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During recent decades the long-range rapidity correlations phenomenon was studied both exper-
imentally and theoretically in relativistic nuclear physics. The correlations between the multi-
plicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are
analyzed in the framework of the simple string inspired model with two types of sources. The
sources of the first type (primary emitters) correspond to the initial strings formed in a hadronic
collision. We introduce the sources of the second type (secondary emitters), which imitate the
appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings.
The model enabled to describe effectively the influence of the string fusion effects on the strength
both the n-n and the pT-n correlations.
It was found that in the region, where the secondary emitters start to produce, the calculation
results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the
growth of the mean number of initial strings, i.e. with the increase of the collision centrality.
We show also that the increase of the event-by-event fluctuation in the number of primary strings
leads to the change of the pT-n correlation sign from negative to positive. Similar behaviour of the
pT-n correlation coefficient was observed experimentally in the lead-lead collisions at the top SPS
energy. One can try to search all these signatures of string collective phenomena in interactions
of various nuclei at different energies varying the class of collision centrality and its width.
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1. Introduction

This work is devoted to the analysis of long-range rapidity correlations (or forward-backward
correlations), being a unique tool sensitive to the collective effects in high energy ion collisions.
Since processes of the soft multi-particle production could not be described within a perturbative
approach of the fundamental theory of strong interactions - QCD, one has to apply phenomenolog-
ical models, such as models with a two-stage scenario of particle production [1, 2, 3, 4]. In this
scheme at the first stage several extended in rapidity color strings are stretched between colliding
ions. Then, at the second stage, they decay into observed charged particles, leading to the presence
of the long-range rapidity correlations between multiplicities. The string concept is widely used in
the scope of the modern Monte Carlo event generators, such as DPM [2], QGSM [4], VENUS [5],
EPOS [6].

Number of quark-gluon strings would increase with the growing collision energy and atomic
number of participants, which could result in the interaction between strings (fusion) due to the fi-
nite transverse size of a string and the limited transverse overlapping area in a collision [7, 8]. This
fusion is connected with the interaction of the color fields inside strings, which, in turn, change
resulting multiplicity and transverse momentum distributions. Therefore, it was suggested to con-
sider several types of correlations [9, 10] to study this collective phenomena: the correlation be-
tween multiplicities of charged particles in two rapidity windows separated by some gap and the
correlation between event-mean value of transverse momentum and multiplicity in these windows.
The strength of the correlations is characterized by the correlation parameters:

babs
n−n =

〈nFnB〉−〈nF〉〈nB〉
〈n2

F〉−〈nF〉
2 ; babs

pt−n =
〈nF ptB〉−〈nF〉〈ptB〉
〈n2

F〉−〈nF〉
2 (1.1)

The averaging 〈· · ·〉 in Eqs. (1.1) is over all events. The values, defined in Eqs. (1.1), depend on
the widths of the forward and backward windows. Therefore, usually [11], normalized versions of
the correlation parameters are considered, where following replacements n→ n

〈n〉 , pt → pt
〈pt〉 take

place:

brel
n−n =

〈nF〉
〈nB〉

babs
n−n; brel

pt−n =
〈nF〉
〈ptB〉

babs
pt−n (1.2)

Nevertheless, these substitutions enable us to reduce a trivial dependence of the correlation param-
eters only on the width of the backward rapidity window.

In this paper we study n− n and pT − n correlations in the framework of the model with
two types of strings [12], which effectively reproduces string fusion effects. This approach is the
simplest possible modification of the model with identical emitters [13], that can be applied in the
case of pp collisions where string fusion effects are negligible in the first approximation.

