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1. Introduction

Peripheral collisions of heavy ions generate global or local rotations of nuclear matter which
are characterized by an angular velocity normal to the reaction plane. An appearance of vorticity
of nuclear matter attracts significant interest (see Ref. [1] and references therein). It is naturally to
suppose an existence of connection of this phenomenon with spin effects, in particular, with a quark
polarization up or down relative to the reaction plane. We use the conventional Cornell potential
for a phenomenological description of spin effects. It can be included into the Dirac equation in
two possible ways. It is the most natural to consider the quark interaction like an electromagnetic
interaction because the quanta of these interactions, photon and gluon, has the same spin. In this
case, the Cornell potential is included into the four-potential of the Dirac equation. Another pos-
sibility is an inclusion of the Cornell potential into the scalar potential [2]. One often realizes the
both possibilities and introduces the Cornell potential in the two (vector and scalar) forms [3, 4, 5].
Certainly, the vector Cornell potential is a four-vector. The use of traditional quantum-mechanical
approaches allows one to solve the resulting equation only in some specific case, when the parame-
ters of the scalar and vector potentials are very specific [3, 4, 5]. In all above-mentioned references,
the Dirac equation in the Minkowski spacetime was considered.

In the present work, we use the both scalar and vector Cornell potentials and solve the more
general problem of a strongly interacting Dirac particle (quark) in a rotating frame. The use of the
covariant Dirac equation in a rotating frame instead of the usual Dirac equation in the Minkowski
spacetime seems us to be a perspective way to a description of nuclear matter under peripheral
collisions of heavy ions. In this case, tho total angular momentum can be rather large. Unlike
other investigators, we use the approach based on the relativistic Foldy-Wouthuysen (FW) trans-
formation and find a general solution of the problem for arbitrary parameters of the scalar and
vector potentials. A possibility to restrict ourselves to a consideration of local interactions (be-
cause of short-range nuclear forces) allows us to realize advantages of this approach. Recently
developed methods of the relativistic FW transformation [6, 7, 8] (see also Ref. [9, 10, 11] and
references therein) ensure fulfilling this transformation in arbitrarily strong external fields. While
this approach has not been used for strong interactions, it has proven itself as a powerful tool for a
description of electromagnetic and gravitational interactions of single particles [9, 10].

We use the system of units h̄ = 1, c = 1. Nevertheless, we include the Planck constant into
several formulas. The world indices are labeled by Greek letters, whereas we reserve Latin letters
from the beginning of the alphabet for tetrad indices. The Latin letters i, j,k . . . denote spatial world
indices.

2. Electromagnetic interactions of a Dirac particle in a rotating frame

The initial covariant Dirac equation has the form (see Ref. [12] and references therein)

(ih̄γ
aDa−m)Ψ = 0, a = 0,1,2,3, (2.1)

where Da is the spinor covariant derivative. The Dirac matrices γ
a are defined in local Lorentz

frames and have the usual form. Equation (2.1) describes gravitational (inertial) and electromag-
netical interactions.
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In Ref. [12], an exact Hermitian Hamiltonian in the Dirac representation corresponding to
Eq. (2.1) has been determined. To give a more detailed description of electromagnetic interactions
of a Dirac particle, an anomalous magnetic moment (AMM) of the particle should be taken into
account. For this purpose, we use the generalization [13] of the initial equation, introducing the
AMM µ

′ and the electric dipole moment (EDM) d:(
ih̄γ

aDa−m+
µ ′

2
σ

abFab +
d
2

σ
abGab

)
Ψ = 0. (2.2)

The use of tetrad indices for Dirac matrices is caused by the definition of the three-component
spin (pseudo)vector in the particle rest frame. This frame belongs to local Lorentz frames. After
passing to a Minkowski spacetime, Eq. (2.2) coincides with the corresponding equation for a
Dirac particle with the AMM and EDM (see Ref. [14]). Quantities Fab and Gab are defined by
Fab = eµ

a eν
b Fµν and Gab = eµ

a eν
b Gµν , where Fµν = (EEE,BBB) is the electromagnetic field tensor and

the tensor Gµν = (−BBB,EEE) is obtained with the dual transformation (Gµν =
1
2

η
µνλρFλρ ). We can

mention that Fab = (E,B), Gab = (−B,E), where

E= EEE +GGG, B= BBB, (2.3)

