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at low excitation energy, are studied at beam energies 1 – 2 GeV and for invariant massesMX of the

final Nπ system that correspond to the formation of the∆(1232) isobar. The direct mechanism,

where the initial proton is excited into the∆(1232), dominates and explains the existing data

on the unpolarized differential cross section and spherical tensor analyzing powerT22 for MX >

1.2 GeV/c2. However, this model fails to describeT20.
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Thedp→ {pp}sn reaction at low momentum transfers from the incident deuteron to the final
diproton{pp}s is sensitive to the spin-flip part of the nucleon-nucleon charge-exchange forces [1].
Here{pp}s is a pp pair at very low excitation energy, typicallyEpp < 3 MeV, where it is predom-
inantly in the1S0 state. A systematic study of this reaction has been started at ANKE@COSY in
both single [2] and double-polarized [3] experiments. In addition to thepn→ npsubprocess, there
are variants of this reaction, namelydp→{pp}snπ0 or dp→{pp}spπ−, that involve the spin-flip
part of thepn→ ∆+(1232)n transition, which is difficult to measure directly.

A linear combination of the Cartesian tensor analyzing powers Axx and Ayy in the ~dp →
{pp}s∆0(1232) reaction was measured at SATURNE with a polarized deuteron beam of energy
2 GeV [4, 5] and a phenomenological analysis performed usingone-pion exchange [6]. New data
on the unpolarized cross sections and tensor analyzing powers of the~dp→{pp}Nπ reaction were
recently obtained at ANKE@COSY at energies 1.6, 1.8, and 2.3GeV, where bothAxx andAyy were
determined individually [7, 8].

All data on thedp→ {pp}sn reaction can be well explained by the single-scattering mecha-
nism with apn→ npsub-process, provided that one accounts for the finalpp interaction in the1S0

state. It is important to check whether the tensor analyzingpowers of thedp→ {pp}sNπ reaction
can be similarly described.
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Figure 1: The mechanisms of thedp→{pp}sNπ reaction: a) direct (D), b) exchange (E).

It is expected that at low momentum transfers thedp→ {pp}sNπ reaction is dominated by
the direct (D) one-pion-exchange mechanism of Fig. 1a. The differential cross section was eval-
uated within this model [8] using a modified form of the input employed for thep(3He, t)∆++

reaction [4]. At highNπ invariant masses,MX ∼ 1.2−1.35 GeV/c2, this explains well the shape
of the measured spectra, but it fails for lower masses [8]. The E-mechanism of Fig. 1b, where
the ∆(1232) is excited in the deuteron, is of little importance and its influence on the analyzing
powers will be neglected. For the elementarypN→ ∆N amplitudes we use bothρ-meson and pion
exchange.

We consider the mechanisms of Fig. 1 on the basis of the Feynmann diagram technique. For the
meson-baryon vertices we apply the formalism used in Ref. [9], where the exclusivepp→ pnπ+

data [10] were analyzed in the∆-isobar region and the cut-off parameters at theπ(ρ)NN and
π(ρ)N∆ vertices were fixed from a fit to the data. The vertex form factors π(ρ)NN andπ(ρ)N∆
are taken in the monopole form,Fπ(ρ)(k

2) = (Λ2−m2
π(ρ))/(Λ

2 − k2), wheremπ (mρ) is the pion

(ρ meson) mass,k is the pion (ρ meson) 4-momentum, andΛ is the cut-off parameter. Theq3-
dependence of the total width of the∆-isobar on the relative momentumq in πN system is taken
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into account. The transition form factord → {pp}s is evaluated using the CD-Bonn interaction
potential [11].
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Figure 2: Thedp→ {pp}sNπ differential cross section as a function of theπN invariant massMX at three
beam energies. The ANKE@COSY data [8] are compared with the calculations based on the D- (full line)
and E-mechanisms (dashed line) in impulse approximation.

As shown in Fig. 2, the D-mechanism can explain the shape ofdσ/dMX for MX > 1.2 GeV/c2

at all three beam energies studied [8]. The magnitudes of thecross section are also reasonably
reproduced with a cutoff parameter valueΛ = 0.5 GeV [9].

At lower masses,MX < 1.2 GeV/c2, the D-mechanism fails to explain the measured cross
section [8] and other mechanisms must be investigated. The E-mechanism is calculated in a similar
manner to the D. In this case, due to spin-flip in the loop caused by thed → {pp}s transition,
the vector product[k× k′] of the momenta of pions appears in the reaction amplitude. The E-
contribution has indeed a maximum at low massesMX ≈ 1.1 GeV/c2. However, it is much smaller
in absolute value than the D-contribution (see dashed line in Fig. 2) and therefore does not provide
an explanation of the observed shape of the cross section as afunction of MX. The reasons for
this small size are (i) the smallness of the∆−propagator for the E-mechanism as compared to the
D-mechanism, and (ii) the smallness of the vector product[k×k′] for E-kinematics as compared
to the scalar product(k ·k′) for the D-kinematics.

