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Anomalous centrality evolution of two-particle angular correlations observed in Au-Au collisions

at
√

sNN = 62 and 200 GeV and the onset of ridge structures are considered in the model of

interacting quark-gluon strings. We assume that at the given energy of nucleus-nucleus collisions

the critical energy density may be reached at the specific centrality. In a string percolation model

this might be treated equivalently to a formation of a large cluster of strings characterized by

the critical string density, with a size comparable to the whole area of interaction of two nuclei.

This hypothesis allows to define some constraints on the string percolation model using data on

transitional centralities in Au-Au collisions at these two energies. Results are extrapolated to the

LHC energy where high string densities (exceeding the critical value) are confirmed for all classes

of centralities in Pb-Pb collisions.

Interaction between strings inside large clusters formed in nucleus-nucleus collisions is consid-

ered in a simplified Monte Carlo model. This model is applied to the qualitative analysis of the

onset of collectivity and the ridge formation in Pb-Pb collisions. It is shown that the approach of

the repulsive string-string interaction is capable to explain the appearance of elliptic and triangular

flow observed in nucleus-nucleus collisions at RHIC and LHC energies.
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1. Introduction

The first predictions of the azimuthal asymmetry of multiple-production of secondary hadrons

in high energy nucleus-nucleus collisions were done [1, 2] using the concept of interacting color

flux tubes (strings). The color strings may be viewed as tubes of the color field created by the col-

liding partons [3, 4, 5]. Production of particles goes via spontaneous emission of quark-antiquark

pairs in this color field. These strings are the phenomenological objects extended in rapidity and

are related to the cut Pomerons. Their cross-section in the transverse plane is considered as small

discs of πr2
0 area, where r0 is the string radius usually taken to be about 0.2 fm. With growing en-

ergy and/or atomic number of colliding particles the number of strings grows, therefore they start

to overlap and may interact. In case of existence of string-string interaction, the event-by-event

fluctuations of the initial geometry of collisions should manifest themselves as the azimuthal (φ )

anisotropy in two-particle correlations functions. The second important outcome of this hypoth-

esis [2] is that this spatial φ asymmetry will be also manifested as the long-range (extended in

pseudorapidity η) correlations.

Experimental evidences of the long-range azimuthal anisotropy in two-particle correlations in

heavy-ion collisions at RHIC and LHC are well-known. The ridge was defined as a two-particle

correlation structure relatively narrow in azimuthal angle and extended over several units in pseudo-

rapidity [6, 7, 8]. These structures were also observed both in pT-integrated and in special pT-

selected analyses of the 62 and 200 GeV Au-Au and Cu-Cu data (one may see a detailed overview

of STAR ridges in a recent work [9]). Recently the experimental ridge landscape was considerably

broadened by the observation of the CMS Collaboration at the LHC when the unexpected long-

range azimuthal two-particle correlations where found in pp collisions [10]. Ridge structures were

also reported in Pb-Pb and in p-Pb collisions at LHC [11, 12, 13].

The onset of the ridge and the role of initial conditions in the ridge formation were considered

by a rather large number of theoretical models that were motivated by the experimental discoveries.

Several models were proposed to explain qualitatively an origin of the ridge using various concepts

like an interaction of high-pT partons or jets with medium, formation of jets in small-pT, parton-

jets collisions, glasma flux tubes with radial flow etc. (see references in [7, 9, 11]). The Color

Glass Condensate (CGC) model [14] in addition to the long-range rapidity correlation points to the

possibility of intrinsic angular correlation which is assumed to come from the particle production

process due to glasma tubes formation on transverse distance scales 1/Qs much smaller than the

proton size (here Qs is the saturation scale of the colliding nuclei). In [15] the string percolation

phenomenology was compared to CGC results on effective string or glasma flux tube intrinsic cor-

relations, including the ridge phenomena and long-range forward-backward azimuthal correlations.

Color string percolation model and its similarities with the CGC are discussed in [16]. Fourier har-

monics decomposition of the two-particle azimuthal correlations in nucleus-nucleus collisions was

found to describe various ridge structures observed in the experiment [13, 37]. However, the dy-

namical origin of the harmonics and of the onset of these collective phenomena are still not clear

enough.