2. Model with strings of two types

2.1 General formalism

In the present model, it is proposed to consider quark-gluon strings of two types. The strings
of the first type correspond to the initial strings formed in a hadronic collision. The strings of the
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second type imitate the appearance of the emitters of a new kind resulting from fusion of the initial
strings. We suppose that in a single event N1 strings of the first type and N2 strings of the second
type are created with probability q(N1,N2):

∑
N1,N2

q(N1,N2) = 1 (2.1)

We introduce following notations for the first and second moments of this joint distribution :

∑
N1,N2

q(N1,N2)N1 = N1; ∑
N1,N2

q(N1,N2)N2 = N2; ∑
N1,N2

q(N1,N2)N1 N2 = N1 N2;

∑
N1,N2

q(N1,N2)N2
1 = N1

2; ∑
N1,N2

q(N1,N2)N2
2 = N2

2;

DN1 = N1
2−N1

2; DN2 = N2
2−N2

2; cov(N1,N2) = N1 N2−N1 ·N2 (2.2)

In order to characterize string fragmentation we put into consideration probabilities to get a
particular number of charged particles in two windows from a string of the first and second types:
p(1)

(
F(1)

i ,B(1)
i

)
, p(2)

(
F(2)

j ,B(2)
j

)
. Here, indices (1), (2) represent the type of string, and latin

indices stand for the string number.
Since we consider the long-range correlations, a gap between the forward and backward win-

dows could be chosen sufficiently large to consider numbers of particles produced in these windows
from one string as uncorrelated:

p(1)
(

F(1)
i ,B(1)

i

)
= pF(1)

(
F(1)

i

)
· pB(1)

(
B(1)

i

)
; p(2)

(
F(2)

j ,B(2)
j

)
= pF(2)

(
F(2)

j

)
· pB(2)

(
B(2)

j

)
(2.3)

The first and seconds moments of the new single-string distributions are denoted as follows:

∑
F(1)

i

pF(1)

(
F(1)

i

)
F(1)

i = µF(1) ; ∑
F(2)

j

pF(2)

(
F(2)

j

)
F(2)

j = µF(2) ;

∑
B(1)

i

pB(1)

(
B(1)

i

)
B(1)

i = µB(1) ; ∑
B(2)

j

pB(2)

(
B(2)

j

)
B(2)

j = µB(2) ;

Dµ
F(1)

= µ2
F(1)−µ

2
F(1) ; Dµ

F(2)
= µ2

F(2)−µ
2
F(2) ;

Dµ
B(1)

= µ2
B(1)−µ

2
B(1) ; Dµ

B(2)
= µ2

B(2)−µ
2
B(2) . (2.4)

Assumption (2.3) can be tested in experiments where fixed number of quark-gluon strings is
created. In this model long-range correlations originate only from the fluctuations in number and
type of strings, what will lead to the absence of long-range correlations in the mentioned experi-
ments without these fluctuations. Electron-positron collisions at low energies could be considered
as such an experiment due to formation of a single q− q string. In [14] it was found that for
e+e− collisions at

√
s = 29 GeV the n−n correlation strength for two symmetrical windows with

large gap ∆y = 2 is negligible: babs
n−n = 0.002± 0.006. Similar effect can be seen in low-energy

proton-proton collisions with two quark-diquark strings. The n− n correlation strength for pp
collisions at

√
s = 24 GeV [15] for two symmetrical windows with ∆y = 2 is also close to zero:

babs
n−n = 0.032±0.015.
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It was shown [12] that within the proposed model one can get following contributions to the
n−n correlation parameter, using notations from Eqs. (2.2), (2.4):

〈nF
2〉= N1

2µ
2
F(1) +N2

2µ
2
F(2) +2N1 N2µF(1) µF(2) +N1Dµ

F(1)
+N2Dµ

F(2)
(2.5)

〈nF〉= N1µF(1) +N2µF(2) (2.6)

〈nB〉= N1µB(1) +N2µB(2) (2.7)

〈nB nF〉= N1
2µB(1) µF(1) +N2

2µB(2) µF(2) +N1 N2
(
µB(1) µF(2) +µB(2) µF(1)

)
(2.8)

Additional contributions to the pT −n correlation coefficient are listed below:

〈ptB〉= ∑
B(1),B(2)

k1B(1)+ k2B(2)

B(1)+B(2) ∑
N1,N2

q(N1,N2)PN1

(
B(1)

)
PN2

(
B(2)

)
(2.9)

〈ptB nF〉= ∑
B(1),B(2)

k1B(1)+ k2B(2)

B(1)+B(2) ∑
N1,N2

q(N1,N2)
(
N1µF(1) +N2µF(2)

)
PN1

(
B(1)