GGG = BBB× (ωωω× rrr), EEE =−∇Φ− ∂AAA
∂ t

, BBB = ∇×AAA. (2.4)

The quantities E and B are the effective fields in the rotating frame.
The general form of the Dirac Hamiltonian found in Ref. [12] does not contain additional

terms characterizing the AMM and EDM. In the considered case, an inclusion of these terms lead
to the following Dirac Hamiltonian [13]:

H = βm+ eΦ+ααα ·πππ−ωωω · (rrr×πππ)− h̄
2

ωωω ·ΣΣΣ−ΠΠΠ ·MMM + iγγγ ·PPP, (2.5)

where

MMM = µ
′B+dE, PPP = µ

′E−dB, πππ =−ih̄∇− eAAA. (2.6)

Now we fulfil the transformation to the FW representation [15] with the method developed in
Refs. [7, 8]. This representation holds a special place in quantum mechanics due to some unique
properties. In this representation, quantum mechanical operators for relativistic particles in an
external field have the same form as in the nonrelativistic quantum theory. In particular, the position
operator [16] and momentum operator are equal to rrr and ppp =−ih̄∇, and the polarization operator
for spin-1/2 particles is expressed by the Dirac matrix ΠΠΠ. In other representations, these operators
are expressed by much more cumbersome formulas (see Refs. [6, 15]). The relations between
the operators in the FW representation are analogous to the relations between the corresponding
classical quantities. The simple form of operators corresponding to classical observables is a great
advantage of this representation. The above-mentioned properties of the FW representation allow
using it successfully for passing to the semiclassical approximation and to the classical limit of
relativistic quantum mechanics [15, 17]. We note that the Hamiltonian and all other operators are
diagonal in two spinors (block-diagonal) in this representation.
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When the FW representation is used, the passage to the classical limit is usually accomplished
by simply replacing the operators in the expressions for the Hamiltonian and in the operator equa-
tions of motion with the corresponding classical quantities. The possibility of such a replacement,
explicitly or implicitly used in practically all works devoted to the relativistic FW transformation,
was recently rigorously proved in Ref. [9]. This possibility radically simplifies interpreting the
basic quantum mechanics equations, especially in the relativistic case.

Initial Hamiltonian (2.5) can be presented in the following general form:

H = βm+E +O, βE = E β , βO =−Oβ , (2.7)

where E and O are even and odd (diagonal and off-diagonal in two spinors) operators, respectively.
The Hamiltonian transformed to the FW representation is exact for terms proportional to the

zeroth and first powers of the Planck constant and also for terms describing contact interactions
and proportional to h̄2. It is given by [7, 10]

HFW = βε +E − 1
8

{
1

ε(ε +m)
, [O, [O,F ]]

}
,

F = E − i
∂

∂ t
, ε =

√
m2 +O2.

(2.8)

In the considered case, it is convenient to present this Hamiltonian in the form [13]

HFW = H
(D)

FW +H
(add)

FW , (2.9)

H
(D)

FW = βε
′+ eΦ−ωωω · (rrr×πππ)− h̄

2
ωωω ·ΣΣΣ− eh̄

4

{
1
ε ′
,ΠΠΠ ·BBB

}
+

eh̄
8

{
1

ε ′(ε ′+m)
,
[
ΣΣΣ · (πππ×E−E×πππ)− h̄∇ ·E

]}
,

(2.10)

H
(add)

FW =
1
4

{
1
ε ′
,
[
ΣΣΣ · (πππ×PPP−PPP×πππ)− h̄∇ ·PPP

]}
−ΠΠΠ ·MMM

+
1
4

{
1

ε ′(ε ′+m)
,
[
(ΠΠΠ ·πππ)(πππ ·MMM )+(MMM ·πππ)(ΠΠΠ ·πππ)

+2πβ h̄(πππ ·JJJ +JJJ ·πππ)+β
h̄
2

{(
[ωωω× rrr] ·∇

)
,(πππ ·PPP)

}]}
,

(2.11)

where ε
′ =

√
m2 +πππ2 and JJJ = [∇∇∇×MMM − ∂PPP/(∂ t)]/(4π). The operator H

(D)
FW results from

a transformation of the Hamiltonian, corresponding Eq. (2.1), and the operator H
(add)

FW contains
terms, proportional to the AMM and EDM. In the last term of Eq. (2.11), the nabla operator acts
on PPP and defines derivatives of this quantity.