In the present work we use as the main working hypothesis the interaction among the quark-

gluon strings formed in the nucleus-nucleus collisions. In Section 2, estimations of string density

that might be reached in nucleus-nucleus collisions are done. Following [17], we assume here that
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the intriguing phenomena of sharp change in two-particle correlation function, observed for the

first time in Au-Au collisions at certain collision centralities at
√

sNN = 62 and 200 GeV [18], is

related to the critical string density reached in the interaction region. In Section 3, a toy-model with

interacting strings in nucleus-nucleus collisions [19] is applied for the analysis of the topology of

two-particle correlations to study the phenomena of the onset of the azimuthal peculiarities. In

this model, a string repulsion is considered as the collective effect of a large number of interacting

strings. The Monte Carlo model allows to understand in a qualitative way the formation of the

initial conditions representing the dynamic origin for the elliptic flow and for the higher-order

components of the two-particle angular correlations observed in nucleus-nucleus collisions.

2. String density in nucleus-nucleus collisions

In this section we use the string percolation model for the analysis of the onset of the long-

range correlations in Au-Au collisions at RHIC and estimate string densities of nucleus-nucleus

collisions at different collision energies and centralities.

2.1 Onset of ridge phenomena in Au-Au collisions at RHIC

The very first experimental data on the ridge onset were obtained in detailed study of central-

ity dependence of two-particle correlations done by STAR in Au-Au collisions at 62 and 200 GeV

at RHIC for all charged hadrons with rather low-pT (pT > 0.15 GeV/c) [18]. These preliminary

results revealed that the "soft ridge" structure appears in Au-Au collisions after reaching certain col-

lision centrality that might be characterized by definite ("critical") number of participating nucleons

(Ncrit
part(

√
s)). These "critical centralities" were found to be different for two collision energies: the

onset of the ridge was observed in Au-Au at approximately 55% centrality for collision energy√
sNN 200 GeV and at about 40% for

√
sNN = 62 GeV [18]. One may see from the data [18] that

at
√

sNN = 62 GeV this phenomenon starts at Ncrit
part ≈ 90, while at

√
sNN = 200 GeV the relevant

threshold is marked by Ncrit
part ≈ 40. The uncertainties of these values of Ncrit

part , extracted from the

RHIC data, produce some systematic error that is taken in account in our calculations.

Moreover, it was also found in [18] that transverse particle density

ρ̃ =
3

2

dNch

dy
/〈S〉 (2.1)

brings the transition points for these two energies to the same value 2.6±0.2 fm−2. Here dNch

dy
is the

total charge particle multiplicity per rapidity unit at a given centrality, 〈S〉 is the collision overlap

area, the factor 3
2

appears because both charge and neutral particles are taken into account. It is

important to note that both dNch

dy
and 〈S〉 in Eq. 2.1 depend on centrality of collisions defined by the

number of nucleons-participants Npart .

The detailed analysis of anomalous evolution of two-particle correlations with energy and cen-

trality of Au-Au collisions was followed in [20]. The sudden change in 2D angular correlations,

observed by STAR at some critical centrality (example is shown in Figure 1) motivated our appli-

cation of the string percolation model to describe this phenomenon.
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Figure 1: Example of changes in 2D two-particle angular correlations with centrality of Au-Au collisions at√
s = 200 GeV: from peripheral (84% - 93%) to semi-peripheral (55% - 64%) collisions (see more detailed

plots in [20]).

2.2 String density in Au-Au collisions in string percolation model

In the present study we assume that the onset of the low-pT manifestation of a near-side ridge

phenomenon in Au-Au collisions discussed above, is related to the critical quark-gluon string den-

sity reached at certain centrality. Under these conditions, a "macroscopic" cluster could appear,

which would be composed of a large number of overlapped strings extended in rapidity. Such a

cluster might be considered as a new kind of source emitting correlated particles. Cluster forma-

tion and the azimuthal effects in correlation functions might be due to some process that starts to

be visible above the percolation threshold.