)
PN2

(
B(2)

)
(2.10)

where k1 and k2 are the mean transverse momenta of charged particles in the backward window
from one string of the first and second types, B(1) and B(1) are the total multiplicities in the back-
ward window from all strings of the first/second type and following probability distributions were
introduced:

PN1

(
B(1)

)
= ∑
{B(1)

i }

δ
B(1),∑

N1
i=1 B(1)

i

N1

∏
i=1

pB(1)

(
B(1)

i

)

PN2

(
B(2)

)
= ∑
{B(2)

j }

δ
B(2),∑

N2
j=1 B(2)

j

N2

∏
j=1

pB(2)

(
B(2)

j

)
(2.11)

Substituting Eqs. (2.5)-(2.10) in Eqs. (1.1) gives the following expression for the n-n correlation
parameter:

babs
n−n =

DN1 µF(1)µB(1) +DN2 µF(2)µB(2) + cov(N1,N2)
(
µF(1)µB(2) +µF(2)µB(1)

)
DN1 µF(1)

2 +DN2 µF(2)
2 +2cov(N1,N2)µF(1)µF(2) +N1Dµ

F(1)
+N2Dµ

F(2)

(2.12)

and for the pT-n correlation parameter:

babs
pt−n =

〈nF ptB〉−
(
N1µF(1) +N2µF(2)

)
〈ptB〉

DN1 µF(1)
2 +DN2 µF(2)

2 +2cov(N1,N2)µF(1)µF(2) +N1Dµ
F(1)

+N2Dµ
F(2)

(2.13)

If properties of both types of strings are identical and N1 +N2 = N, then we get:

babs
n−n =

DN µF µB

DN µF
2 +NDµF

(2.14)

babs
pt−n = 0 (2.15)

which coincides with the previously obtained results in the model with independent emitters of one
type [13].

Note that we do not need to know exact form of the single-particle momentum distributions to
calculate the pT −n correlation coefficient. The expression in Eq. (2.13) is governed only by mean
values k1 and k2 and multiplicity distributions.

4
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2.2 Mechanism of strings formation

Following the Regge-Gribov theory [16, 17], we suppose that multi-pomeron exchange pro-
cesses, taking place in high energy hadron-hadron or nucleus-nucleus collisions, correspond to
creation of q−qq and q−q strings, with two strings originating from each cut-pomeron. Note that
strings could be stretched between valence quarks and valence diquarks, valence quarks and sea an-
tiquarks, valence diquarks and sea quarks, sea quarks and sea antiquarks. In this model, we assume
that all these color emitters contribute to both considered rapidity windows (they are infinite in this
sense) and have the same fragmentation properties. Thus, N = 2H identical strings are created in
an event with H cut pomerons. Next, one can assemble N emitters into N

2 pairs and introduce prob-
ability r of pair transformation into a new fused string. Therefore, N2 new strings will be created
and N1 = N−2N2 primary strings will left from the initial configuration. Note that the concept of
pair string fusion evidently can not be applied for the collisions of heavy ions, because in this case
a lot of strings overlap in the transverse plane. As a result, for light ions, we will get a binomial
distribution for the number of the new emitters with the fixed N: PN (N2) = CN2

N
2
· rN2 · (1− r)

N
2 −N2

and

∑
N1,N2

q(N1,N2) · · ·=
∞

∑
N=0

N
2

∑
N2=0

q(N) ·PN (N2) · · ·=
∞

∑
H=0

H

∑
N2=0

q(H) ·PH (N2) · · · (2.16)

where q(N) (or q(H)) is the probability of N primary strings (or H cut-pomerons) formation.
Since we consider events with at least one cut-pomeron, the first summation in the right-hand side
of Eq. (2.16) should start from unity. In order to keep proper normalization q(H) is substituted by
q̃(H):

q̃(H) =
q(H)

1−q(0)
(2.17)

Evidently, this modification will change the average number of primary string in a single event N
in the same way:

Ñ =
N

1−q(0)
(2.18)

Note that the fluctuation in number of strings in pp and AA collisions is not poissonian and
hence the scaled variance ωN ≡ DN

Ñ 6= 1. Its value, as well as Ñ, depends on the collision energy
and centrality.

