Quasi-two-dimensional Skyrmion lattices in a chiral nematic
liquid crystal". Nature Communications 2: 246.

[Gamov, Ivanenko, Landau, 1928] G. Gamov, D. Ivanenko, L. Landau, Mirovye postoyannye i predel’ny perekhod
[World constants and limiting transition], Zhurnal Russkogo Fiz.-Chim. Obschestva, chast’ Fiz. 60 (1928) 13-17
(in Russian). Reprinted in Yad. Fiz. 65 (2002) No.7 [Physics of Atom. Nucl. 65 (2002) No.7].

[Gasper, Rahman, 1990] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge
1990.

[Gelfand et al, 1966] I.M. Gel’fand, M.I. Graev and I.I. Piatetskii-Shapiro, Representation Theory and Automorphic
Functions, Saunders, London 1966.

[Gelfand et al, 1989] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Funck. Anal. i Priloz. 23 (1989) 94;

[Gelfand et al, 1990] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Adv. Math. 84 (1990) 255;

[Gelfand et al, 1992] I.M. GelŠfand, M.I. Graev, V.S. Retakh, Russian Math. Surveys 47 (1992) 1.

[Gerasimov, 1965] S.B. Gerasimov, A Sum Rule for Magnetic Moments and Damping of the Nucleon Magnetic
Moment in Nuclei, J.Nucl.Phys.(USSR) 2 (1965) 598.

156



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
4
0

Hadronization and Solvable Models of Renormdynamics Nugzar Makhaldiani

[Gibbons, Hawking, 1977] Gibbons, G.W. and Hawking, S.W. (1977) ’Cosmological event horizons, thermodynamics,
and particle creation’ Physical Review D 15, 2738-2751

[Ginzburg, 1979] V. L. Ginzburg, Theoretical Physics and Astrophysics, Pergamon, New York 1979.

[Goldberger, Treiman, 1958] M.L. Goldberger, S.B. Treiman, Phys. Rev. 110 1178 (1958).

[Gol’fand, Likhtman, 1971] Y.A. Gol’fand and E.P. Likhtman, JETP Lett., 13, 323, 1971.

[Gonalves et al, 2014] Vasco Gonalves, Joo Penedones, Emilio Trevisani, Factorization of Mellin amplitudes,
arXiv:1410.4185v1 [hep-th] 15 Oct 2014.

[Green,Schwarz,Witten,1987] M.B. Green, J.H. Schwarz and E. Witten. Super String Theory. Vols 1,2. Cambridge
University Press 1987.

[Greenberger, Horne, Zeilinger, 1989 ] D. M. Greenberger, M. Horne, and A. Zeilinger, Going beyond Bell’s Theorem
in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos, pp. 73-76 (Kluwer,
Dordrecht, 1989).

[Griffiths and Harris, 1994] Griffiths and Harris, Principles of Algebraic Geometry, [Wiley Classics Library Edition
Published 1994]

[Gross, Wilczek, 1973] D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 1343 (1973).

[Grosse,Klimcik,Presnajde,1997] H. Grosse, C. Klimcik, P. Presnajder, Field Theory on a Supersymmetric Lattice,
Commun.Math. Phys., 185 (1997) 155-175 and hep-th/9507074;H. Grosse, C. Klimcik, P. Presnajder, N=2
Superalgebra and Non-Commutative Geometry,hep-th/9603071;H. Grosse, G. Reiter, The Fuzzy Supersphere, J.
Geom. and Phys., 28 (1998) 349-383 and math-ph/9804013.

[Gubser,Klebanov,Polyakov, 1998] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105 (1998)
[arXiv:hep-th/9802109];

[Gustavsson, 2007] A. Gustavsson, Algebraic structures on parallel M2-branes,
Nucl. Phys. B.811 (2009) 66; [arXiv:0709.1260 [hep-th]].

[Gutin, Pannen, 2002] G. Gutin, A.P. Punnen (Eds), The Traveling Salesman Problem and Its Variations,
Combinatorial Optimization Series, Kluwer, Boston 2002.

[Hamilton,1982] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982) 255.

[Heinze et al,2011] Heinze, Stefan; Von Bergmann, Kirsten; Menzel, Matthias; Brede, Jens; Kubetzka, André;
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