To characterize mathematically the string density, a dimensionless percolation parameter η̃ is

introduced [21, 22, 23]:

η̃ =
πr2

0Nstr

〈S〉 . (2.2)

Here 〈S〉 is the transverse area of the overlap of colliding nuclei, Nstr is a number of strings. The

critical value of the parameter η̃ marking the percolation transition (η̃crit) could be calculated from

the geometrical considerations and is estimated to be η̃crit ≈ 1.12− 1.175 [24], string radius is

usually taken as r0 = 0.2−0.3 fm [5, 25, 26]. In our calculations we use η̃crit ≈ 1.15±0.03 and

r0 = 0.25 fm. (We have to note here that only the product of r2
0Nstr could be constrained using

Eq. 2.2. So that one will get different value of Nstr in case of using the different value of r0).

The number of particle emitting strings Nstr generally depends on the centrality of nuclus-

nucleus collision, on the type of colliding system and on the collision energy
√

s. In our approach,

Nstr and the overlap area 〈S〉 depend on Npart . However, these variables could not be measured

directly. In this work we exclude 〈S〉 from the estimations by considering the ratio ρ̃crit/η̃crit at the

"critical" point, that marks the onset of the low-pT ridge manifestation mentioned above. Thus at

the critical point one may obtain the following value:

ρ̃crit(Npart)

η̃crit(Npart)
=

3

2

1

πr2
0

dNch

dy

1

Nstr

= 2.3±0.2 f m−2, (2.3)

4
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here the error is coming mainly from the systematic uncertainties of ρ̃crit and η̃crit . The total

number of strings Nstr at the "critical" points in Au-Au collisions at
√

sNN = 62 and 200 GeV could

be easily found from the Eq. 2.3. The results of the calculations are presented in Table 1.

In order to make rough estimates for the dependence of the mean number of strings formed

in nucleus-nucleus collisions vs. energy and centrality, we use the concept of valence and sea

strings. A number of the valence strings NV is defined by Npart and a number of the sea strings

NS is proportional to Ncoll , with a coefficient a. For the total number of the strings Nstr, formed in

nucleus-nucleus collisions at some given energy, we use the following parametrization:

Nstr = NV +NS = Npart +a ·Ncoll. (2.4)

The number Nstr can be estimated using Eq. 2.3 at the "critical" points, characterized by certain

values of Npart and estimated Ncoll , after that the coefficient a can calculated from Eq. 2.4. Results

of the calculations of the parameter a for
√

sNN = 62 and 200 GeV are presented in Table 1. In

the third line of the Table we also added results of our previous similar estimations [27] in the

framework of string percolation model based on the observed threshold of anomalous suppression

of J/ψ in Pb-Pb collisions at
√

sNN = 17.3 GeV at SPS.

Table 1: Number of participants, density of charged particles at midrapidity per pair of participants, the total

number of strings, the number of sea strings and nucleon collisions parameter a obtained at the "critical"

points of Au-Au collisions at
√

sNN = 62 GeV and 200 GeV and for Pb-Pb collisions at
√

sNN = 17.3 GeV.

The calculations are done for string radius r0 = 0.25 fm.
√

s, GeV Npart (dNch/dη)/(0.5∗Npart) Nstr Ns Ncoll a

200(Au-Au) 40 2.97±0.30 [28] 194±25 155±23 59±4 2.6±0.4

62 (Au-Au) 90 2.30±0.23 [29] 352±28 262±23 167±4 1.6±0.2

17.3 (Pb-Pb) 110 1.62±0.21 [30] 302±45 192±30 158±5 1.2±0.2

It is possible to extrapolate the parameter a to other energies and centralities of collisions

with definite uncertainties (see details in [17]). In order to get the centrality dependence of η̃ in

nucleus-nucleus collisions, the calculations of the interaction area 〈S〉 are performed by applying

the relation 〈S〉 ∼ N
2/3
part [31]. The coefficient of proportionality is derived from the information

obtained at the "critical" point of the transverse particle density ρ̃ as it is mentioned above in

Eq. 2.1. The Modified Glauber model [32] is used here for calculations of Npart and Ncoll .

One may see on Figure 2 that rather large values of average string density η̃ exceeding con-

siderably the "critical" density value are obtained. The observation of the ridge at SPS energies,

reported in [33], could be the first experimental hint, confirming that the critical string density is

reached in central Pb-Pb collisions at
√

s = 17.3 GeV. At the same time string density acquired in

Pb-Pb collisions at the LHC energies exceeds the percolation threshold in all centrality classes.

5
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Figure 2: Centrality dependence of percolation parameter η̃ in nucleus collisions at various energies.