It is important that Eqs. (2.9)–(2.11) are exact in relation to the above-mentioned terms pro-
portional to the zeroth, first, and second powers of h̄. We are to underline that µ

′, d, PPP , and MMM

are proportional to h̄.

3. Effective fields acting on particle and spin

The results obtained in the previous section allow us to determine effective fields acting on a
particle and a spin. Let us use the simplest way of this determination.

4
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Let rrr be the radius-vector of a spinning particle possessing an EDM. Let us compare the spin
dynamics in the frame rotating with the angular velocity ωωω and in the instantly accompanying
frame moving with the velocity VVV = ωωω × rrr relative to the lab frame.1 It is convenient to consider
the simplest case when the particle velocity is equal to zero in the both frames in the considered
moment of time. To describe the spin motion in the instantly accompanying frame, we suppose
ωωω = 0 in Eqs. (2.9)–(2.11). For a particle at rest, the spin-dependent terms in the two Hamiltonians
are given by

H
(acc)

FW =−µΠΠΠ ·BBB′−dΠΠΠ ·EEE ′, H
(rot)

FW =− h̄
2

ωωω ·ΣΣΣ−µΠΠΠ ·B−dΠΠΠ ·E, (3.1)

where EEE ′ and BBB′ are the field acting on the particle in the instantly accompanying frame.
In the general case, the spin-dependent terms in the FW Hamiltonian have the form ΩΩΩ · sss,

where ΩΩΩ is the operator of the angular velocity of spin precession and sss is the spin operator equal
to h̄ΠΠΠ/2 or h̄ΣΣΣ/2. A difference between the angular velocities of spin precession in the two frames
can be caused by (i) the frame rotation with the angular velocity ωωω and (ii) the Thomas precession
with the angular velocity ωωωT =−[γ2/(γ +1)]βββ × β̇ββ , βββ = vvv/c. However, the Thomas precession is
zero for the particle at rest. Therefore, Eq. (3.1) results in

E= EEE ′, B= BBB′, EEE = EEE ′−BBB′× (ωωω× rrr). (3.2)

These relations have a simple physical sense. Let us consider the Earth’s rotating frame. In
this case, the effective fields acting on the particle spin (but not on the particle momentum!) are
equal to fields defined with formulas of special relativity for a given distribution of charges and
currents.

To determine the particle motion, we are to find the classical limit of the Hamiltonian (2.9)
and to calculate the force. This force is given by [18] FFF = dP/(dt), where Pi =−δ

i j p j +g0i p0 is
a spatial part of the covariant four-momentum Pµ = gµν pν .2 A sufficient precision is ensured by
taking into account terms linear in EEE,BBB, and ωωω . After replacing of the operators in Eqs. (2.9)–(2.11)
with corresponding classical quantities, we determine this force:

FFF = EEE +βββ ×BBB+FFFCor +FFFc f , FFFCor = 2πππ×ωωω,

FFFc f =−ε
′
ωωω× (ωωω× rrr),

(3.3)

where FFFCor and FFFc f are the Coriolis and centrifugal forces. Therefore, the effective electric field
acting on the particle momentum is equal to EEE. It differs from the effective electric field acting on
the particle spin. The corresponding effective magnetic fields coincide.

4. Phenomenological description of interaction of quarks with the Cornell potential

4.1 Cornell potential and its inclusion into the Dirac equation

The standard method of phenomenological description of interaction of quarks is the use of
the Cornell potential having the form

V (r) =−a(r)
r

+b(r)r. (4.1)

1The results obtained in the present work can be applied for any inertial frame, in particular, for the center-of-mass
one.

2Alternatively, the force can be defined as −d ppp/(dt), where ppp is a spatial part of pν .
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In the first approximation, we can suppose that a and b are constant. In this case, a≈ 100 MeV·fm,
b ≈ 400 MeV·fm−1. However, the second term in the Cornell potential is proportional to r2 at
condition that r is small [19].