As a check, we calculated thedp→ dX cross section at almost the same kinematics. The
E-mechanism is here allowed but the D-mechanism is forbidden by isospin. We found reasonable
agreement with the experimental data on this reaction [13] and also with the model calculations
given in this paper.
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In impulse approximation the transition matrix element forthe direct mechanism of thedp→
{pp}s∆0 reaction can be written as

M f i = Ψ+
j (λ∆)(Dπk jTi +DρM ji )ei(λd)χp(σp), (1)

whereΨ+
j is the vector-spinor of the∆-isobar,χp is the spinor of the initial proton,ei is the polar-

ization vector of the deuteron,λ∆, λd andσp are spin-projections of the∆, deuteron, and proton,
respectively, andk j is the 3-momentum of the pion in the∆-isobar rest frame (i, j = x,y,z). The
factorsDπ andDρ in Eq. (1) are given by products of the coupling constantsπNN, ρNN, πN∆,
ρN∆, form factors, and propagators of theπ andρ mesons. The vector operator for pion exchange
Ti is

Ti =

(

SS(q)+
1√
2

SD(q)

)

Qi −
3√
2

SD(q)(Q ·n)ni , (2)

whereSS(q) andSD(q) are theS- andD-waved → {pp}s transition form factors at 3-momentum
transferq, andn is the unit vector alongq. The momentumQ is

Q =

[

E1 +mN

E2 +mN

]1/2

p2−
[

E2 +mN

E1 +mN

]1/2

p1, (3)

whereEi =
√

p2
i +m2

N andp1 (p2) is the 3-momentum of the virtual proton (neutron).
The tensorM ji describesρ-meson exchange:

M ji = (SS+
1√
2

SD)
[

(Q ·Q′)δ ji −Q jQ
′
i

]

− 3√
2

SD
[

(Q ·Q′)n j − (Q′ ·n)Q j
]

ni , (4)

whereQ′ is the momentum of theρ meson in the∆-isobar rest frame.

Figure 3: Spherical tensor analyzing powerT22 = (Axx−Ayy)/2
√

3 for thedp→{pp}sNπ reaction averaged
over the beam energies of Ref. [8], versus the transverse momentum transferqt .

The Cartesian tensor analyzing powersAi j are defined byAi j = Tr{MP̂i j M
+}/Tr{MM +},

whereM is the transition operator given by Eq. (1),̂Pi j = 3
2(SiSj +SjSi)−δi j , andSl is the spin-1

operator (i, j, l = x,y,z). Following the presentation of the ANKE@COSY experiment [8], we con-
sider the Cartesian tensor analyzing powersAxx andAyy as functions of the transverse component
of the momentum transferqt . Thezaxis is chosen to lie along the deuteron beam momentumpd, y
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alongpd×ppp, wherepd (ppp) is the total momentum of the deuteron (pp-pair), withx being taken
so as to form a right-handed coordinate system. The experimental data of Ref. [8] were summed
over the invariant mass of the undetectedπ + N system in the interval 1.19< MX < 1.35 GeV/c2

at fixedqt . Thus, we obtain, for example,

Axx = 1−3
∫ Mmax

X

Mmin
X

MαxM
+
αxdMX

/

∫ Mmax
X

Mmin
X

Mα iM
+
α idMX · (5)

Non-relativisticallyQ = pp−pn = q. In this limit, and ignoring integration overMX, one finds
from Eq. (5) that, for pureπ andρ exchange,

Aπ
xx = 1−3q2

t /q2 and Aπ
yy = 1,

Aρ
xx = −1

2 +3q2
t /2q2 and Aρ

yy = −1
2. (6)

Both of these simple limits are in contradiction with experiment, for whichAxx(qt = 0) =

Ayy(qt = 0)≈ 0 andAyy(qt) has a smoothqt dependence [8]. Calculations forπ +ρ exchange have
been performed withΛπNN = ΛπN∆ = 0.5 GeV andΛρNN = ΛρN∆ = 0.7 GeV [9], whenρ-exchange
is almost negligible. For these parameters,Axx decreases with increasingqt from Axx = 1 atqt = 0
to Axx ≈ 0.5 atqt = 170 MeV/c, whereasAyy is almost independent ofqt and close to unity.

When the contribution of theρ meson is raised by increasing the cut-off parameterΛρNN =

ΛρN∆ to 1.3 GeV, bothAxx andAyy decrease but stay far from experiment atqt = 0. Theπ + ρ
model also fails to describe the spherical tensor analyzingpower,T20 = −(Axx+Ayy)/

√
2. On the

other hand, the spherical analyzing powerT22 = (Axx−Ayy)/2
√

3 is well described by the direct
one-pion exchange of Fig.1a, as demonstrated in Fig. 3.

To take into account an interference between the D and E mechanisms would require one
to consider the quasi-three-body final statesπ0n{pp}s and π−p{pp}s explicitly instead of the
quasi-two-body state∆0{pp}s. However, this will not improve the results at lower massesMX <

1.2 GeV/c2. Our results suggest that one should use aNN → N∆ amplitude beyond undistorted
π + ρ exchange.

The authors are grateful to A. Kacharava and D. Mchedlishvili for useful discussions. This
work was supported in part by the Heisenberg–Landau programme.

References

[1] D.V. Bugg, C Wilkin, Nucl. Phys. A467, 575 (1987).

[2] D. Chiladzeet al., Eur. Phys. J. A40, 23 (2009).

[3] A. Kacharavaet al., COSY Proposal172 (2007).

[4] C. Ellegaardet al., Phys. Lett. B154, 110 (1985).

[5] C. Ellegardet al., Phys. Lett. B231, 365 (1989).

[6] V. Dmitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A459, 503 (1986).

[7] D. Mchedlishvili, D. Chiladze, J. Phys. G: Conference series,295, 012099 (2011).

[8] D. Mchedlishvili et al., Phys. Lett. B726, 145 (2013).

5



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
I
)
0
9
3

Polarized deuteron charge-exchange Yu.N. Uzikov

[9] O. Imambekov, Yu.N. Uzikov, Yad. Fiz.44, 1089 (1988).

[10] J. Hudomalj-Gabitzschet al., Phys. Rev. C18, 2666 (1978).

[11] R. Machleidt, Phys. Rev. C63, 024001 (2001).

[12] B.J. Verwest, Phys. Lett. B83, 161 (1979).

[13] R. Baldini Celioet al., Nucl. Phys. A379, 477 (1982).

6