Shaded areas are representing the uncertainties of the calculations (uncertainties for
√

s= 2.76 TeV are not

shown). Markers represent independent estimates [34] of η̃ in very central collisions. See details in [17].

3. String-string interaction in Monte Carlo toy model

3.1 Monte Carlo toy model

Interaction between color strings formed in nucleus-nucleus collisions might produce clear

experimental manifestations in two-particle angular correlations. An exact form of this string-

string interactions is not known. As it was proposed in [2], it could be attractive or repulsive

depending on the directions of the chromo-electric field inside the string. The issue of the string-

string interaction has not yet been systematically addressed till recently. One can find the overview

of the problem in [35]. The magnitude of this interaction in string tension units was found to be

small (∼ 10−1 − 10−2 [35]). It is natural that deeper basic fundamental understanding of string-

string interaction is required. "Mesonic clouds" around the color flux tubes and exchange of the

scalar σ -meson were proposed in [35] and could be considered as the origin of interaction.

In our study we consider a simplified approach to string-string interaction mechanism for the

case of repulsion. A Monte Carlo (MC) toy model [19] is used. It is assumed that quark-gluon

strings, formed at early stage of hadron-hadron collision, may overlap in case of sufficiently high

density and interact. An efficient string-string interaction radius Rint is introduced. We consider

this free parameter differently from the string radius r0. Doubled string-string interaction radius Rint

can be interpreted as the effective distance of interaction between strings in the transverse plane. In

this MC model we consider the case of repulsing strings. We do not take in account neither string

attraction nor fusion.

The repulsion mechanism between two strings is considered to be similar to [2]: two com-

pletely overlapped strings have the energy density of 2E + 2E1, while the density of partial over-

lapping is 2E +2E1 ·S/S0. Here E is the energy density of a single free string and E1 is the energy

density excess due to overlapping. S is the area of the overlap (i.e. it is assumed that effectively

6
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Figure 3: Left: Illustration of azimuthally asymmetric flow in the transverse plane generated by two re-

pulsive color flux tubes boosted in opposite directions. Right: Example of the toy model simulation of a

semi-central collision of two nuclei with a high string density. Green arrows indicate transverse boosts of

the strings with a magnitude above some threshold.

interacting strings are "the black discs" with the area S0 in the transverse plane). Thus, the total

energy of the cluster formed by highly overlapped strings, reached in high-energy A-A collision, is

larger then the sum of energies of individual separated non-interacting strings. This energy excess

is responsible for the string repulsion [2].

In this simplified approach, for any interacting string we consider a coherent sum of interac-

tions of this string with all strings within the efficient interaction radius. Thus each string acquires

transverse momentum p
string
T [2, 19], and all the particles produced during hadronization of this

string gain in all region of rapidity a transverse Lorentz boost. In such a way, due to the string-

string interaction, the initial asymmetry of azimuthal configuration of quark-gluon strings could be

transferred into the final state with different harmonics of the azimuthal flow.

Schematic view of two color flux tubes (strings) boosted apart and generating azimuthally

asymmetric flow in the transverse plane due to repulsion is shown in Figure 3 (left). An example

of the toy model simulation of high string density in the transverse plane in semi-central nucleus-

nucleus collision is shown in Figure 3 (right). One may see that the flow appears as a result of

multiple string interactions.

3.2 Anisotropic flow in the Monte Carlo toy model

We applied the MC model of efficient string repulsion [19] for the analysis of two-particle

correlation topology in order to study the origin of the elliptic flow and the higher harmonics

observed in nucleus-nucleus collisions at RHIC and LHC.

Two-particle correlation functions are obtained in the MC model for various centralities of

high energy nucleus-nucleus collisions [36]. They illustrate the onset of collectivity when passing

from peripheral to central nucleus-nucleus collisions in a qualitative agreement with RHIC data.

Different values of Rint = 1 and 2 fm were also tested for evaluation of the contribution of different

harmonics and their centrality dependence, see [36]. This qualitative approach demonstrates also

the onset of the elliptic flow and the higher harmonics in heavy-ion collisions.

7
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Figure 4: The two-particle azimuthal correlation, measured in 0 < ∆φ < π and shown symmetrized over

2π , between a trigger particle with 2 < pT < 3 GeV/c and an associated particle with 1 < pT < 2 GeV/c

for the 0-1% centrality class. The solid red line shows the sum of the measured anisotropic flow Fourier

coefficients v2, v3, v4, and v5 (dashed lines) [37].