For a phenomenological description of interaction of quarks, the Cornell potential should be
included into the Dirac equation. This can be made in different ways. There are some similarities
between the strong and electromagnetic interactions of quarks. Therefore, an inclusion of the
potential (4.1) into the four-vector potential Aµ = (Φ,AAA) similarly to the Coulomb interaction is
the most natural. In this case, Φ = γΦ0, AAA = γΦ0VVV/c, eΦ0→ V (r), where VVV is a velocity of the
field source (quark) in a given frame. Such an approach allows us to introduce the normal and
anomalous chromomagnetic moments of quarks. These moments are of the same order (see Ref.
[20, 21]).

Alternatively, the Cornell potential can be included into the Dirac equation as a scalar potential.
In this case, the Cornell potential is multiplied by the matrix β , and its inclusion means the effective
modification of the quark mass. If the electromagnetic interaction is not taken into account, the
Dirac Hamiltonian takes the form

H = β [m+V (r)]+ααα · ppp−ωωω · (rrr× ppp)− h̄
2

ωωω ·ΣΣΣ, ppp =−ih̄∇. (4.2)

One mostly incorporated both the scalar and vector potentials into the Dirac equation [3, 4, 5].
For the second potential, the Cornell one replaced the scalar electromagnetic potential Φ. The only
case of an equality of the two incorporated potentials was investigated in Refs. [3, 4, 5]. This
equality does not have any physical substantiation but it allows one to obtain exact solutions [3, 4,
5]. In fact, the scalar and vector Cornell potentials present two different independent approaches
to a description of the strong interaction. In Ref. [2], the vector potential was not used. In this
work, the FW transformation was performed only for a nonrelativistic Dirac particle in the weak
field approximation. In the present work, the much more general problem of a high-precision
description of a relativistic quark in an arbitrarily strong field is solved thanks to the use of a more
universal method of the FW transformation. This allows us to calculate the effect of the strong
spin-orbit interaction of relativistic quarks.

The quantity ωωω is defined by the total angular momentum and the moment of inertia of col-
liding nuclei. Evidently, the assumption that the system of colliding nuclei rotates as a whole is
approximate. It would be valid if the sum of the kinetic energies of the nuclei and the interaction
energy were negative. However, this condition cannot be satisfied.

4.2 Phenomenological description of strong interaction with the vector Cornell potential

When the vector Cornell potential A µ = (F, AAA ) is used and the electromagnetic interaction
of quarks is taken into account, the FW Hamiltonian takes the form (2.9)–(2.11). The potential F
can be set equal to V (r). The terms characterizing the EDM can be disregarded. This approach
allows us to introduce the chromoelectric and chromomagnetic fields, QQQ and RRR:

QQQ =−∇F− ∂AAA

∂ t
, RRR = ∇×AAA . (4.3)

We can take into account interactions conditioned by normal and anomalous chromomagnetic mo-
ments and also contact interactions.

6
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When one uses the assumption that the system of colliding nuclei rotates as a whole, the
rotating frame can be applied. In this case, the centrifugal force should be counterbalanced on
average by the attractive force acting between quarks.

While the rotating frame is convenient for a description of dynamics of quarks, the use of
the lab frame is preferable for an analysis of observable effects. In this case, we should substitute
ωωω = 0. As a result, we obtain the following Hamiltonian:

HFW = βε
′+ eΦ+F+

h̄
8m2

{
1

γ(γ +1)
,
(

ΣΣΣ ·
[
πππ× (eEEE +QQQ)

−(eEEE +QQQ)×πππ
]
− h̄∇ · (eEEE +QQQ)

)}
+

h̄
8m2

{
1
γ
,
(

ΣΣΣ ·
[
πππ× (eGEEE +GcQQQ)

−(eGEEE +GcQQQ)×πππ
]
− h̄∇ · (eGEEE +GcQQQ)

)}
− h̄

4m

{
1
γ
,
(

ΠΠΠ ·
[
eBBB+RRR

])}
− h̄

2m

(
ΠΠΠ ·
[
eGBBB+GcRRR

])
+β

h̄
8m3

{
1

γ(γ +1)
,
[(
[eGBBB+GcRRR] ·πππ

)(
ΣΣΣ ·πππ

)
+
(
ΣΣΣ ·πππ

)(
πππ · [eGBBB

+GcRRR]
)
+2π h̄

(
πππ · [eG jjj+GcIII ]+ [eG jjj+GcIII ] ·πππ

)]}
,

(4.4)

where γ = ε
′/m =

√
m2 +πππ2/m is the Lorentz factor, πππ = ppp− eAAA−AAA , G = (g− 2)/2, Gc =

(gc− 2)/2, gc is the chromomagnetic g factor similar to the electromagnetic one, jjj = [∇∇∇×BBB−
∂EEE/(∂ t)]/(4π), and III = [∇∇∇×RRR−∂QQQ/(∂ t)]/(4π).