As a next step, we make an assumption about connection between fragmentation properties
of strings of two types. It is usually supposed that when two strings fuse, the colour charge modi-
fies [10, 18, 19]

Q2 =
√

2Q (2.19)

where Q and Q2 are the colour charges inside primary and new emitters. This leads to the following
relations:

µF(2) =
√

2µF(1) ; µB(2) =
√

2µB(1) ; k2 = 2
1
4 k1 (2.20)

In principle, the right-hand sides in (2.19)-(2.20) should me multiplied by a factor proportional
to the area of the overlap, but we suppose that the process of fusion create strings of new type as a
result of complete overlapping of two primary strings.

5
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In order to keep the scaled variances independent on the string type
Dµ

F(2)

µ
F(2)

=
Dµ

F(1)

µ
F(1)
≡ω

[
µF(1)

]
,

Dµ
B(2)

µ
B(2)

=
Dµ

B(1)

µ
B(1)
≡ ω

[
µB(1)

]
we choose

Dµ
F(2)

=
√

2Dµ
F(1)

; Dµ
B(2)

=
√

2Dµ
B(1)

(2.21)

This assumption is based on the idea that both primary and new strings are homogeneously ex-
tended in rapidity and consequently have a Poisson distribution in the number of produced particles
in the backward and forward windows, which leads to:

ω
[
µF(1)

]
= ω

[
µB(1)

]
= 1 (2.22)

In our previous study [12] it was shown that in this approach the pT −n correlation coefficient
can reach only non-positive values, with zero correlations obtained for r = 0 and r = 1 parameters1.
Note that experimentally both negative and positive pT −n correlations were observed [21].

Incompleteness of description in [12] comes from the independence of fusion parameter r on
the number of initially created quark-gluon strings N. It is natural to expect that with growing string
density the probability of emitter interaction should also rise. We use the following parametrization
of r (N):

r (N) =
1

1+ e−
N−N0

δN

(2.23)

where N0 and δN are two additional parameters. This function tends to zero at small N, represent-
ing the absence of fusion, and to unity at high N, representing complete fusion.

Substituting function (2.23) into formulae (2.16) leads to an impossibility of analytical evalua-
tion of the average values (2.5)-(2.10) included in the definitions of the n−n and pT−n correlation
coefficients. In order to perform these calculations numerically a toy Monte-Carlo model was de-
veloped. An event generation in a code consists in string configuration creation (generation of N
and N2 in accordance with q(N) and PN (N2)), followed by the computation of multiplicities in two
windows from this configuration (generation of nF and nB). By repeating this procedure one can
get approximate results for (2.5)-(2.10) and, consequently, for the correlation parameter (1.2).

2.3 Results

2.3.1 Test of Monte-Carlo code

Calculations were performed for different probability distributions q(H). It turned out that for
the configurations with the fixed number of cut-pomerons (or primary strings ω [N] = DN

N = 0) one
can get an analytical result for the n−n correlation coefficient:

babs
n−n =

µB ·µF ·N · r (N) · (1− r (N)) ·
(

3−2
√

2
)

µF
2 ·N · r (N) · (1− r (N)) ·

(
3−2

√
2
)
+µF ·N ·

(
1− r (N)+

√
2

2 r (N)
) ; (2.24)

brel
n−n = babs

n−n ·
µF

µB
, (2.25)

1In this two extreme cases there are no fluctuations in types of strings.
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Figure 1: The n−n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5 as a function
of the fixed number of primary strings N: Monte-Carlo calculations (left), analytic calculations (right). Red
lines correspond to δN = 20, blue - δN = 4 and black - δN = 0.2.

Thus, our Monte-Carlo code could be tested by making comparison between its results and expres-
sion in Eq. (2.25). This comparison is shown in Fig. 1 for N0 = 100, µF = µB = 0.5 and several δN
magnitudes. Monte-Carlo simulations (Fig. 1 (left)) show a perfect agreement with the analytical
calculations (Fig. 1 (right)). Moreover, we can observe an absence of correlations at small and high
values of N, corresponding to r ≈ 0 and r ≈ 1, for different values of parameter δN, which is due
to the negligible fluctuations in type of strings and zero fluctuations in number of strings.