The measurement of the triangular v3, quadrangular v4, and pentagonal v5 charged particle

flow in Pb-Pb collisions at
√

sNN = 2.76 TeV was recently reported in [37]. In particular, it was

shown that one of the remarkable observations, so-called double-ridge structure in very central Pb-

Pb collisions (see Figure 4) is related to the triangular flow and can be understood from the initial

spatial anisotropy.

Figure 5 (left) shows two-particle azimuthal correlation function obtained in the MC model

simulations of the most central Pb-Pb events, for charged particles with pT ∈ [3,5] GeV/c. We use

the correlation measure ∆ρ/
√

ρref, which is described in detail, in particular, in [20]. The harmonic

decomposition of the azimuthal profile of this function is presented in the right pad of Figure 5.

These data are in a nice correspondence with the experimental picture [37] shown in Figure 4 (up

to a numerical factor between the two different observables).

3.3 Discussion

All this indicates that string percolation with introduced repulsion mechanism between inter-

acting quark-gluon strings, both valence and sea-quark, may lead to some collective phenomena in

nucleus-nucleus collisions. The model gives adequate description of the transition from peripheral

to central collisions as well as rise and development of the contribution of the elliptic flow and

interplay with higher harmonics.

In these first calculations we neglect the finite string length in rapidity and concentrate on

the azimuthal asymmetry of correlation functions. For this case a phenomenological approach

of repulsive string-string interaction is shown to be a possible dynamic origin of the observed

azimuthal asymmetries of two-particle correlation functions. Our results show also that the increase

of the number of strings and correspondingly the density of the overlapped strings with centrality

and collision energy is related mainly to increase of the number of sea-strings. Therefore, for

8
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Figure 5: Left: Toy model [19] two-particle correlation function obtained in the most central events for

charged particles with pT ∈ [3,5] GeV/c. String-string interaction radius Rint is 2 fm. Right: The harmonic

decomposition of the azimuthal profile of the correlation function shown in the left pad. The solid red line

shows the sum of the anisotropic flow Fourier coefficients v1, v2, v3, v4, and v5 (dashed lines).

example, the observed rise with centrality of the amplitude and a pseudorapidity width of the

so-called same-side 2D Gaussian obtained in [18, 20] may require an accurate consideration of

sea-quark strings formation and their interaction at midrapidity.

The onset of the ridge structure in AA, pA and pp collisions was also considered in the frame

of string percolation in a recently published paper [38]. The increase of the rapidity length of the

effective cluster formed by overlapping sea-strings is discussed. The total energy-momentum of

the string cluster is taken here to be the sum of the energy-momenta of the individual strings. In

our approach, following [1, 2], the energy of the cluster of the overlapped strings is higher than the

sum of individual non-interacting strings, therefore, the effective cluster may be more extended in

rapidity.

Another kind of string interaction, string fusion [39, 40], could explain other observed effects

like increased production of strange and multistrange particles with centrality of nucleus-nucleus

collisions. String fusion could be considered as an initial stage leading to glasma or QGP formation.

New constraints on the mentioned models could be obtained from experiment.

4. Conclusion

The hypothesis of string-string interaction and percolation string transition looks reasonable

in the quantification of the onset of the low-pT near side ridge phenomena in Au-Au collisions

at RHIC and in Pb-Pb collisions at LHC. One may assume that the onset of string percolation

at sufficiently high string densities leads to the formation of rather large clusters composed of

overlapped strings extended in rapidity. Collective effects of interactions between strings inside this

cluster could be one of the possible processes leading to repulsion of strings thus shaping topology

of two-particle correlation functions. The Monte Carlo toy-model with the efficient account of

9
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string repulsion of color flux tubes describes for the first time in a qualitative way the dynamics of

the initial conditions of high energy nucleus-nucleus collisions.

The value of the efficient string-string interaction radius Rint ∼ 2 fm provides qualitative de-

scription of elliptic and triangular flows in nucleus-nucleus collisions at RHIC and LHC energies.

This radius is found to be larger than the usual string radius, r0 = 0.25 fm.

More detailed quantitative estimates including the case of proton-proton and proton-nucleus

collisions will follow.
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