In the classical limit, the operator of the angular velocity of spin precession is given by

ΩΩΩ =
1

mc(γ +1)
βββ × (eEEE +QQQ)+

1
mc

βββ × (eGEEE +GcQQQ)

− 1
mcγ

(eBBB+RRR)− 1
mc

(eGBBB+GcRRR)

+
γ

mc(γ +1)
[βββ · (eGBBB+GcRRR)]βββ .

(4.5)

The velocity of light c is explicitly included into this equation. In this limit, the force is similar to
the Lorentz force:

FFF = eEEE +QQQ+βββ × (eBBB+RRR). (4.6)

Let VVV be the velocity of the quark which is the source of the strong and electromagnetic
fields. If we neglect the spin-spin interaction of the quarks in the first approximation, we obtain the
following relations

BBB =
VVV

c
×EEE, RRR =

VVV

c
×QQQ. (4.7)

When the interacting quarks belong to different nuclei, the vectors vvv and VVV have opposite
directions in the lab frame. At collisions of high energy nuclei, it can be often supposed that
|vvv| ≈ |VVV | ≈ c. An opposite situation takes place when the vectors vvv and VVV are mainly co-directed.
This situation can probably be realized in quark-gluon plasma due to a predominance of local

7
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interactions. For the stationarily rotating system of nuclei, the vector vvv is almost orthogonal to the
vectors BBB and RRR. In this case, the last term in Eq. (4.5) can be neglected in the first approximation.

Let us use the center-of-mass system and consider the simplest (but practically very important)
case of a collision of two nucleons. In this case, VVV = −vvv. Let us determine the Hamiltonian
of the first quark in the field of the second one. We restrict ourselves by a phenomenological
description of main effects under peripheral collisions of relativistic nuclei. To perform a more
precise quantitative analysis, one needs to take into account effects of retardation and to use the
Breit equation as an initial one. Nevertheless, the approach used gives us a reasonable description
of the force acting on the quark and of the torque acting on its spin.

When the electromagnetic interaction is neglected, the classical limit of the Hamiltonian (4.4)
is given by

H = ε
′+F+

1
mc

(
1
γ
+

1
γ +1

+2Gc

)
sss · (βββ ×QQQ). (4.8)

Here sss is the classical spin vector. In this approximation, the angular velocity of spin precession is
equal to

ΩΩΩ =
1

mc

(
1
γ
+

1
γ +1

+2Gc

)
βββ ×QQQ. (4.9)

We take into account that the contribution of the strong interaction into the spin precession is
predominant for any energy.

It is rather convenient to express the angular velocity of spin precession ΩΩΩ in the lab frame
(more precisely, in the center-of-mass one) in terms of the force (4.6) in the same frame. In the
considered case, this force is given by

FFF =

(
2− 1

γ2

)
(eEEE +QQQ)−βββ (βββ · [eEEE +QQQ]) . (4.10)

When only the strong interaction is taken into account, the angular velocity of spin precession
is therefore expressed as follows:

ΩΩΩ =
1

mc

(
1
γ
+

1
γ +1

+2Gc

)
γ2

2γ2−1
βββ ×FFF . (4.11)

Since the force FFF defines the change of the momentum, it can be in principle extracted from exper-
imental data. Thus, Eq. (4.11) is convenient for an analysis of experimental effects.

The sign of the projection of ΩΩΩ onto the normal to the scattering plane depends on the sign of
Gc. If Gc < 0 (see Ref. [21]) and the Lorentz factor is large enough, the pseudovectors ΩΩΩ and ωωω

are oppositely directed.
Equation (4.11) defines the rather large angular velocity of spin precession which corresponds

to the rather high energy of spin-orbit interaction (of the order of 100 MeV).
If one supposes that the system of nuclei rotates as a whole, FFF =−FFFc f and vvv = ωωω× rrr.
The angular velocity of spin precession is of the same order of magnitude as the vorticity

calculated in Ref. [1].
We can conclude that the strong interaction of quarks leads to the spin-orbit interaction which

results in a spin rotation and in a preferable orientation of the spin. The latter effect is similar to a
spin polarization in targets placed in a magnetic field. In the case of strange quarks, this effect can
be an additional explanation of hyperon polarization [1].