Note that for δN = 0.2 the n−n correlation coefficient takes a non-zero value only at N = N0

(which is possible only when N0 is an even number). In this case interaction function r (N) could
be approximated by a Heaviside step function. We claim that this sharp transition from a lack of
the fusion to complete fusion was considered rather to explore the mathematical limit behaviour of
the model, than to produce some physical results.

2.3.2 n−n correlations

The dependence of the n− n correlation coefficient on the mean number of primary strings
N is shown in Fig. 2 for δN = 20, corresponding to slowly rising interaction function r (N). The
plot was obtained for different probability distributions q(H): binomial distributions with ω [N] =

{0.1,0.5,1,1.5} and Poisson distribution with ω [N] = 2. The results show a smooth transition from
the no-fusion limit to the total-fusion limit with a single extremum point in this area - maximum
for small ω [N] and minimum2 for large ω [N]. From the previous experience [12] it was not
expected that this transition could have a dip between two asymptotics. It leads us to conclude
that, while both to the right and to the left of the dip (or hill) strings of a single type dominate,
near the extremum point it is the interplay of the fusion and fluctuation effects. The general trend
of the correlation growth with the rising fluctuations ω [N], which takes place in the model with
independent emitters of one type [13], is well reproduced.

The analogous dependence of the n−n correlation coefficient is shown in Fig. 3 for δN = 4,
which is associated with a rapidly growing with the number of strings probability of interaction.
The drop of the correlations for large ω [N] is found to be more pronounced than in the previous

2The drop of the correlation coefficient in this area could be associated with a huge anti-correlation between N1 and
N2.

7
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case. However, the main feature of this plot is a non-monotonic behaviour of the correlation coef-
ficient for intermediate values of the fluctuation measure ω [N] = {0.1;0.5}, with three extremum
points placed in the transition region. The presence of this wavy dependencies explains how the
hill of correlations for ω [N] = 0 transforms to the dip for large ω [N].

Manifestation of these dependencies in an experimental data would be a clear signal of the
string fusion phenomenon. One can connect model parameters N and ω [N] with some collision
centrality estimators, because they change with varying of the class of centrality and its width. The
common way to do it is to apply the Glauber model, calculate numbers of nucleon-participants
and nucleon-spectators and parametrize N and ω [N] in terms of these numbers [20]. Leaving this
approach for the future studies, we propose another method in this work. We calculate for each N
average multiplicity nadd in an additional window. It is supposed that this third window is placed
far enough from two others to neglect correlations between observables in this window and others
from one string.

In Fig. 4 and Fig. 5 the n−n correlation coefficients are presented as functions of nadd for the
scope of parameters from Fig. 2 and 3 correspondingly. One can clearly see that for the δN = 20
the behaviour of brel

n−n does not change after introducing of the new variable, while for the δN = 4
strong oscillations take place in the extremum region. The presence of these oscillations makes
it practically impossible to compare experimental data expressed in terms of nadd with the model
predictions.

Nevertheless, one can note, that the rise of centrality (growth of N or nadd) could lead as to
the increase of the correlations (for small ω [N]), as to the decrease (for large ω [N]), however, the
asymptotic value at large N (nadd) is always not greater than at small N (nadd).

2.3.3 pT −n correlations

The results of the pT −n correlation coefficient computation for k1 = 0.3GeV/c and δN = 20
are shown in Fig. 6. They demonstrate the transition from the negative values at small ω (N) to the
positive ones at high ω (N). Similar behaviour has already been found both in experimental [21]
and theoretical [22] studies. Moreover, pT −n correlations tend to zero at small and high N, repre-
senting their dependence exclusively on the fluctuations in the type of strings. It is this dependence
that makes the long-range pT −n correlations a unique tool to search for string fusion effects.

On the other hand, the non-monotonic behaviour found in the n−n correlations for δN = 4 (see
Fig. 3) affects also the pT −n correlations, as can be seen in Fig. 7. In this case several extremum
points come into play in the transition area, giving possibility of obtaining negative values of the
pT −n correlation coefficient for large ω [N]. Note also, that the dependence on the value of ω [N]

is not linear at N = N0.