8
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4.3 Phenomenological description of strong interaction with the scalar Cornell potential

An interaction of quarks caused by the scalar Cornell potential can be determined in a similar
way. We describe this interaction in a rotating frame and do not consider an electromagnetic inter-
action which is more weak. In principle, this interaction can be included into the initial Hamiltonian
and the FW transformation of the Hamiltonian obtained can be carried out.

The interaction of quarks in the rotating frame characterized by the scalar Cornell potential is
described by the Dirac Hamiltonian (4.2). The FW transformation of such Dirac Hamiltonians has
been performed in Ref. [12]. With the use of Eqs. (2.24) and (3.1)–(3.6) from this work, we obtain
the following relativistic Hamiltonian:3

HFW = βε
′′−ωωω · (rrr× ppp)− h̄

2
ωωω ·ΣΣΣ

+β
h̄
4

{
1

2ε ′′2 +{ε ′′, [m+V (r)]}
, [ΣΣΣ · (EEE × ppp− ppp×EEE )+ h̄∇∇∇ ·EEE ]

}
,

ε
′′ =

√
[m+V (r)]2 + ppp2, EEE =−∇V (r) =−V ′(r)

rrr
r
.

(4.12)

Thus, the presence of the scalar Cornell potential also results in the spin-orbit interaction. In
the considered case, the classical limit of the operator of the angular velocity of spin precession
reads

ΩΩΩ =−ωωω +
EEE × ppp

ε ′′[ε ′′+m+V (r)]
. (4.13)

As above, let us consider the quark interaction in the lab frame (when ωωω = 0) for a determina-
tion of observable spin effects. It is convenient to express the angular velocity of spin precession
in terms of the force. In the classical limit, the force operator FFF =−∇HFW takes the form

FFF =
[m+V (r)]EEE

ε ′′
. (4.14)

The velocity of the quark is given by
vvv =

ppp
ε ′′

. (4.15)

Thus, the Lorentz factor is equal to γ = ε
′′/[m+V (r)].

These formulas make it possible to connect the angular velocity of spin precession with the
force:

ΩΩΩ =− γ

(γ +1)[m+V (r)]c
βββ ×FFF . (4.16)

The connection between the angular velocity of spin precession and the force is general and
almost exact when the scalar Cornell potential is considered. In the case of the vector Cornell
potential, the corresponding connection is approximate. The energy of the spin-orbit interaction
defined by the scalar Cornell potential is also rather high (of the order of 100 MeV).

5. Conclusions

We considered the strong and electromagnetic interactions of Dirac particles (quarks) in rotat-
ing frames. We used the scalar and vector Cornell potentials for a phenomenological description

3In the above-mentioned equations, F = 1, KKK =−ωωω× rrr/c, and mc2V should be substituted by m+V (r).
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of the strong interaction. A large angular momentum of the system of colliding nuclei leads to the
effective rotation. The vector Cornell potential is similar to the four-vector potential of the electro-
magnetic field. Since the strong interaction is much more close to the electromagnetic interaction
than to the scalar one, the use of the vector Cornell potential is very natural. Unlike previous inves-
tigations [2, 3, 4, 5], we used the method of the relativistic FW transformation [6, 7] applicable in
arbitrarily strong external fields and determined the relativistic FW Hamiltonian. This Hamiltonian
is exact relative to terms of the zeroth and first orders in the Planck constant and such terms of the
order of h̄2 which describe contact interactions. We found the exact classical limit of this Hamil-
tonian. The adequate and exact classical limit of the strong interaction of quarks characterized by
the Cornell potential was determined for the first time. We also took into account the electromag-
netic interaction which may not be negligible. Effective fields acting on the particle and spin were
found. General formulas for the angular velocity of spin precession were derived. These formulas
correspond to the high energy of the spin-orbit interaction (of the order of 100 MeV) for both the
vector and scalar Cornell potentials. For these potentials, we determined the relations between the
angular velocity of spin precession and the force acting on the quark. Since this force defines the
change of the momentum, it can be in principle extracted from experimental data.
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