In Fig. 8 and Fig. 9 the pT − n correlation coefficient is presented as a function of nadd .
Analogously to the n−n case, the behaviour for δN = 20 resemble that in Fig. 6. Only three curves
are shown in Fig. 9 for better visibility due to the strong oscillations for ω [N] = 0.1, ω [N] = 0.5,
ω [N] = 1. As in the n− n case, direct comparison with experiment using the nadd variable looks
impossible.

8
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Figure 2: The n−n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 20 as
a function of the mean number of primary strings N. Red line corresponds to ω [N] = 0, yellow - ω [N] = 0.1,
green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical errors, calculated by
the sub-sample method, for all points do not exceed 0.0005 units.

Figure 3: The n−n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 4 as
a function of the mean number of primary strings N. Red line corresponds to ω [N] = 0, yellow - ω [N] = 0.1,
green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical errors, calculated by
the sub-sample method, for all points do not exceed 0.0005 units.
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Figure 4: The n−n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 20
as a function of the average multiplicity in the additional window nadd . Red line corresponds to ω [N] = 0,
yellow - ω [N] = 0.1, green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical
errors, calculated by the sub-sample method, for all points do not exceed 0.0005 units.

Figure 5: The n− n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 4
as a function of the average multiplicity in the additional window nadd . Red line corresponds to ω [N] = 0,
yellow - ω [N] = 0.1, green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical
errors, calculated by the sub-sample method, for all points do not exceed 0.0005 units.
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Figure 6: The pT−n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 20,
k1 = 0.3GeV/c as a function of the mean number of primary strings N. Red line corresponds to ω [N] = 0,
yellow - ω [N] = 0.1, green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical
errors, calculated by the sub-sample method, for all points do not exceed 0.0002 units.

Figure 7: The pT −n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 4,
k1 = 0.3GeV/c as a function of the mean number of primary strings N. Red line corresponds to ω [N] = 0,
yellow - ω [N] = 0.1, green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical
errors, calculated by the sub-sample method, for all points do not exceed 0.0002 units.
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Figure 8: The pT−n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 20,
k1 = 0.3GeV/c as a function of the average multiplicity in the additional window nadd . Red line corresponds
to ω [N] = 0, yellow - ω [N] = 0.1, green - ω [N] = 0.5, black - ω [N] = 1, violet - ω [N] = 1.5, blue -
ω [N] = 2. Statistical errors, calculated by the sub-sample method, for all points do not exceed 0.0002 units.

Figure 9: The pT −n correlation coefficient in the relative variables for N0 = 100, µF = µB = 0.5, δN = 4,
k1 = 0.3GeV/c as a function of the average multiplicity in the additional window nadd . Violet line corre-
sponds toω [N] = 0 , violet - ω [N] = 1.5, blue - ω [N] = 2. Statistical errors, calculated by the sub-sample
method, for all points do not exceed 0.0002 units.
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3. Summary and conclusions

The Monte-Carlo realization of the model with strings of two types was developed and applied
to the calculation of the n− n and pT − n correlation coefficients. Dependence of the interaction
parameter r on the number of primary strings N was taken into account.

Simulation results in the case of the fixed number of primary strings N showed a good agree-
ment with the analytical consideration. Non-trivial behaviour of the n− n correlation coefficient
in the area where interaction between strings comes into play was obtained. The model enabled to
describe also transition from the negative values of the pT −n correlation coefficient to the positive
ones. It turned out that both the n−n and pT −n correlations are very sensitive to the shape of the
interaction function r (N). Changing rate of growth of r (N) from slow to rapid leads to appearance
of additional extremum points.

For the more detailed comparison of the model predictions with the experimental results pa-
rameters of the simulations should be associated directly with information about collision central-
ity and multiplicity and transverse momentum spectra in rapidity windows. One of the possible
centrality estimators, multiplicity in the additional rapidity window, was modelled. The obtained
results for this parameter shows behaviour similar to the N dependence but with strong oscillations
close to the extremum point. Connection of the model parameters with other centrality estimators
like number of nucleon-participants is left for the future studies.
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